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Engineering problem

Common Rail
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Pressurised fuel

Piezoelectric injection nozzle of a common rail
engine.
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0PSfrag replacements

metal electrodes

clamped support
Growth of a piezoelectric multilayer-
actuator (MLA). Common values: driving
voltage: U ≈ ±200V , number of layers
n > 80.
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Constitutive equations

Thermopiezoelectricity in the ceramic

s =
ρc

T0
T + λijγij + χmEm

σij = −λijT + Cijklγkl − emijEm

Dn = χnT + enijγij + εmnEm
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Constitutive equations

Thermopiezoelectricity in the ceramic

s =
ρc

T0
T + λijγij + χmEm

σij = −λijT + Cijklγkl − emijEm

Dn = χnT + enijγij + εmnEm

T difference of temperature: Ta = T0 + T

γ linearised strain tensor: γij = 1
2 (∂jui + ∂iuj)

E electric vector field

s entropy density
σ stress

D dielectric displacement

ρ mass density
c specific heat per unit mass
λ thermal stress coefficient

χ pyroelectric coefficient
C transversally isotropic (PZT-4) elasticity tensor

e piezoelectric tensor (non-symmetric)

ε permittivity tensor (symmetric)
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Constitutive equations

Thermopiezoelectricity in the ceramic

s=
ρc

T0
T + λijγij − χm∂Φ

σij = −λijT + Cijklγkl+emij∂mΦ

Dn = χnT + enijγij−εmn∂mΦ

T difference of temperature: Ta = T0 + T

γ linearised strain tensor: γij = 1
2 (∂jui + ∂iuj)

E electric vector field

s entropy density
σ stress

D dielectric displacement

ρ mass density
c specific heat per unit mass
λ thermal stress coefficient

χ pyroelectric coefficient
C transversally isotropic (PZT-4) elasticity tensor

e piezoelectric tensor (non-symmetric)

ε permittivity tensor (symmetric)

Simplifications

➜ E is curl free, E = −∇Φ

➜ T is known
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Constitutive equations

Thermoelasticity in the metal
s =

ρc

T0
T + λijγij

σij = −λijT + Cijklγkl
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Constitutive equations

Thermoelasticity in the metal
s =

ρc

T0
T + λijγij

σij = −λijT + Cijklγkl

T difference of temperature: Ta = T0 + T

γ linearised strain tensor: γij = 1
2 (∂jui + ∂iuj)

s entropy density
σ stress

ρ mass density
c specific heat per unit mass
λ thermal stress coefficient

C isotropic (AgPd alloy) elasticity tensor
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Constitutive equations

Thermoelasticity in the metal
s=

ρc

T0
T + λijγij − χm∂Φ

σij = −λijT + Cijklγkl

T difference of temperature: Ta = T0 + T

γ linearised strain tensor: γij = 1
2 (∂jui + ∂iuj)

s entropy density
σ stress

ρ mass density
c specific heat per unit mass
λ thermal stress coefficient

C isotropic (AgPd alloy) elasticity tensor

Simplification

➜ T is known

From now on, the two-index notation (Voigt mapping) is used.
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Equations of motion/Gauss’ law

Notation

uC := r˛
˛ΩC

u

uM := r˛
˛ΩM

u

ΦC := ΦC (x , t), electric potential

Force balance equations

ρC∂
2
t uC − DivσC (uC ,Φ, T ) = 0

divD C (uC ,Φ, T ) = 0

ρM∂
2
t uM − DivσM (uM , T ) = 0
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Equations of motion/Gauss’ law

Notation

uC := r˛
˛ΩC

u

uM := r˛
˛ΩM

u

ΦC := ΦC (x , t), electric potential, ΦM is known in Q(0,t
∗)

M

Q
(0,t∗)
C

:= ∪t∈(0,t∗)Ω
t
C , time-space cylinder, Q(0,t

∗)
M

analogously defined

D> := Div =

„

∂1 0 0 0 ∂3 ∂2
0 ∂2 0 ∂3 0 ∂1
0 0 ∂3 ∂2 ∂1 0

«

Force balance equations

ρC üC −D
T
C CDuC −D

>
e
>
∇ΦC = −D

>
λCT in Q(0,t

∗)
C

,

div (eDuC − ε∇ΦC) = −divχt in Q(0,t
∗)

C
,

ρM üM −D
T
CMDuM = −D

>
λMT in Q(0,t

∗)
M

,

Simplifications

➜ T is known

➜ Two-index notation
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Equations of motion/Gauss’ law

Notation

uC(x , t) := r˛
˛ΩC

u (x , t)= eτtuC(x )

uM := r˛
˛ΩM

u= eτtuM (x )

ΦC := ΦC (x , t)= eτtΦC(x ), electric potential, ΦM= eτtΦM (x ) is known in Q(0,t
∗)

M

Q
(0,t∗)
C

:= ∪t∈(0,t∗)Ω
t
C , time-space cylinder, Q(0,t

∗)
M

analogously defined

D> := Div =

„

∂1 0 0 0 ∂3 ∂2
0 ∂2 0 ∂3 0 ∂1
0 0 ∂3 ∂2 ∂1 0

«

Force balance equations
Pseudo oscillation equations: τ = s+ iω

ρC üC −D
T
C CDuC −D

>
e
>
∇ΦC = −D

>
λCT in Q(0,t

∗)
C

,

div (eDuC − ε∇ΦC) = −divχT in Q(0,t
∗)

C
,

ρM üM −D
T
CMDuM = −D

>
λMT in Q(0,t

∗)
M

,

Simplifications

➜ T is known

➜ Two-index notation

➜ Ansatz: All functions are
harmonic time dependent,
pseudo oscillation equa-
tions
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Equations of motion/Gauss’ law

Notation

uC(x , t) := r˛
˛ΩC

u (x , t)= eτtuC(x )

uM := r˛
˛ΩM

u= eτtuM (x )

ΦC := ΦC (x , t)= eτtΦC(x ), electric potential, ΦM= eτtΦM (x ) is known in ΩM

D> := Div =

„

∂1 0 0 0 ∂3 ∂2
0 ∂2 0 ∂3 0 ∂1
0 0 ∂3 ∂2 ∂1 0

«

Force balance equations
Steady oscillation equations: τ = iω

−ρCω
2
uC −D

T
C CDuC −D

>
e
>
∇ΦC = −D

>
λCT in ΩC ,

div (eDuC − ε∇ΦC) = −divχT in ΩC ,

−ρMω
2
uM −D

T
CMDuM = −D

>
λMT in ΩM

Simplifications

➜ T is known

➜ Two-index notation

➜ Ansatz: All functions are
harmonic time dependent,
steady oscillation equations
(Helmholtz type)
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Equations of motion/Gauss’ law

Notation

uC(x , t) := r˛
˛ΩC

u (x , t)= uC(x )

uM := r˛
˛ΩM

u= uM (x )

ΦC := ΦC (x , t)= ΦC(x ), electric potential, ΦM= ΦM (x ) is known in ΩM

D> := Div =

„

∂1 0 0 0 ∂3 ∂2
0 ∂2 0 ∂3 0 ∂1
0 0 ∂3 ∂2 ∂1 0

«

Force balance equations
Static equations: τ = 0

−D
T
C CDuC −D

>
e
>
∇ΦC = −D

>
λCT in ΩC ,

div (eDuC − ε∇ΦC) = −divχT in ΩC ,

−D
T
CMDuM = −D

>
λMT in ΩM

Simplifications

➜ T is known

➜ Two-index notation

➜ Ansatz: All functions are
time independent, static
equations
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Equations of motion/Gauss’ law (2D)

Expanded force balance equation system (Thermopiezoelasticity)

−ρω
2
u1 − C11∂

2
1u1 − C12∂1∂2u2 − C13∂1∂3u3 − C44(∂

2
3u1 + ∂3∂1u3)

−
C11 − C12

2
(∂
2
2u1 + ∂2∂1u2)− e31∂1∂3Φ− e15∂3∂1Φ = −∂1λ1T

−ρω
2
u2 − C12∂2∂1 − C11∂

2
2u2 − C13∂2∂3u3 − C44(∂

2
3u2 + ∂3∂2u3)

−
C11 − C12

2
(∂1∂2u1∂

2
1u2)− e31∂2∂3Φ− e15∂3∂2Φ = −∂2λ1T

−ρω
2
u3 − C13∂3∂1u1 − C13∂3∂2u2 − C33∂

2
3u3 − C44(∂2∂3u2 + ∂

2
2u3)

−C44(∂1∂3u1 + ∂
2
1u3)− e33∂

2
3Φ− e15∂

2
2Φ− e15∂

2
1Φ = −∂3λ3T

e15∂1∂3u1 + e15∂
2
1u3 + e15∂2∂3u2 + e15∂

2
2u3 + e31∂3∂1u1

+e31∂3∂2u2 + e33∂
2
3u3 − ε11∂

2
1Φ− ε11∂

2
2Φ− ε33∂

2
3Φ = −(∂1p+ ∂2p

+ ∂3p)T
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Equations of motion/Gauss’ law (2D)

Expanded force balance equation system (Thermopiezoelasticity) with plane strain
assumption
u = u (x1, x3), Φ = Φ(x1, x3)

−ρω
2
u1 − C11∂

2
1u1 − C13∂1∂3u3 − C44(∂

2
3u1 + ∂3∂1u3)− e31∂1∂3Φ

−e15∂3∂1Φ = −∂1λ1T (1)

−ρω
2
u2 − C44∂

2
3u2 −

C11 − C12

2
∂
2
1u2= −∂2λ1T (2)

−ρω
2
u3 − C13∂3∂1u1 − C33∂

2
3u3 − C44(∂1∂3u1 + ∂

2
1u3)− e33∂

2
3Φ

−e15∂
2
1Φ = −∂3λ3T (3)

e15∂1∂3u1 + e15∂
2
1u3 + e31∂3∂1u1 + e33∂

2
3u3 − ε11∂

2
1Φ− ε33∂

2
3Φ = −(∂1p+ ∂2p

+ ∂3p)T (4)

Equation system (1),(3),(4) and equation (2) decouple.
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Equations of motion/Gauss’ law (2D)

Expanded force balance equation system (Thermopiezoelasticity) with plane strain
assumption
u = u (x1, x3), Φ = Φ(x1, x3)

−ρω
2
u1 − C11∂

2
1u1 − C13∂1∂3u3 − C44(∂

2
3u1 + ∂3∂1u3)− e31∂1∂3Φ

−e15∂3∂1Φ = −∂1λ1T (1)

−ρω
2
u2 − C44∂

2
3u2 −

C11 − C12

2
∂
2
1u2= −∂2λ1T (2)

−ρω
2
u3 − C13∂3∂1u1 − C33∂

2
3u3 − C44(∂1∂3u1 + ∂

2
1u3)− e33∂

2
3Φ

−e15∂
2
1Φ = −∂3λ3T (3)

e15∂1∂3u1 + e15∂
2
1u3 + e31∂3∂1u1 + e33∂

2
3u3 − ε11∂

2
1Φ− ε33∂

2
3Φ = −(∂1p+ ∂2p

+ ∂3p)T (4)

Equation system (1),(3),(4) and equation (2) decouple.

From now on, the 2D-system (1),(3),(4) will be considered.
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Notation

System (1,3,4) can be written shortly as:

−ρCω
2
uC −B

>
ACBU C = F C

The corresponding elastic system reads:

−ρMω
2
uM −B

>
AMBU M = F M

Generalised material matrix AC ,AM :

AC =

0

B

@

c11 c13 0 0 −e31
c13 c33 0 0 −e33
0 0 c44 −e15 0
0 0 e15 ε11 0

e31 e33 0 0 ε33

1

C

A
, AM =

0

@

λ+2µ λ 0 0 0
λ λ+2µ 0 0 0
0 0 µ 0 0
0 0 0 0 0
0 0 0 0 0

1

A

Differential operator B and generalised displacement vectors U i:

B =

 

D 0

0 −∇13

!

, D =

 

∂1 0 ∂3

0 ∂3 ∂1

!>

, U C =

0

B

@

uC,1

uC,3

ΦC

1

C

A
, U M =

0

B

@

uM,1

uM,3

∓Φa

1

C

A
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System (1,3,4) can be written shortly as:

−ρCω
2
uC −B

>
ACBU C = F C

The corresponding elastic system reads:

−ρMω
2
uM −B

>
AMBU M = F M

Generalised material matrix AC ,AM :

AC =

0

B

@

c11 c13 0 0 −e31
c13 c33 0 0 −e33
0 0 c44 −e15 0
0 0 e15 ε11 0

e31 e33 0 0 ε33

1

C

A
, AM =

0

@

λ+2µ λ 0 0 0
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0 0 µ 0 0
0 0 0 0 0
0 0 0 0 0

1

A

Differential operator B and generalised displacement vectors U i:

B =

 

D 0

0 −∇13

!

, D =

 

∂1 0 ∂3
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, U C =

0
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@

uC,1

uC,3
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1

C

A
, U M =

0
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@

uM,1

uM,3
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1

C
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Mathematical model (full problem)

Mathematical models

PSfrag replacements
Γ−

Γ3

Γ4

Γ− Γ+

−b1
+b1

x1

x3

Γ

Γ

2b1
b3

Model of a simple stack actuator,

Ω̄ = Ω̄M ∪ Ω̄C

Γ = ∂ΩC ∩ ∂ΩM

Linear Voigt Model (ceramic) & Hooke’s law
(metal-electrode) for the composite (2D,plane
strain)

−ρCω
2
uC −D

T
C CDuC −D

T
e
>
∇ΦC = F

u
C in ΩC ,

div (eDuC − ε∇ΦC) = F
Φ
C in ΩC ,

−ρMω
2
uM −D

T
C MDuM = F

u
M in ΩM

ΦM = ±Φa known in ΩM .

Boundary conditions

σCn (uC ,ΦC) = 0 on ∂Ω \ Γ3

uC = 0 on Γ3

DCn (uC ,ΦC) = 0 on ∂Ω ∩ ∂ΩC \ Γ±

ΦC = ±Φa on Γ± ∪ Γ

Transmission conditions on Γ:

uC = uM , σCn (uC ,ΦC) = σMn (uM )
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Mathematical model (full problem)

Mathematical models

For real-life actuator geometries, the
electrode height is small in comparison
with the layer height ⇒ large number of
nodes in the FEM-simulation.

Linear Voigt Model (ceramic) & Hooke’s law
(metal-electrode) for the composite (2D,plane
strain)

−ρCω
2
uC −D

T
C CDuC −D

T
e
>
∇ΦC = F

u
C in ΩC ,

div (eDuC − ε∇ΦC) = F
Φ
C in ΩC ,

−ρMω
2
uM −D

T
C MDuM = F

u
M in ΩM

ΦM = ±Φa known in ΩM .

Boundary conditions

σCn (uC ,ΦC) = 0 on ∂Ω \ Γ3

uC = 0 on Γ3

DCn (uC ,ΦC) = 0 on ∂Ω ∩ ∂ΩC \ Γ±

ΦC = ±Φa on Γ± ∪ Γ

Transmission conditions on Γ:

uC = uM , σCn (uC ,ΦC) = σMn (uM )
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Asymptotic procedure

Idea: Exploitation of the small geometrical quantity (electrode height h) in the original problem:
reduction to a multifield problem only in the ceramic domain by replacing the metallic electrodes by
non-standard interface conditions on the middle lines ΓM of the electrodes.

Proceeding (perturbed problem)

1. Select one electrode η = ηj , ΩM = ∪nj=1ηj with a local coordinate (x3 = εξ, ε small)

system in a neighbourhood U (η)

2. Assumption: U C is known in U (η)

3. Splitting of the differential operator D into the ∂1 and the ∂ξ part

4. Assumption: uC ,uM and ΦC can be written as power series with respect to ε

5. Inserting the splitted operator and the power series into the PDE system and the transmission
conditions and comparing coefficients.
⇒ Taylor series of new transmission conditions around electrodes of thickness zero
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conditions and comparing coefficients.
⇒ Taylor series of new transmission conditions around electrodes of thickness zero
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Asymptotic procedure

1. We select one electrode η = ηj , ΩM = ∪nj=1ηj with a local coordinate system in a

neighbourhood U (η):

x3 = εξ, ξ ∈ [−h0, h0], h0 ∼ l3, 0 ≤ ε ≤ 1,

u ε (x1, ξ) := uM (x1, x3) .

2. Assumption: U C is known in U (η).
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Asymptotic procedure

3. Splitting of the differential operator

D =

 

∂1 0 ∂3

0 ∂3 ∂1

!>

into

A
>
1 =

 

∂1 0 0

0 0 ∂1

!

, A
>
0 =

 

0 0 1

0 1 0

!

, A
>
0 = A

>
0 ∂ξ =

 

0 0 ∂ξ

0 ∂ξ 0

!

.

The differential operator D locally (in η) reads:

D = ε
−1
A0 +A1 : H

1
(η)→ L2 (η) .

4. Assumption: the solutions uC , uM , ΦC of the PDE system, given in the ceramic and the metal
domain can be written as asymptotic series within the neighbourhood of the electrode η:

uC(x1, x3) =

∞
X

j=0

ε
j
w j(x1, x3), ΦC(x1, x3) =

∞
X

j=0

ε
j
Φj(x1, x3),

u ε(x1, x2, ξ) =
∞
X

j=0

ε
j
u j(x1, ξ),



Winfried Geis
c©All rights reserved to Robert Bosch GmbH, including copyright applications. We retain all rights of authorization, such as for copying and forwarding. 12/24

Asymptotic procedure

3. Splitting of the differential operator

D =

 

∂1 0 ∂3

0 ∂3 ∂1

!>

into

A
>
1 =

 

∂1 0 0

0 0 ∂1

!

, A
>
0 =

 

0 0 1

0 1 0

!

, A
>
0 = A

>
0 ∂ξ =

 

0 0 ∂ξ

0 ∂ξ 0

!

.

The differential operator D locally (in η) reads:

D = ε
−1
A0 +A1 : H

1
(η)→ L2 (η) .

4. Assumption: the solutions uC , uM , ΦC of the PDE system, given in the ceramic and the metal
domain can be written as asymptotic series within the neighbourhood of the electrode η:

uC(x1, x3) =

∞
X

j=0

ε
j
w j(x1, x3), ΦC(x1, x3) =

∞
X

j=0

ε
j
Φj(x1, x3),

u ε(x1, x2, ξ) =
∞
X

j=0

ε
j
u j(x1, ξ),



Winfried Geis
c©All rights reserved to Robert Bosch GmbH, including copyright applications. We retain all rights of authorization, such as for copying and forwarding. 12/24

Asymptotic procedure

3. Splitting of the differential operator

D =

 

∂1 0 ∂3

0 ∂3 ∂1

!>

into

A
>
1 =

 

∂1 0 0

0 0 ∂1

!

, A
>
0 =

 

0 0 1

0 1 0

!

, A
>
0 = A

>
0 ∂ξ =

 

0 0 ∂ξ

0 ∂ξ 0

!

.

The differential operator D locally (in η) reads:

D = ε
−1
A0 +A1 : H

1
(η)→ L2 (η) .

4. Assumption: the solutions uC , uM , ΦC of the PDE system, given in the ceramic and the metal
domain can be written as asymptotic series within the neighbourhood of the electrode η:

uC(x1, x3) =

∞
X

j=0

ε
j
w j(x1, x3), ΦC(x1, x3) =

∞
X

j=0

ε
j
Φj(x1, x3),

u ε(x1, x2, ξ) =
∞
X

j=0

ε
j
u j(x1, ξ),



Winfried Geis
c©All rights reserved to Robert Bosch GmbH, including copyright applications. We retain all rights of authorization, such as for copying and forwarding. 13/24

Asymptotic procedure

5. Partial differential equation system (elasticity)

n

A
>
0 CMA0 + ε

“

A
>
0 CMA1 +A

>
1 CMA0

”

+ ε
2
A
>
1 CMA1

o
∞
X

j=0

ε
j
u j = F M in η.

Transmission conditions u ε|ξ=±h0
= uC |x3=±εh0

,

∞
X

j=0

ε
j
u j |ξ=±h0

=

∞
X

j=0

ε
j
w j |x3=±εh0

,

σMn (u ε) |ξ=±h0
= σCn (uC ,ΦC)|x3=±εh0

ε
−1
A

>
0 CM {A0 + εA1}u ε|ξ=±h0

= σCn (
∞
X

j=0

ε
j
w j ,

∞
X

j=0

ε
j
Φj)|x3=±εh0

.

⇒ Series of limit problems (ε = 0) with non-standard interface conditions.
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ε
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X

j=0

ε
j
Φj)|x3=±εh0

.

⇒ Series of limit problems (ε = 0) with non-standard interface conditions.
Example: Interface conditions in the first limit problem

[σ n(uC ,ΦC)] = 0 on ΓM

[uC ] = 0 on ΓM
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ε
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w j ,

∞
X

j=0

ε
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.

⇒ Series of limit problems (ε = 0) with non-standard interface conditions.

Example: Interface conditions in the second limit problem (here: T = T
“

CM

”

)

[w 1] = 2h0T
−1
“

σ Cn (w 0,Φ0)−A
>
0 CMA1w 0 (x1, x2, 0)

”

− 2h0 〈∂3w 0〉 ,

[σ Cn (w 1,Φ1)] = −2h0 〈∂3σ Cn (w 0,Φ0)〉 − 2h0A
>
1 CMA1w 0 (x1, x2, 0)

− 2h0A
>
1 CMA 0T

−1
M

“

σ Cn (w 0,Φ0)−A
>
0 CMA1w 0 (x1, x2, 0)

”
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Mathematical model (electrode thickness 0)

PSfrag replacements
Γ−

Γ3

Γ4

Γ− Γ+

−b1
+b1

x1

x3

Γm

Γm

2b1
b3

Model of a simple stack actuator with
electrodes of thickness 0,

Ω̄ = Ω̄C

Linear Voigt Model (ceramic) for the simplified 2D
model (plane strain)

ρCω
2
uC −D

>
C CDuC −D

>
e
>
∇Φ = F

u
C in ΩC

div (eDuC − ε∇Φ) = 0 in ΩC

Boundary conditions

σn(uC ,ΦC) = 0 on ∂Ω \ Γ3

uC = 0 on Γ3

Dn(uC ,ΦC) = 0 on ∂Ω ∩ ∂ΩC \ Γ±

Φ = ±Φa on Γ± ∪ Γm

Transmission conditions on Γm:

[uC ] = 0 , [σn(uC ,ΦC)] = 0
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Existence and uniqueness

Weak formulation of the boundary-transmission problem in the composite and the simplified model

Appropriate Sobolev spaces:

V :=



V =
`

v

Ψ

´

∈
h

H
1
(Ω)
i3
, r˛
˛Γ3

v = 0 and r˛
˛Γ∪Γ±

Φ = 0

ff

Ṽ :=



V =
`

v

Ψ

´

∈
h

H
1
(Ω\Γm)

i3
, r˛
˛Γ3

v = 0 and r˛
˛Γm∪Γ±

Φ = 0

ff

Bilinear form:

a (U 0,V ) := −ρω
2
Z

Ω

u 0 · v dx +

Z

Ω

ABU 0 ·BV dx

= −ρω
2
Z

Ω

u 0 · v dx +

Z

Ω

 

C −e>

e ε

! 

γ (u 0)

−∇Φ

!

:

 

γ (v )

−∇Ψ

!

Linear form:

f (V ) :=

Z

Ω

F (T ) · V dx

Transformation to homogeneous Dirichlet data: U =
`

u

Φ

´

= U 0 −W , such that U 0 ∈ V .
Resulting weak formulation:

a (U 0,V )= a (W ,V ) + f (V ) (1)
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Existence and uniqueness

Theorem.

The weak formulated multifield problem (1) in the composite and the simplified problem have unique
solutions.
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The weak formulated multifield problem (1) in the composite and the simplified problem have unique
solutions.

Two different approaches, to show existence and uniqueness of weak solutions:

1. Use the Fredholm alternative (e.g. Mercier/Nicaise, 2005): "There exists a discrete set S0 (spec-
trum) such that for ω2 6∈ S0, the problem (1) has a unique solution for any right hand side F ."
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Existence and uniqueness

Theorem.

The weak formulated multifield problem (1) in the composite and the simplified problem have unique
solutions.

Two different approaches, to show existence and uniqueness of weak solutions:

1. Use the Fredholm alternative (e.g. Mercier/Nicaise, 2005): "There exists a discrete set S0 (spec-
trum) such that for ω2 6∈ S0, the problem (1) has a unique solution for any right hand side F ."

+ General result
- S0 is not known explicitly

2. Choose appropriate Sobolev spaces V and Ṽ and prove the conditions of the Lax-Milgram
lemma (ellipticity and continuity).

- No general result (only valid for ω below the first eigenfrequency)

+ The proof makes use of Korn’s constant (dependent on the geometry of Ω), which gives a
hint to the location of the first eigenfrequency.

Sketch of proof.

Ellipticity

a (U ,U ) = −

Z

Ω

ρω
2
u · u dx +

Z

Ω

 

γ

E

!> 

C −e>

e ε

! 

γ

E

!

dx

= −ρω
2
‖u ‖[L2(Ω)]2

Z

Ω

γ C γ +E
>
εE dx
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Existence and uniqueness

Mechanical part

−ρω
2
‖u ‖

2
[L2(Ω)]

2 +

Z

Ω

γ
>
C γ dx ≥ C0 ‖γ‖

2
[L2(Ω)]

3 − ρω
2
‖u ‖

2
[L2(Ω)]

2

Korn
≥ C0,Korn(C0,Ω,Γ

D
M ) ‖u ‖

2
[L2(Ω)]

2 − ρω
2
‖u ‖

2
[L2(Ω)]

2

≥ C̃0 ‖u ‖
2
Ṽ
,

with C̃0 > 0 for C0,Korn > ρω2 and ω small.

Electrical part

Z

Ω

E
>
εE dx ≥ ε0

Z

Ω

∇Φ∇Φdx

Friedrichs
≥ ε0,Friedrichs(ε0,Ω,Γ

D
e ) ‖Φ‖

2
V .
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Computation of mechanical and electric fields

Resulting block-LES:

 

C −E >

E EPS

! 

U

Φ

!

=

 

F 1

F 2

!

(2)

The skew-symmetric block-system (2) is solved with the Bramble Pasciak CG (BPCG) (see e.g. O.
Steinbach: Numerische Näherungsverfahren für elliptische Randwertprobleme)
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Steady oscillation case

➜ For small frequencies, we can neglect the term ρω2u :

⇒ Stationary boundary-transmission-problem

➜ For large frequencies, the term ρω2u should be taken into account.

What are "small frequencies"?
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Steady oscillation case

➜ For small frequencies, we can neglect the term ρω2u :

⇒ Stationary boundary-transmission-problem

➜ For large frequencies, the term ρω2u should be taken into account.

What are "small frequencies"? PZT-4
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Static case, reference temperature 20
◦C

Stack at 20◦C

PZT 4, 20◦C

potential [kV] [-0.256,0.243]

stroke [mm] 0.000828

Stack after heating at 30◦C

PZT 4, 30◦C

potential [kV] [-0.311,0.303]

stroke [mm] 0.000893
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Static case, reference temperature 20
◦C

Stack at 20◦C

PZT 4, 20◦C

iterations 435

nodes 29857

Stack after heating at 30◦C

PZT 4, 30◦C

iterations 429

nodes 29857
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Static case, reference temperature 200
◦C

Stack at 200◦C

PZT 4, 200◦C

potential [kV] [-0.256,0.243]

stroke [mm] 0.000828

Stack after heating at 210◦C

PZT 4, 210◦C

potential [kV] [-0.296,0.287]

stroke [mm] 0.000713
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Static case, reference temperature 200
◦C

Stack at 200◦C

PZT 4, 200◦C

iterations 435

nodes 29857

Stack after heating at 210◦C

PZT 4, 210◦C

iterations 434

nodes 29857
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Conclusion and future prospects

Conclusion

1. The linear Voigt model for the composite has a uniquely defined weak solution U ∈ V

2. The linear Voigt model for the simplified asymptotic problem has a uniquely defined weak
solution U ∈ Ṽ .

3. The 2D mechanical and electric fields can be computed by FEM with a Bramble Pasciak
Conjugated Gradient (BPCG) solver.

4. Numerical experiments confirm, that the simplified model gives a sufficiently exact solution. It
can be calculated more efficient than the full problem (factor 10).

5. The static model is applicable for "small exciting frequencies".

6. The given temperature field has a great influence on the expansion of the stack actuator.

Future Prospects

1. Computation of stress singularities in the electrode tips of the stack actuator.

2. Derivation and computation of a local failure criterion to reflect the damage.
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