Piezoelectric stack actuators regarding temperature and exciting voltage frequencies

Miniworkshop: Direct and Inverse Problems in Piezoelectricity

Linz, October 6.-7., 2005.

Winfried Geis

```
geis@ians.uni-stuttgart.de
```

Bosch, AE/EDP 5

Outline

\rightarrow Engineering problem
\rightarrow Constitutive equations

- Notation
- Simplifications
\rightarrow Mathematical models
- Full 2D-model
- Simplified asymptotic 2D-model
- Existence and uniqueness
\rightarrow Numerical examples: electrical and mechanical fields dependent on
- the angular frequency of the exciting voltage
- the heating
\rightarrow Conclusions and future prospects

Engineering problem

Piezoelectric injection nozzle of a common rail engine.

Growth of a piezoelectric multilayeractuator (MLA). Common values: driving voltage: $U \approx \pm 200 \mathrm{~V}$, number of layers $n>80$.

Constitutive equations

Thermopiezoelectricity in the ceramic

$$
\begin{aligned}
s & =\frac{\rho c}{T_{0}} T+\lambda_{i j} \gamma_{i j}+\chi_{m} E_{m} \\
\sigma_{i j} & =-\lambda_{i j} T+C_{i j k l} \gamma_{k l}-e_{m i j} E_{m} \\
D_{n} & =\chi_{n} T+e_{n i j} \gamma_{i j}+\varepsilon_{m n} E_{m}
\end{aligned}
$$

Constitutive equations

Thermopiezoelectricity in the ceramic

$$
\begin{aligned}
s & =\frac{\rho c}{T_{0}} T+\lambda_{i j} \gamma_{i j}+\chi_{m} E_{m} \\
\sigma_{i j} & =-\lambda_{i j} T+C_{i j k l} \gamma_{k l}-e_{m i j} E_{m} \\
D_{n} & =\chi_{n} T+e_{n i j} \gamma_{i j}+\varepsilon_{m n} E_{m}
\end{aligned}
$$

$T \quad$ difference of temperature: $T_{a}=T_{0}+T$
$\underline{\underline{\gamma}} \quad$ linearised strain tensor: $\gamma_{i j}=\frac{1}{2}\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right)$
$\underline{\boldsymbol{E}} \quad$ electric vector field
$s \quad$ entropy density
$\boldsymbol{\sigma} \quad$ stress
$\underline{\bar{D}}$ dielectric displacement
$\rho \quad$ mass density
$c \quad$ specific heat per unit mass
$\underline{\boldsymbol{\lambda}} \quad$ thermal stress coefficient
$\underline{\chi} \quad$ pyroelectric coefficient
$\underline{\underline{\underline{C}}}$ transversally isotropic (PZT-4) elasticity tensor
piezoelectric tensor (non-symmetric)
permittivity tensor (symmetric)

Constitutive equations

Thermopiezoelectricity in the ceramic

$$
\begin{aligned}
\sigma_{i j} & =-\lambda_{i j} T+C_{i j k l} \gamma_{k l}+e_{m i j} \partial_{m} \Phi \\
D_{n} & =\chi_{n} T+e_{n i j} \gamma_{i j}-\varepsilon_{m n} \partial_{m} \Phi
\end{aligned}
$$

$T \quad$ difference of temperature: $T_{a}=T_{0}+T$
$\underline{\underline{\gamma}} \quad$ linearised strain tensor: $\gamma_{i j}=\frac{1}{2}\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right)$
electric vector field
entropy density
stress
$\begin{array}{ll}\underline{\sigma} & \text { stress } \\ \underline{D} & \text { dielectric displacement }\end{array}$
$\rho \quad$ mass density
$c \quad$ specific heat per unit mass
$\underline{\boldsymbol{\lambda}} \quad$ thermal stress coefficient
$\underline{\chi} \quad$ pyroelectric coefficient
$\underline{\underline{\underline{\boldsymbol{C}}}}$ transversally isotropic (PZT-4) elasticity tensor
piezoelectric tensor (non-symmetric)
permittivity tensor (symmetric)

Constitutive equations

Thermoelasticity in the metal

$$
\begin{aligned}
s & =\frac{\rho c}{T_{0}} T+\lambda_{i j} \gamma_{i j} \\
\sigma_{i j} & =-\lambda_{i j} T+C_{i j k l} \gamma_{k l}
\end{aligned}
$$

Constitutive equations

Thermoelasticity in the metal

$$
\begin{aligned}
s & =\frac{\rho c}{T_{0}} T+\lambda_{i j} \gamma_{i j} \\
\sigma_{i j} & =-\lambda_{i j} T+C_{i j k l} \gamma_{k l}
\end{aligned}
$$

$T \quad$ difference of temperature: $T_{a}=T_{0}+T$
$\underline{\underline{\gamma}} \quad$ linearised strain tensor: $\gamma_{i j}=\frac{1}{2}\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right)$
$s \quad$ entropy density
$\underline{\sigma} \quad$ stress
$\rho \quad$ mass density
$c \quad$ specific heat per unit mass
$\boldsymbol{\lambda}$ thermal stress coefficient
isotropic (AgPd alloy) elasticity tensor

Constitutive equations

Thermoelasticity in the metal

$$
\sigma_{i j}=-\lambda_{i j} T+C_{i j k l} \gamma_{k l}
$$

$T \quad$ difference of temperature: $T_{a}=T_{0}+T$
$\underline{\underline{\gamma}} \quad$ linearised strain tensor: $\gamma_{i j}=\frac{1}{2}\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right)$

Simplification
$\rightarrow T$ is known
$s \quad$ entropy density
$\boldsymbol{\sigma} \quad$ stress
$\rho \quad$ mass density
c specific heat per unit mass
$\boldsymbol{\lambda}$ thermal stress coefficient
$\underline{\underline{C}}$ isotropic (AgPd alloy) elasticity tensor

From now on, the two-index notation (Voigt mapping) is used.

Equations of motion/Gauss' law

Notation

$\underline{\mathbf{u}}_{C}:=r \mid \Omega_{C} \underline{\underline{\mathbf{u}}}$
$\underline{\mathbf{u}}_{M}:=r \mid \Omega_{M} \underline{\mathbf{u}}$
$\Phi_{C}:=\Phi_{C}(\underline{\boldsymbol{x}}, t)$, electric potential
Force balance equations

$$
\begin{aligned}
\rho_{C} \partial_{t}^{2} \underline{\mathbf{u}}_{C}-\operatorname{Div} \boldsymbol{\sigma}_{C}\left(\underline{\mathbf{u}}_{C}, \Phi, T\right) & =\underline{\mathbf{0}} \\
\operatorname{div} \underline{\boldsymbol{D}}_{C}\left(\underline{\mathbf{u}}_{C}, \Phi, T\right) & =0 \\
\rho_{M} \partial_{t}^{2} \underline{\mathbf{u}}_{M}-\operatorname{Div} \boldsymbol{\sigma}_{M}\left(\underline{\mathbf{u}}_{M}, T\right) & =\underline{\mathbf{0}}
\end{aligned}
$$

Equations of motion/Gauss' law

Notation

$\underline{\mathbf{u}}_{C}:=r \mid \Omega_{C} \underline{\mathbf{u}}$
$\underline{\mathbf{u}}_{M}:=r \mid \Omega_{M} \underline{\mathbf{u}}$
$\Phi_{C}:=\Phi_{C}(\underline{\boldsymbol{x}}, t)$, electric potential, Φ_{M} is known in $Q_{M}^{\left(0, t^{*}\right)}$
$Q_{C}^{\left(0, t^{*}\right)}:=\cup_{t \in\left(0, t^{*}\right)} \Omega_{C}^{t}$, time-space cylinder, $Q_{M}^{\left(0, t^{*}\right)}$ analogously defined
$\mathcal{D}^{\top}:=\mathrm{Div}=\left(\begin{array}{cccccc}\partial_{1} & 0 & 0 & 0 & \partial_{3} & \partial_{2} \\ 0 & \partial_{2} & 0 & \partial_{3} & 0 & \partial_{1} \\ 0 & 0 & \partial_{3} & \partial_{2} & \partial_{1} & 0\end{array}\right)$

Force balance equations

$$
\begin{gathered}
\rho_{C} \underline{\mathbf{u}}_{C}-\mathcal{D}^{T} \underline{\underline{\boldsymbol{C}}}{ }_{C} \mathcal{D} \underline{\mathbf{u}}_{C}-\mathcal{D}^{\top} \underline{\underline{\boldsymbol{e}}}^{\top} \nabla \Phi_{C}=-\mathcal{D}^{\top} \underline{\boldsymbol{\lambda}}_{C} T \text { in } Q_{C}^{\left(0, t^{*}\right)}, \quad \rightarrow \text { Two-index notation } \\
\operatorname{div}\left(\underline{\underline{\boldsymbol{e}}} \mathcal{D} \underline{\mathbf{u}}_{C}-\underline{\underline{\varepsilon}} \nabla \Phi_{C}\right)=-\operatorname{div} \chi t \quad \text { in } Q_{C}^{\left(0, t^{*}\right)}, \\
\rho_{M} \underline{\underline{\mathbf{u}}}_{M}-\mathcal{D}^{T} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{D}^{M} \underline{\mathbf{u}}_{M}=-\mathcal{D}^{\top} \underline{\boldsymbol{\lambda}}_{M} T \text { in } Q_{M}^{\left(0, t^{*}\right)},
\end{gathered}
$$

Equations of motion/Gauss' law

Notation

$$
\begin{aligned}
& \underline{\mathbf{u}}_{C}(\underline{\boldsymbol{x}}, t):=r_{\Omega_{C}} \underline{\mathbf{u}}(\underline{\boldsymbol{x}}, t)=e^{\tau t} \underline{\boldsymbol{u}} C(\underline{\boldsymbol{x}}) \\
& \underline{\mathbf{u}}_{M}:=r_{\Omega_{M}} \underline{\mathbf{u}^{\prime}}=e^{\tau t} \underline{\boldsymbol{u}} M(\underline{\boldsymbol{x}}) \\
& \Phi_{C}:=\Phi_{C}(\underline{\boldsymbol{x}}, t)=e^{\tau t} \Phi_{C}(\underline{\boldsymbol{x}}), \text { electric potential, } \Phi_{M}=e^{\tau t} \Phi_{M}(\underline{\boldsymbol{x}}) \text { is known in } Q_{M}^{\left(0, t^{*}\right)} \\
& Q_{C}^{\left(0, t^{*}\right)}:=\cup_{t \in\left(0, t^{*}\right)} \Omega_{C}^{t}, \text { time-space cylinder, } Q_{M}^{\left(0, t^{*}\right)} \text { analogously defined } \\
& \mathcal{D}^{\top}:=\operatorname{Div}=\left(\begin{array}{cccccc}
\partial_{1} & 0 & 0 & 0 & \partial_{3} & \partial_{2} \\
0 & \partial_{2} & 0 & \partial_{3} & 0 & \partial_{1} \\
0 & 0 & \partial_{3} & \partial_{2} & \partial_{1} & 0
\end{array}\right)
\end{aligned}
$$

Force balance equations

Pseudo oscillation equations: $\tau=s+i \omega$

$$
\begin{array}{r}
\rho_{C} \underline{\mathbf{u}}_{C}-\mathcal{D}^{T} \underline{\underline{\boldsymbol{C}}}{ }_{C} \mathcal{D} \underline{\mathbf{u}}_{C}-\mathcal{D}^{\top} \underline{\underline{e}}^{\top} \nabla \Phi_{C}=-\mathcal{D}^{\top} \underline{\boldsymbol{\lambda}}_{C} T \text { in } Q_{C}^{\left(0, t^{*}\right)}, \\
\operatorname{div}\left(\underline{\underline{e}} \mathcal{D} \underline{\mathbf{u}}_{C}-\underline{\underline{\varepsilon}} \nabla \Phi_{C}\right)=-\operatorname{div} \chi T \quad \text { in } Q_{C}^{\left(0, t^{*}\right)}, \\
\rho_{M} \underline{\mathbf{u}}_{M}-\mathcal{D}^{T} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{D}_{M}=-\mathcal{D}^{\top} \underline{\boldsymbol{\lambda}}_{M} T \text { in } Q_{M}^{\left(0, t^{*}\right)},
\end{array}
$$

Simplifications

$\rightarrow T$ is known
\rightarrow Two-index notation
\rightarrow Ansatz: All functions are harmonic time dependent, pseudo oscillation equations

Equations of motion/Gauss' law

Notation

$$
\begin{aligned}
& \underline{\mathbf{u}}_{C}(\underline{\boldsymbol{x}}, t):=r_{\Omega_{C}} \underline{\mathbf{u}}(\underline{\boldsymbol{x}}, t)=e^{\tau t} \underline{\boldsymbol{u}} C(\underline{\boldsymbol{x}}) \\
& \underline{\mathbf{u}}_{M}:=r_{\left.\right|_{M}} \underline{\Omega^{\prime}}=e^{\tau t} \underline{\boldsymbol{u}} M(\underline{\boldsymbol{x}}) \\
& \Phi_{C}:=\Phi_{C}(\underline{\boldsymbol{x}}, t)=e^{\tau t} \Phi_{C}(\underline{\boldsymbol{x}}), \text { electric potential, } \Phi_{M}=e^{\tau t} \Phi_{M}(\underline{\boldsymbol{x}}) \text { is known in } \Omega_{M} \\
& \mathcal{D}^{\top}:=\operatorname{Div}=\left(\begin{array}{cccccc}
\partial_{1} & 0 & 0 & 0 & \partial_{3} & \partial_{2} \\
0 & \partial_{2} & 0 & \partial_{3} & 0 & \partial_{1} \\
0 & 0 & \partial_{3} & \partial_{2} & \partial_{1} & 0
\end{array}\right)
\end{aligned}
$$

Force balance equations
Steady oscillation equations: $\tau=i \omega$

$$
\begin{aligned}
&-\rho_{C} \omega^{2} \underline{u}_{C}-\mathcal{D}^{T} \underline{\underline{\boldsymbol{C}}} C \mathcal{D} \underline{\boldsymbol{u}}_{C}-\mathcal{D}^{\top} \underline{\underline{\boldsymbol{e}}}^{\top} \nabla \Phi_{C}=-\mathcal{D}^{\top} \underline{\boldsymbol{\lambda}}_{C} T \text { in } \Omega_{C} \\
& \operatorname{div}\left(\underline{\underline{\boldsymbol{e}}} \mathcal{D} \underline{\boldsymbol{u}}_{C}-\underline{\underline{\varepsilon}} \nabla \Phi_{C}\right)=-\operatorname{div} \chi T \quad \text { in } \Omega_{C} \\
&-\rho_{M} \omega^{2} \underline{\boldsymbol{u}}_{M}-\mathcal{D}^{T} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{D} \underline{\boldsymbol{u}}_{M}=-\mathcal{D}^{\top} \underline{\boldsymbol{\lambda}}_{M} T \text { in } \Omega_{M}
\end{aligned}
$$

Simplifications

$\rightarrow T$ is known
\rightarrow Two-index notation
\rightarrow Ansatz: All functions are harmonic time dependent, steady oscillation equations (Helmholtz type)

Equations of motion/Gauss' law

Notation

$$
\begin{aligned}
& \underline{\mathbf{u}}_{C}(\underline{\boldsymbol{x}}, t):=r_{\Omega_{C}} \underline{\mathbf{u}}(\underline{\boldsymbol{x}}, t)=\underline{\boldsymbol{u}} C(\underline{\boldsymbol{x}}) \\
& \underline{\mathbf{u}} M
\end{aligned}{ }_{M}:=r_{\Omega_{M}} \underline{\Omega_{0}}=\underline{\boldsymbol{u}} M(\underline{\boldsymbol{x}}) .
$$

Force balance equations
Static equations: $\tau=0$

$$
\begin{aligned}
& -\mathcal{D}^{T} \underline{\underline{\boldsymbol{C}}}_{C} \mathcal{D} \underline{\boldsymbol{u}}_{C}-\mathcal{D}^{\top} \underline{\underline{e}}^{\top} \nabla \Phi_{C}=-\mathcal{D}^{\top} \underline{\boldsymbol{\lambda}}_{C} T \text { in } \Omega_{C}, \\
& \operatorname{div}\left(\underline{\underline{e}} \mathcal{D} \underline{\boldsymbol{u}}_{C}-\underline{\underline{\varepsilon}} \nabla \Phi_{C}\right)=-\operatorname{div} \chi T \quad \text { in } \Omega_{C}, \\
& -\mathcal{D}^{T} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{D} \underline{\underline{\boldsymbol{u}}}{ }_{M}=-\mathcal{D}^{\top} \underline{\boldsymbol{\lambda}}_{M} T \text { in } \Omega_{M}
\end{aligned}
$$

Simplifications

$\rightarrow T$ is known
\rightarrow Two-index notation
\rightarrow Ansatz: All functions are time independent, static equations

Equations of motion/Gauss' law (2D)

Expanded force balance equation system (Thermopiezoelasticity)

$$
\begin{aligned}
&-\rho \omega^{2} u_{1}-C_{11} \partial_{1}^{2} u_{1}-C_{12} \partial_{1} \partial_{2} u_{2}-C_{13} \partial_{1} \partial_{3} u_{3}-C_{44}\left(\partial_{3}^{2} u_{1}+\partial_{3} \partial_{1} u_{3}\right) \\
&-\frac{C_{11}-C_{12}}{2}\left(\partial_{2}^{2} u_{1}+\partial_{2} \partial_{1} u_{2}\right)-e_{31} \partial_{1} \partial_{3} \Phi-e_{15} \partial_{3} \partial_{1} \Phi=-\partial_{1} \lambda_{1} T \\
&-\rho \omega^{2} u_{2}-C_{12} \partial_{2} \partial_{1}-C_{11} \partial_{2}^{2} u_{2}-C_{13} \partial_{2} \partial_{3} u_{3}-C_{44}\left(\partial_{3}^{2} u_{2}+\partial_{3} \partial_{2} u_{3}\right) \\
&-\frac{C_{11}-C_{12}}{2}\left(\partial_{1} \partial_{2} u_{1} \partial_{1}^{2} u_{2}\right)-e_{31} \partial_{2} \partial_{3} \Phi-e_{15} \partial_{3} \partial_{2} \Phi=-\partial_{2} \lambda_{1} T \\
&-\rho \omega^{2} u_{3}-C_{13} \partial_{3} \partial_{1} u_{1}-C_{13} \partial_{3} \partial_{2} u_{2}-C_{33} \partial_{3}^{2} u_{3}-C_{44}\left(\partial_{2} \partial_{3} u_{2}+\partial_{2}^{2} u_{3}\right) \\
&-C_{44}\left(\partial_{1} \partial_{3} u_{1}+\partial_{1}^{2} u_{3}\right)-e_{33} \partial_{3}^{2} \Phi-e_{15} \partial_{2}^{2} \Phi-e_{15} \partial_{1}^{2} \Phi=-\partial_{3} \lambda_{3} T \\
& e_{15} \partial_{1} \partial_{3} u_{1}+e_{15} \partial_{1}^{2} u_{3}+e_{15} \partial_{2} \partial_{3} u_{2}+e_{15} \partial_{2}^{2} u_{3}+e_{31} \partial_{3} \partial_{1} u_{1} \\
&+e_{31} \partial_{3} \partial_{2} u_{2}+e_{33} \partial_{3}^{2} u_{3}-\varepsilon_{11} \partial_{1}^{2} \Phi-\varepsilon_{11} \partial_{2}^{2} \Phi-\varepsilon_{33} \partial_{3}^{2} \Phi=-\left(\partial_{1} p+\partial_{2} p\right. \\
&\left.+\partial_{3} p\right) T
\end{aligned}
$$

Equations of motion/Gauss' law (2D)

Expanded force balance equation system (Thermopiezoelasticity) with plane strain

 assumption$$
\begin{align*}
& \underline{u}=\underline{u}\left(x_{1}, x_{3}\right), \Phi=\Phi\left(x_{1}, x_{3}\right) \\
& \begin{aligned}
-\rho \omega^{2} u_{1}-C_{11} \partial_{1}^{2} u_{1}-C_{13} \partial_{1} \partial_{3} u_{3}-C_{44}\left(\partial_{3}^{2} u_{1}+\partial_{3} \partial_{1} u_{3}\right)-e_{31} \partial_{1} \partial_{3} \Phi & \\
-e_{15} \partial_{3} \partial_{1} \Phi & =-\partial_{1} \lambda_{1} T \\
-\rho \omega^{2} u_{2}-C_{44} \partial_{3}^{2} u_{2}-\frac{C_{11}-C_{12}}{2} \partial_{1}^{2} u_{2} & =-\partial_{2} \lambda_{1} T \\
-\rho \omega^{2} u_{3}-C_{13} \partial_{3} \partial_{1} u_{1}-C_{33} \partial_{3}^{2} u_{3}-C_{44}\left(\partial_{1} \partial_{3} u_{1}+\partial_{1}^{2} u_{3}\right)-e_{33} \partial_{3}^{2} \Phi & \\
-e_{15} \partial_{1}^{2} \Phi & =-\partial_{3} \lambda_{3} T \\
e_{15} \partial_{1} \partial_{3} u_{1}+e_{15} \partial_{1}^{2} u_{3}+e_{31} \partial_{3} \partial_{1} u_{1}+e_{33} \partial_{3}^{2} u_{3}-\varepsilon_{11} \partial_{1}^{2} \Phi-\varepsilon_{33} \partial_{3}^{2} \Phi & =-\left(\partial_{1} p+\partial_{2} p\right. \\
& \left.+\partial_{3} p\right) T
\end{aligned}
\end{align*}
$$

Equation system (1),(3),(4) and equation (2) decouple.

Equations of motion/Gauss' law (2D)

Expanded force balance equation system (Thermopiezoelasticity) with plane strain

 assumption$$
\begin{align*}
& \underline{\boldsymbol{u}}=\underline{\boldsymbol{u}}\left(x_{1}, x_{3}\right), \Phi=\Phi\left(x_{1}, x_{3}\right) \\
& -\rho \omega^{2} u_{1}-C_{11} \partial_{1}^{2} u_{1}-C_{13} \partial_{1} \partial_{3} u_{3}-C_{44}\left(\partial_{3}^{2} u_{1}+\partial_{3} \partial_{1} u_{3}\right)-e_{31} \partial_{1} \partial_{3} \Phi \\
& -e_{15} \partial_{3} \partial_{1} \Phi=-\partial_{1} \lambda_{1} T \tag{1}\\
& -\rho \omega^{2} u_{2}-C_{44} \partial_{3}^{2} u_{2}-\frac{C_{11}-C_{12}}{2} \partial_{1}^{2} u_{2}=-\partial_{2} \lambda_{1} T \tag{2}\\
& -\rho \omega^{2} u_{3}-C_{13} \partial_{3} \partial_{1} u_{1}-C_{33} \partial_{3}^{2} u_{3}-C_{44}\left(\partial_{1} \partial_{3} u_{1}+\partial_{1}^{2} u_{3}\right)-e_{33} \partial_{3}^{2} \Phi \\
& -e_{15} \partial_{1}^{2} \Phi=-\partial_{3} \lambda_{3} T \tag{3}\\
& e_{15} \partial_{1} \partial_{3} u_{1}+e_{15} \partial_{1}^{2} u_{3}+e_{31} \partial_{3} \partial_{1} u_{1}+e_{33} \partial_{3}^{2} u_{3}-\varepsilon_{11} \partial_{1}^{2} \Phi-\varepsilon_{33} \partial_{3}^{2} \Phi=-\left(\partial_{1} p+\partial_{2} p\right. \\
& \left.+\partial_{3} p\right) T \tag{4}
\end{align*}
$$

Equation system (1),(3),(4) and equation (2) decouple.

From now on, the 2D-system (1),(3),(4) will be considered.

Notation

System $(1,3,4)$ can be written shortly as:

$$
-\rho_{C} \omega^{2} \underline{\boldsymbol{u}}_{C}-\underline{\underline{\boldsymbol{B}}}^{\top} \underline{\underline{\boldsymbol{A}}}_{C} \underline{\underline{\boldsymbol{B}}} \underline{\underline{\boldsymbol{U}}} C=\underline{\boldsymbol{F}}_{C}
$$

The corresponding elastic system reads:

$$
-\rho_{M} \omega^{2} \underline{\boldsymbol{u}}_{M}-\underline{\underline{\boldsymbol{B}}}^{\top} \underline{\underline{\boldsymbol{A}}}_{M} \underline{\underline{\boldsymbol{B}}}_{\underline{\boldsymbol{U}}}^{M} \underline{\underline{\boldsymbol{F}}}_{M}
$$

Notation

System $(1,3,4)$ can be written shortly as:

$$
-\rho_{C} \omega^{2} \underline{\boldsymbol{u}}_{C}-\underline{\underline{\boldsymbol{B}}}^{\top} \underline{\underline{\boldsymbol{A}}}_{C} \underline{\underline{\boldsymbol{B}}} \underline{\underline{\boldsymbol{U}}} C=\underline{\boldsymbol{F}}_{C}
$$

The corresponding elastic system reads:

$$
-\rho_{M} \omega^{2} \underline{\boldsymbol{u}}_{M}-\underline{\underline{\boldsymbol{B}}}^{\top} \underline{\underline{\boldsymbol{A}}}_{M} \underline{\underline{\boldsymbol{B}}} \underline{\underline{\boldsymbol{U}}}{ }_{M}=\underline{\boldsymbol{F}}_{M}
$$

Generalised material matrix $\underline{\underline{\boldsymbol{A}}} C, \underline{\underline{\boldsymbol{A}}} M$:

$$
\underline{\underline{\boldsymbol{A}}} C=\left(\begin{array}{ccccc}
c_{11} & c_{13} & 0 & 0 & -e_{31} \\
c_{13} & c_{33} & 0 & 0 & -e_{33} \\
0 & 0 & c_{44} & -e_{15} & 0 \\
0 & 0 & e_{15} & \varepsilon_{11} & 0 \\
e_{31} & e_{33} & 0 & 0 & \varepsilon_{33}
\end{array}\right), \quad \underline{\underline{\boldsymbol{A}}} M=\left(\begin{array}{ccccc}
\lambda+2 \mu & \lambda & 0 & 0 & 0 \\
\lambda & \lambda+2 \mu & 0 & 0 & 0 \\
0 & 0 & \mu & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Differential operator $\underline{\underline{\boldsymbol{B}}}$ and generalised displacement vectors $\underline{\boldsymbol{U}}_{i}$:

$$
\underline{\underline{\boldsymbol{B}}}=\left(\begin{array}{cc}
\mathcal{D} & \underline{\mathbf{0}} \\
\underline{\underline{\mathbf{0}}} & -\bar{\nabla}_{13}
\end{array}\right), \quad \mathcal{D}=\left(\begin{array}{ccc}
\partial_{1} & 0 & \partial_{3} \\
0 & \partial_{3} & \partial_{1}
\end{array}\right)^{\top}, \quad \underline{\boldsymbol{U}} C=\left(\begin{array}{c}
u_{C, 1} \\
u_{C, 3} \\
\Phi_{C}
\end{array}\right), \quad \underline{\boldsymbol{U}} M_{M}=\left(\begin{array}{l}
u_{M, 1} \\
u_{M, 3} \\
\mp \Phi_{a}
\end{array}\right)
$$

Mathematical model (full problem)

Mathematical models

Model of a simple stack actuator,

$$
\begin{aligned}
& \bar{\Omega}=\bar{\Omega}_{M} \cup \bar{\Omega}_{C} \\
& \Gamma=\partial \Omega_{C} \cap \partial \Omega_{M}
\end{aligned}
$$

Linear Voigt Model (ceramic) \& Hooke's law (metal-electrode) for the composite (2D,plane strain)

$$
\begin{array}{r}
-\rho_{C} \omega^{2} \underline{\boldsymbol{u}}_{C}-\mathcal{D}^{T} \underline{\underline{\boldsymbol{C}}} C_{C}^{\mathcal{D}} \underline{\boldsymbol{u}}_{C}-\mathcal{D}^{T} \underline{\underline{\boldsymbol{e}}}^{\top} \nabla \Phi_{C}=\underline{\boldsymbol{F}}_{C}^{u} \text { in } \Omega_{C}, \\
\operatorname{div}\left(\underline{\underline{\boldsymbol{e}} \mathcal{D}} \underline{\underline{u}}_{C}-\underline{\underline{\varepsilon}} \nabla \Phi_{C}\right)=F_{C}^{\Phi} \text { in } \Omega_{C}, \\
-\rho_{M} \omega^{2} \underline{\boldsymbol{u}}_{M}-\mathcal{D}^{T}{\underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{D} \underline{\boldsymbol{u}}_{M}=\underline{\boldsymbol{F}}_{M}^{u} \text { in } \Omega_{M}}_{\Phi_{M}= \pm \Phi_{a} \text { known in } \Omega_{M} .} .
\end{array}
$$

Boundary conditions

$$
\begin{aligned}
\boldsymbol{\sigma}_{C_{n}}\left(\underline{\mathbf{u}}_{C}, \Phi_{C}\right) & =\underline{\mathbf{0}} & \text { on } \partial \Omega \backslash \Gamma_{3} \\
\underline{\mathbf{u}}_{C} & =\underline{\mathbf{0}} & \text { on } \Gamma_{3} \\
D_{C_{n}}\left(\underline{\mathbf{u}}_{C}, \Phi_{C}\right) & =0 & \text { on } \partial \Omega \cap \partial \Omega_{C} \backslash \Gamma_{ \pm} \\
\Phi_{C} & = \pm \Phi_{a} & \text { on } \Gamma_{ \pm} \cup \Gamma
\end{aligned}
$$

Transmission conditions on Γ :

$$
\underline{\mathbf{u}}_{C}=\underline{\mathbf{u}}_{M}, \quad \boldsymbol{\sigma}_{C_{n}}\left(\underline{\mathbf{u}}_{C}, \Phi_{C}\right)=\boldsymbol{\sigma}_{M_{n}}\left(\underline{\mathbf{u}}_{M}\right)
$$

Mathematical model (full problem)

Mathematical models

For real-life actuator geometries, the electrode height is small in comparison with the layer height \Rightarrow large number of nodes in the FEM-simulation.

Linear Voigt Model (ceramic) \& Hooke's law (metal-electrode) for the composite (2D,plane strain)

$$
\begin{aligned}
&-\rho_{C} \omega^{2} \underline{u_{C}}-\mathcal{D}^{T} \underline{\underline{\boldsymbol{C}}}{ }_{C} \mathcal{D} \underline{\underline{\boldsymbol{u}}} C-\mathcal{D}^{T} \underline{\underline{\boldsymbol{e}}}^{\top} \nabla \Phi_{C}=\underline{\boldsymbol{F}}_{C}^{u} \text { in } \Omega_{C} \\
& \operatorname{div}\left(\underline{\underline{\boldsymbol{e}}} \mathcal{D} \underline{\boldsymbol{u}}_{C}-\underline{\underline{\varepsilon}} \nabla \Phi_{C}\right)=F_{C}^{\Phi} \text { in } \Omega_{C} \\
&-\rho_{M} \omega^{2} \underline{\boldsymbol{u}}_{M}-\mathcal{D}^{T} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{D} \underline{\boldsymbol{u}}_{M}=\underline{\boldsymbol{F}}_{M}^{u} \text { in } \Omega_{M} \\
& \Phi_{M}= \pm \Phi_{a} \text { known in } \Omega_{M}
\end{aligned}
$$

Boundary conditions

$$
\begin{aligned}
\boldsymbol{\sigma}_{C_{n}}\left(\underline{\mathbf{u}}_{C}, \Phi_{C}\right) & =\underline{\mathbf{0}} & \text { on } \partial \Omega \backslash \Gamma_{3} \\
\underline{\mathbf{u}}_{C} & =\underline{\mathbf{0}} & \text { on } \Gamma_{3} \\
D_{C_{n}}\left(\underline{\mathbf{u}}_{C}, \Phi_{C}\right) & =0 & \text { on } \partial \Omega \cap \partial \Omega_{C} \backslash \Gamma_{ \pm} \\
\Phi_{C} & = \pm \Phi_{a} & \text { on } \Gamma_{ \pm} \cup \Gamma
\end{aligned}
$$

Transmission conditions on Γ :

$$
\underline{\mathbf{u}}_{C}=\underline{\mathbf{u}}_{M}, \quad \boldsymbol{\sigma}_{C_{n}}\left(\underline{\mathbf{u}}_{C}, \Phi_{C}\right)=\boldsymbol{\sigma}_{M_{n}}\left(\underline{\mathbf{u}}_{M}\right)
$$

Asymptotic procedure

Idea: Exploitation of the small geometrical quantity (electrode height h) in the original problem: reduction to a multifield problem only in the ceramic domain by replacing the metallic electrodes by non-standard interface conditions on the middle lines Γ_{M} of the electrodes.

Asymptotic procedure

Idea: Exploitation of the small geometrical quantity (electrode height h) in the original problem: reduction to a multifield problem only in the ceramic domain by replacing the metallic electrodes by non-standard interface conditions on the middle lines Γ_{M} of the electrodes.

Proceeding (perturbed problem)

1. Select one electrode $\eta=\eta_{j}, \Omega M=\cup_{j=1}^{n} \eta_{j}$ with a local coordinate ($x_{3}=\epsilon \xi, \epsilon$ small) system in a neighbourhood $U(\eta)$

Asymptotic procedure

Idea: Exploitation of the small geometrical quantity (electrode height h) in the original problem: reduction to a multifield problem only in the ceramic domain by replacing the metallic electrodes by non-standard interface conditions on the middle lines Γ_{M} of the electrodes.

Proceeding (perturbed problem)

1. Select one electrode $\eta=\eta_{j}, \Omega M=\cup_{j=1}^{n} \eta_{j}$ with a local coordinate ($x_{3}=\epsilon \xi, \epsilon$ small) system in a neighbourhood $U(\eta)$
2. Assumption: $\underline{\boldsymbol{U}}_{C}$ is known in $U(\eta)$

Asymptotic procedure

Idea: Exploitation of the small geometrical quantity (electrode height h) in the original problem: reduction to a multifield problem only in the ceramic domain by replacing the metallic electrodes by non-standard interface conditions on the middle lines Γ_{M} of the electrodes.

Proceeding (perturbed problem)

1. Select one electrode $\eta=\eta_{j}, \Omega M=\cup_{j=1}^{n} \eta_{j}$ with a local coordinate ($x_{3}=\epsilon \xi, \epsilon$ small) system in a neighbourhood $U(\eta)$
2. Assumption: $\underline{\boldsymbol{U}}_{C}$ is known in $U(\eta)$
3. Splitting of the differential operator \mathcal{D} into the ∂_{1} and the ∂_{ξ} part

Asymptotic procedure

Idea: Exploitation of the small geometrical quantity (electrode height h) in the original problem: reduction to a multifield problem only in the ceramic domain by replacing the metallic electrodes by non-standard interface conditions on the middle lines Γ_{M} of the electrodes.

Proceeding (perturbed problem)

1. Select one electrode $\eta=\eta_{j}, \Omega M=\cup_{j=1}^{n} \eta_{j}$ with a local coordinate ($x_{3}=\epsilon \xi, \epsilon$ small) system in a neighbourhood $U(\eta)$
2. Assumption: $\underline{\boldsymbol{U}}_{C}$ is known in $U(\eta)$
3. Splitting of the differential operator \mathcal{D} into the ∂_{1} and the ∂_{ξ} part
4. Assumption: $\underline{\boldsymbol{u}}_{C}, \underline{\boldsymbol{u}}_{M}$ and Φ_{C} can be written as power series with respect to ϵ

Asymptotic procedure

Idea: Exploitation of the small geometrical quantity (electrode height h) in the original problem: reduction to a multifield problem only in the ceramic domain by replacing the metallic electrodes by non-standard interface conditions on the middle lines Γ_{M} of the electrodes.

Proceeding (perturbed problem)

1. Select one electrode $\eta=\eta_{j}, \Omega M=\cup_{j=1}^{n} \eta_{j}$ with a local coordinate ($x_{3}=\epsilon \xi, \epsilon$ small) system in a neighbourhood $U(\eta)$
2. Assumption: $\underline{\boldsymbol{U}}_{C}$ is known in $U(\eta)$
3. Splitting of the differential operator \mathcal{D} into the ∂_{1} and the ∂_{ξ} part
4. Assumption: $\underline{\boldsymbol{u}}_{C}, \underline{\boldsymbol{u}}_{M}$ and Φ_{C} can be written as power series with respect to ϵ
5. Inserting the splitted operator and the power series into the PDE system and the transmission conditions and comparing coefficients.
\Rightarrow Taylor series of new transmission conditions around electrodes of thickness zero

Asymptotic procedure

1. We select one electrode $\eta=\eta_{j}, \Omega M=\cup_{j=1}^{n} \eta_{j}$ with a local coordinate system in a neighbourhood $U(\eta)$:

$$
\begin{aligned}
x_{3} & =\epsilon \xi, \quad \xi \in\left[-h_{0}, h_{0}\right], \quad h_{0} \sim l_{3}, \quad 0 \leq \epsilon \leq 1 \\
\underline{\boldsymbol{u}}_{\epsilon}\left(x_{1}, \xi\right) & :=\underline{\boldsymbol{u}}_{M}\left(x_{1}, x_{3}\right)
\end{aligned}
$$

Asymptotic procedure

1. We select one electrode $\eta=\eta_{j}, \Omega M=\cup_{j=1}^{n} \eta_{j}$ with a local coordinate system in a neighbourhood $U(\eta)$:

$$
\begin{aligned}
x_{3} & =\epsilon \xi, \quad \xi \in\left[-h_{0}, h_{0}\right], \quad h_{0} \sim l_{3}, \quad 0 \leq \epsilon \leq 1 \\
\underline{\boldsymbol{u}}_{\epsilon}\left(x_{1}, \xi\right) & :=\underline{\boldsymbol{u}}_{M}\left(x_{1}, x_{3}\right) .
\end{aligned}
$$

2. Assumption: \underline{U}_{C} is known in $U(\eta)$.

Asymptotic procedure

3. Splitting of the differential operator

$$
\mathcal{D}=\left(\begin{array}{ccc}
\partial_{1} & 0 & \partial_{3} \\
0 & \partial_{3} & \partial_{1}
\end{array}\right)^{\top}
$$

into

$$
\mathcal{A}_{1}^{\top}=\left(\begin{array}{ccc}
\partial_{1} & 0 & 0 \\
0 & 0 & \partial_{1}
\end{array}\right), \quad \underline{\underline{\boldsymbol{A}}}_{0}^{\top}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \mathcal{A}_{0}^{\top}=\underline{\underline{\boldsymbol{A}}}_{0}^{\top} \partial_{\xi}=\left(\begin{array}{ccc}
0 & 0 & \partial_{\xi} \\
0 & \partial_{\xi} & 0
\end{array}\right)
$$

Asymptotic procedure

3. Splitting of the differential operator

$$
\mathcal{D}=\left(\begin{array}{ccc}
\partial_{1} & 0 & \partial_{3} \\
0 & \partial_{3} & \partial_{1}
\end{array}\right)^{\top}
$$

into

$$
\mathcal{A}_{1}^{\top}=\left(\begin{array}{ccc}
\partial_{1} & 0 & 0 \\
0 & 0 & \partial_{1}
\end{array}\right), \quad \underline{\underline{\boldsymbol{A}}}_{0}^{\top}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \mathcal{A}_{0}^{\top}=\underline{\underline{\boldsymbol{A}}}_{0}^{\top} \partial_{\xi}=\left(\begin{array}{ccc}
0 & 0 & \partial_{\xi} \\
0 & \partial_{\xi} & 0
\end{array}\right)
$$

The differential operator \mathcal{D} locally (in η) reads:

$$
\mathcal{D}=\epsilon^{-1} \mathcal{A}_{0}+\mathcal{A}_{1}: \mathrm{H}^{1}(\eta) \rightarrow L_{2}(\eta)
$$

Asymptotic procedure

3. Splitting of the differential operator

$$
\mathcal{D}=\left(\begin{array}{ccc}
\partial_{1} & 0 & \partial_{3} \\
0 & \partial_{3} & \partial_{1}
\end{array}\right)^{\top}
$$

into

$$
\mathcal{A}_{1}^{\top}=\left(\begin{array}{ccc}
\partial_{1} & 0 & 0 \\
0 & 0 & \partial_{1}
\end{array}\right), \quad \underline{\underline{\boldsymbol{A}}}_{0}^{\top}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \mathcal{A}_{0}^{\top}=\underline{\underline{\boldsymbol{A}}}_{0}^{\top} \partial_{\xi}=\left(\begin{array}{ccc}
0 & 0 & \partial_{\xi} \\
0 & \partial_{\xi} & 0
\end{array}\right)
$$

The differential operator \mathcal{D} locally (in η) reads:

$$
\mathcal{D}=\epsilon^{-1} \mathcal{A}_{0}+\mathcal{A}_{1}: \mathrm{H}^{1}(\eta) \rightarrow L_{2}(\eta)
$$

4. Assumption: the solutions $\underline{\boldsymbol{u}}_{C}, \underline{\boldsymbol{u}}_{M}, \Phi_{C}$ of the PDE system, given in the ceramic and the metal domain can be written as asymptotic series within the neighbourhood of the electrode η :

$$
\begin{aligned}
\underline{\boldsymbol{u}}_{C}\left(x_{1}, x_{3}\right) & =\sum_{j=0}^{\infty} \epsilon^{j} \underline{\boldsymbol{w}}_{j}\left(x_{1}, x_{3}\right), \quad \Phi_{C}\left(x_{1}, x_{3}\right)=\sum_{j=0}^{\infty} \epsilon^{j} \Phi_{j}\left(x_{1}, x_{3}\right) \\
\underline{\boldsymbol{u}}_{\epsilon}\left(x_{1}, x_{2}, \xi\right) & =\sum_{j=0}^{\infty} \epsilon^{j} \underline{\boldsymbol{u}}_{j}\left(x_{1}, \xi\right)
\end{aligned}
$$

Asymptotic procedure

5. Partial differential equation system (elasticity)

$$
\left\{\mathcal{A}_{0}^{\top} \underline{\underline{\boldsymbol{C}}}_{M} \mathcal{A}_{0}+\epsilon\left(\mathcal{A}_{0}^{\top} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{A}_{1}+\mathcal{A}_{1}^{\top} \underline{\underline{\boldsymbol{C}}}_{M} \mathcal{A}_{0}\right)+\epsilon^{2} \mathcal{A}_{1}^{\top} \underline{\underline{\boldsymbol{C}}}_{M} \mathcal{A}_{1}\right\} \sum_{j=0}^{\infty} \epsilon^{j} \underline{\boldsymbol{u}}_{j}=\underline{\boldsymbol{F}_{M}} \quad \text { in } \eta
$$

Asymptotic procedure

5. Partial differential equation system (elasticity)

$$
\left\{\mathcal{A}_{0}^{\top} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{A}_{0}+\epsilon\left(\mathcal{A}_{0}^{\top} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{A}_{1}+\mathcal{A}_{1}^{\top} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{A}_{0}\right)+\epsilon^{2} \mathcal{A}_{1}^{\top} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{A}_{1}\right\} \sum_{j=0}^{\infty} \epsilon^{j} \underline{\boldsymbol{u}}_{j}=\underline{\boldsymbol{F}_{M}} \quad \text { in } \eta
$$

Transmission conditions

$$
\begin{aligned}
& \text { ssion conditions } \begin{aligned}
&\left.\underline{\boldsymbol{u}} \epsilon\right|_{\xi= \pm h_{0}}=\left.\underline{\boldsymbol{u}}_{C}\right|_{x_{3}= \pm \epsilon h_{0}} \\
& \qquad \begin{aligned}
\left.\sum_{j=0}^{\infty} \epsilon^{j} \underline{\boldsymbol{u}}_{j}\right|_{\xi= \pm h_{0}} & =\left.\sum_{j=0}^{\infty} \epsilon^{j} \underline{\boldsymbol{w}}_{j}\right|_{x_{3}= \pm \epsilon h_{0}} \\
\left.\sigma_{M_{n}}(\underline{\boldsymbol{u}} \epsilon)\right|_{\xi= \pm h_{0}} & =\left.\sigma_{C_{n}}\left(\underline{\boldsymbol{u}}_{C}, \Phi_{C}\right)\right|_{x_{3}= \pm \epsilon h_{0}} \\
\left.\epsilon^{-1} \underline{\underline{\boldsymbol{A}}}_{0}^{\top} \underline{\underline{\boldsymbol{C}}} M\left\{\mathcal{A}_{0}+\epsilon \mathcal{A}_{1}\right\} \underline{\boldsymbol{u}} \epsilon\right|_{\xi= \pm h_{0}} & =\left.\sigma_{C n}\left(\sum_{j=0}^{\infty} \epsilon^{j} \underline{\boldsymbol{w}}_{j}, \sum_{j=0}^{\infty} \epsilon^{j} \Phi_{j}\right)\right|_{x_{3}= \pm \epsilon h_{0}}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

\Rightarrow Series of limit problems $(\epsilon=0)$ with non-standard interface conditions.

Asymptotic procedure

5. Partial differential equation system (elasticity)

$$
\left\{\mathcal{A}_{0}^{\top} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{A}_{0}+\epsilon\left(\mathcal{A}_{0}^{\top} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{A}_{1}+\mathcal{A}_{1}^{\top} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{A}_{0}\right)+\epsilon^{2} \mathcal{A}_{1}^{\top} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{A}_{1}\right\} \sum_{j=0}^{\infty} \epsilon^{j} \underline{\boldsymbol{u}}_{j}=\underline{\boldsymbol{F}_{M}} \quad \text { in } \eta
$$

Transmission conditions

$$
\begin{aligned}
& \text { ssion conditions } \begin{aligned}
&\left.\underline{\boldsymbol{u}}_{\epsilon}\right|_{\xi= \pm h_{0}}=\left.\underline{\boldsymbol{u}}_{C}\right|_{x_{3}= \pm \epsilon h_{0}} \\
& \qquad \begin{aligned}
&\left.\sum_{j=0}^{\infty} \epsilon^{j} \underline{\boldsymbol{u}}_{j}\right|_{\xi= \pm h_{0}}=\left.\sum_{j=0}^{\infty} \epsilon^{j} \underline{\boldsymbol{w}}_{j}\right|_{x_{3}= \pm \epsilon h_{0}} \\
&\left.\sigma_{M_{n}}\left(\underline{u}_{\epsilon}\right)\right|_{\xi= \pm h_{0}}=\left.\sigma_{C_{n}}\left(\underline{\boldsymbol{u}}_{C}, \Phi_{C}\right)\right|_{x_{3}= \pm \epsilon h_{0}} \\
& \epsilon^{-1} \underline{\underline{\boldsymbol{A}}}_{0}^{\top} \underline{\left.\underline{\boldsymbol{C}} M\left\{\mathcal{A}_{0}+\epsilon \mathcal{A}_{1}\right\} \underline{u}_{\epsilon}\right|_{\xi= \pm h_{0}}}=\left.\sigma_{C_{n}}\left(\sum_{j=0}^{\infty} \epsilon^{j} \underline{\boldsymbol{w}}_{j}, \sum_{j=0}^{\infty} \epsilon^{j} \Phi_{j}\right)\right|_{x_{3}= \pm \epsilon h_{0}} .
\end{aligned}
\end{aligned} . \begin{array}{l}
\end{array}
\end{aligned}
$$

\Rightarrow Series of limit problems $(\epsilon=0)$ with non-standard interface conditions.
Example: Interface conditions in the first limit problem

$$
\begin{array}{rlrl}
{\left[\underline{\boldsymbol{\sigma}}_{n}\left(\underline{\boldsymbol{u}}_{C}, \Phi_{C}\right)\right]} & =\underline{\mathbf{0}} & & \text { on } \Gamma_{M} \\
{\left[\underline{\boldsymbol{u}}_{C}\right]} & =\underline{\mathbf{0}} & \text { on } \Gamma_{M}
\end{array}
$$

Asymptotic procedure

5. Partial differential equation system (elasticity)

$$
\left\{\mathcal{A}_{0}^{\top} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{A}_{0}+\epsilon\left(\mathcal{A}_{0}^{\top} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{A}_{1}+\mathcal{A}_{1}^{\top} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{A}_{0}\right)+\epsilon^{2} \mathcal{A}_{1}^{\top} \underline{\underline{\boldsymbol{C}}}{ }_{M} \mathcal{A}_{1}\right\} \sum_{j=0}^{\infty} \epsilon^{j} \underline{\boldsymbol{u}}_{j}=\underline{\boldsymbol{F}_{M}} \quad \text { in } \eta
$$

Transmission conditions

$$
\begin{aligned}
& \text { ission conditions } \begin{aligned}
&\left.\underline{\boldsymbol{u}}_{\epsilon}\right|_{\xi= \pm h_{0}}=\left.\underline{\boldsymbol{u}}_{C}\right|_{x_{3}= \pm \epsilon h_{0}} \\
& \qquad \begin{aligned}
\left.\sum_{j=0}^{\infty} \epsilon^{j} \underline{\boldsymbol{u}}_{j}\right|_{\xi= \pm h_{0}} & =\left.\sum_{j=0}^{\infty} \epsilon^{j} \underline{\boldsymbol{w}}_{j}\right|_{x_{3}}= \pm \epsilon h_{0} \\
\left.\sigma_{M_{n}}\left(\underline{u}_{\epsilon}\right)\right|_{\xi= \pm h_{0}} & =\left.\sigma_{C_{n}}\left(\underline{\boldsymbol{u}}_{C}, \Phi_{C}\right)\right|_{x_{3}= \pm \epsilon h_{0}} \\
\left.\epsilon^{-1} \underline{\underline{\boldsymbol{A}}}_{0}^{\top} \underline{\underline{\boldsymbol{C}}} M\left\{\mathcal{A}_{0}+\epsilon \mathcal{A}_{1}\right\} \underline{\boldsymbol{u}}_{\epsilon}\right|_{\xi= \pm h_{0}} & =\left.\sigma_{C_{n}}\left(\sum_{j=0}^{\infty} \epsilon^{j} \underline{\boldsymbol{w}}_{j}, \sum_{j=0}^{\infty} \epsilon^{j} \Phi_{j}\right)\right|_{x_{3}= \pm \epsilon h_{0}} .
\end{aligned}
\end{aligned} . \begin{array}{l}
\end{array}
\end{aligned}
$$

\Rightarrow Series of limit problems $(\epsilon=0)$ with non-standard interface conditions.
Example: Interface conditions in the second limit problem (here: $\underline{\underline{\boldsymbol{T}}}=\underline{\underline{\boldsymbol{T}}}(\underline{\underline{\boldsymbol{C}}} M)$)

$$
\begin{aligned}
{\left[\underline{\boldsymbol{w}}_{1}\right]=} & 2 h_{0} \underline{\underline{\boldsymbol{T}}}^{-1}\left(\underline{\boldsymbol{\sigma}}_{C}\left(\underline{\boldsymbol{w}}_{0}, \Phi_{0}\right)-\underline{\underline{\boldsymbol{A}}}_{0}^{\top} \underline{\underline{\boldsymbol{C}}}_{M} \mathcal{A}_{1} \underline{\boldsymbol{w}}_{0}\left(x_{1}, x_{2}, 0\right)\right)-2 h_{0}\left\langle\partial_{3} \underline{\boldsymbol{w}}_{0}\right\rangle \\
{\left[\underline{\boldsymbol{\sigma}}_{C_{n}}\left(\underline{\boldsymbol{w}}_{1}, \Phi_{1}\right)\right]=} & -2 h_{0}\left\langle\partial_{3} \underline{\boldsymbol{\sigma}}_{C} C_{n}\left(\underline{\boldsymbol{w}}_{0}, \Phi_{0}\right)\right\rangle-2 h_{0} \mathcal{A}_{1}^{\top} \underline{\underline{\boldsymbol{C}}}_{M} \mathcal{A}_{1} \underline{\boldsymbol{w}}_{0}\left(x_{1}, x_{2}, 0\right) \\
& -2 h_{0} \mathcal{A}_{1}^{\top} \underline{\underline{\boldsymbol{C}}} M \underline{\underline{\boldsymbol{A}}}_{0} \underline{\underline{\boldsymbol{T}}}_{M}^{-1}\left(\underline{\boldsymbol{\sigma}}_{C}\left(\underline{\boldsymbol{w}}_{0}, \Phi_{0}\right)-\underline{\underline{\boldsymbol{A}}}_{0}^{\top} \underline{\underline{\boldsymbol{C}}}_{M} \mathcal{A}_{1} \underline{\boldsymbol{w}}_{0}\left(x_{1}, x_{2}, 0\right)\right)
\end{aligned}
$$

Mathematical model (electrode thickness 0)

BOSCH

Model of a simple stack actuator with electrodes of thickness 0,

Linear Voigt Model (ceramic) for the simplified 2D model (plane strain)

$$
\begin{aligned}
& \rho_{C} \omega^{2} \underline{\boldsymbol{u}}_{C}-\mathcal{D}^{\top} \underline{\underline{\boldsymbol{C}}}_{C} \mathcal{D} \underline{\boldsymbol{u}}_{C}-\mathcal{D}^{\top} \underline{\underline{\boldsymbol{e}}}^{\top} \nabla \Phi=\underline{\boldsymbol{F}}_{C}^{u} \text { in } \Omega_{C} \\
& \operatorname{div}\left(\underline{\underline{\boldsymbol{e}} \mathcal{D}} \underline{\boldsymbol{u}}_{C}-\underline{\underline{\boldsymbol{\varepsilon}}} \nabla \Phi\right)=0 \quad \text { in } \Omega_{C}
\end{aligned}
$$

Boundary conditions

$$
\begin{array}{rlr}
\boldsymbol{\sigma}_{n}\left(\underline{\boldsymbol{u}}_{C}, \Phi_{C}\right) & =\underline{\mathbf{0}} & \text { on } \partial \Omega \backslash \Gamma_{3} \\
\underline{\boldsymbol{u}}_{C} & =\underline{\mathbf{0}} & \text { on } \Gamma_{3} \\
D_{n}\left(\underline{\boldsymbol{u}}_{C}, \Phi_{C}\right) & =0 & \text { on } \partial \Omega \cap \partial \Omega_{C} \backslash \Gamma_{ \pm} \\
\Phi & = \pm \Phi_{a} & \text { on } \Gamma_{ \pm} \cup \Gamma_{m}
\end{array}
$$

Transmission conditions on Γ_{m} :

$$
\left[\underline{\boldsymbol{u}}_{C}\right]=\underline{\mathbf{0}}, \quad\left[\boldsymbol{\sigma}_{n}\left(\underline{\boldsymbol{u}}_{C}, \Phi_{C}\right)\right]=\underline{\mathbf{0}}
$$

$\bar{\Omega}=\bar{\Omega}_{C}$

Existence and uniqueness

Weak formulation of the boundary-transmission problem in the composite and the simplified model Appropriate Sobolev spaces:

$$
\begin{aligned}
\mathcal{V} & :=\left\{\underline{\boldsymbol{V}}=\left(\frac{\boldsymbol{v}}{\Psi}\right) \in\left[\mathrm{H}^{1}(\Omega)\right]^{3}, r_{\Gamma_{3}} \underline{\boldsymbol{v}}=\underline{\mathbf{0}} \text { and } r_{\mid \Gamma \cup \Gamma^{ \pm}} \Phi=0\right\} \\
\tilde{\mathcal{V}} & :=\left\{\underline{\boldsymbol{V}}=\left(\frac{\boldsymbol{v}}{\Psi}\right) \in\left[\mathrm{H}^{1}\left(\Omega \backslash \Gamma_{m}\right)\right]^{3}, r_{\Gamma_{3}} \underline{\boldsymbol{v}}=\underline{\mathbf{0}} \text { and } r_{\left.\right|_{m} \cup \Gamma^{ \pm}} \Phi=0\right\}
\end{aligned}
$$

Bilinear form:

$$
\begin{aligned}
a\left(\underline{\boldsymbol{U}}_{0}, \underline{\boldsymbol{V}}\right) & :=-\rho \omega^{2} \int_{\Omega} \underline{\boldsymbol{u}}_{0} \cdot \underline{\boldsymbol{v}} \mathrm{~d} \underline{\boldsymbol{x}}+\int_{\Omega} \underline{\underline{\boldsymbol{A}}} \underline{\underline{\boldsymbol{B}}} \underline{\underline{\boldsymbol{U}}} 0 \cdot \underline{\underline{\boldsymbol{B}} \boldsymbol{V}} \mathrm{~d} \underline{\boldsymbol{x}} \\
& =-\rho \omega^{2} \int_{\Omega} \underline{\boldsymbol{u}}_{0} \cdot \underline{\boldsymbol{v}} \mathrm{~d} \underline{\boldsymbol{x}}+\int_{\Omega}\left(\begin{array}{cc}
\underline{\underline{\boldsymbol{C}}} & -\underline{\underline{\boldsymbol{e}}}^{\top} \\
\underline{\underline{\boldsymbol{e}}} & \underline{\underline{\varepsilon}}
\end{array}\right)\binom{\gamma\left(\underline{\boldsymbol{u}}_{0}\right)}{-\nabla \Phi}:\binom{\gamma(\underline{\boldsymbol{v}})}{-\nabla \Psi}
\end{aligned}
$$

Linear form:

$$
f(\underline{\boldsymbol{V}}):=\int_{\Omega} \underline{\boldsymbol{F}}(T) \cdot \underline{\boldsymbol{V}} \mathrm{d} \underline{\boldsymbol{x}}
$$

Existence and uniqueness

Weak formulation of the boundary-transmission problem in the composite and the simplified model Appropriate Sobolev spaces:

$$
\begin{aligned}
\mathcal{V} & :=\left\{\underline{\boldsymbol{V}}=\left(\frac{\boldsymbol{v}}{\Psi}\right) \in\left[\mathrm{H}^{1}(\Omega)\right]^{3}, r_{\Gamma_{3}} \underline{\boldsymbol{v}}=\underline{\mathbf{0}} \text { and } r_{\mid \Gamma \cup \Gamma^{ \pm}} \Phi=0\right\} \\
\tilde{\mathcal{V}} & :=\left\{\underline{\boldsymbol{V}}=\left(\frac{\boldsymbol{v}}{\Psi}\right) \in\left[\mathrm{H}^{1}\left(\Omega \backslash \Gamma_{m}\right)\right]^{3}, r_{\left.\right|_{3}} \underline{\boldsymbol{v}}=\underline{\mathbf{0}} \text { and } r_{\left.\right|_{m} \cup \Gamma^{ \pm}} \Phi=0\right\}
\end{aligned}
$$

Bilinear form:

$$
\begin{aligned}
a\left(\underline{\boldsymbol{U}}_{0}, \underline{\boldsymbol{V}}\right) & :=-\rho \omega^{2} \int_{\Omega} \underline{\boldsymbol{u}}_{0} \cdot \underline{\boldsymbol{v}} \mathrm{~d} \underline{\boldsymbol{x}}+\int_{\Omega} \underline{\underline{\boldsymbol{A}}} \underline{\underline{\boldsymbol{B}}} \underline{\underline{\boldsymbol{U}}} 0 \cdot \underline{\underline{\boldsymbol{B}}} \underline{\boldsymbol{V}} \mathrm{~d} \underline{\boldsymbol{x}} \\
& =-\rho \omega^{2} \int_{\Omega} \underline{\boldsymbol{u}}_{0} \cdot \underline{\boldsymbol{v}} \mathrm{~d} \underline{\boldsymbol{x}}+\int_{\Omega}\left(\begin{array}{cc}
\underline{\underline{\boldsymbol{C}}} & -\underline{\underline{e}}^{\top} \\
\underline{\underline{\boldsymbol{e}}} & \underline{\underline{\varepsilon}}
\end{array}\right)\binom{\gamma\left(\underline{\boldsymbol{u}}_{0}\right)}{-\nabla \Phi}:\binom{\gamma(\underline{\boldsymbol{v}})}{-\nabla \Psi}
\end{aligned}
$$

Linear form:

$$
f(\underline{\boldsymbol{V}}):=\int_{\Omega} \underline{\boldsymbol{F}}(T) \cdot \underline{\boldsymbol{V}} \mathrm{d} \underline{\boldsymbol{x}}
$$

Transformation to homogeneous Dirichlet data: $\underline{\boldsymbol{U}}=\left(\frac{\underline{u}}{\Phi}\right)=\underline{\boldsymbol{U}}_{0}-\underline{\boldsymbol{W}}$, such that $\underline{\boldsymbol{U}}_{0} \in \mathcal{V}$.
Resulting weak formulation:

$$
\begin{equation*}
a\left(\underline{\boldsymbol{U}}_{0}, \underline{\boldsymbol{V}}\right)=a(\underline{\boldsymbol{W}}, \underline{\boldsymbol{V}})+f(\underline{\boldsymbol{V}}) \tag{1}
\end{equation*}
$$

Existence and uniqueness

Theorem.

The weak formulated multifield problem (1) in the composite and the simplified problem have unique solutions.

Existence and uniqueness

Theorem.

The weak formulated multifield problem (1) in the composite and the simplified problem have unique solutions.

Two different approaches, to show existence and uniqueness of weak solutions:

1. Use the Fredholm alternative (e.g. Mercier/Nicaise, 2005): "There exists a discrete set S_{0} (spectrum) such that for $\omega^{2} \notin S_{0}$, the problem (1) has a unique solution for any right hand side F."

Existence and uniqueness

Theorem.

The weak formulated multifield problem (1) in the composite and the simplified problem have unique solutions.

Two different approaches, to show existence and uniqueness of weak solutions:

1. Use the Fredholm alternative (e.g. Mercier/Nicaise, 2005): "There exists a discrete set S_{0} (spectrum) such that for $\omega^{2} \notin S_{0}$, the problem (1) has a unique solution for any right hand side F."

+ General result
- S_{0} is not known explicitly

Existence and uniqueness

Theorem.

The weak formulated multifield problem (1) in the composite and the simplified problem have unique solutions.

Two different approaches, to show existence and uniqueness of weak solutions:

1. Use the Fredholm alternative (e.g. Mercier/Nicaise, 2005): "There exists a discrete set S_{0} (spectrum) such that for $\omega^{2} \notin S_{0}$, the problem (1) has a unique solution for any right hand side F."

+ General result
- S_{0} is not known explicitly

2. Choose appropriate Sobolev spaces \mathcal{V} and $\tilde{\mathcal{V}}$ and prove the conditions of the Lax-Milgram lemma (ellipticity and continuity).

Existence and uniqueness

Theorem.

The weak formulated multifield problem (1) in the composite and the simplified problem have unique solutions.

Two different approaches, to show existence and uniqueness of weak solutions:

1. Use the Fredholm alternative (e.g. Mercier/Nicaise, 2005): "There exists a discrete set S_{0} (spectrum) such that for $\omega^{2} \notin S_{0}$, the problem (1) has a unique solution for any right hand side F."

+ General result
- S_{0} is not known explicitly

2. Choose appropriate Sobolev spaces \mathcal{V} and $\tilde{\mathcal{V}}$ and prove the conditions of the Lax-Milgram lemma (ellipticity and continuity).

- No general result (only valid for ω below the first eigenfrequency)
+ The proof makes use of Korn's constant (dependent on the geometry of Ω), which gives a hint to the location of the first eigenfrequency.

Sketch of proof.

Ellipticity

$$
\left.\begin{array}{rl}
a(\underline{\boldsymbol{U}}, \underline{\boldsymbol{U}}) & =-\int_{\Omega} \rho \omega^{2} \underline{\boldsymbol{u}} \cdot \underline{\boldsymbol{u}} \mathrm{~d} \underline{\boldsymbol{x}}+\int_{\Omega}(\underline{\underline{\boldsymbol{\gamma}}} \\
\underline{\boldsymbol{E}}
\end{array}\right)^{\top}\left(\begin{array}{cc}
\underline{\underline{\boldsymbol{C}}} & -\underline{\underline{\boldsymbol{e}}}^{\top} \\
\underline{\underline{\boldsymbol{e}}} & \underline{\underline{\boldsymbol{\varepsilon}}}
\end{array}\right)\left(\frac{\boldsymbol{\gamma}}{\underline{\boldsymbol{E}}}\right) \mathrm{d} \underline{\boldsymbol{x}}
$$

Existence and uniqueness

Mechanical part

$$
\begin{aligned}
-\rho \omega^{2}\|\underline{\boldsymbol{u}}\|_{\left[L_{2}(\Omega)\right]^{2}}^{2}+\int_{\Omega} \gamma^{\top} \underline{\underline{\boldsymbol{C}} \gamma \mathrm{d} \underline{\boldsymbol{x}}} & \geq C_{0}\|\gamma\|_{\left[L_{2}(\Omega)\right]^{3}}^{2}-\rho \omega^{2}\|\underline{\boldsymbol{u}}\|_{\left[L_{2}(\Omega)\right]^{2}}^{2} \\
& \stackrel{\operatorname{Korn}}{\geq} C_{0, \operatorname{Korn}}\left(C_{0}, \Omega, \Gamma_{M}^{D}\right)\|\underline{\boldsymbol{u}}\|_{\left[L_{2}(\Omega)\right]^{2}}^{2}-\rho \omega^{2}\|\underline{\boldsymbol{u}}\|_{\left[L_{2}(\Omega)\right]^{2}}^{2} \\
& \geq \tilde{C}_{0}\|\underline{\boldsymbol{u}}\|_{\tilde{\mathcal{V}}}^{2}
\end{aligned}
$$

with $\tilde{C}_{0}>0$ for $C_{0, \text { Korn }}>\rho \omega^{2}$ and ω small.

Existence and uniqueness

Mechanical part

$$
\begin{aligned}
-\rho \omega^{2}\|\underline{\boldsymbol{u}}\|_{\left[L_{2}(\Omega)\right]^{2}}^{2}+\int_{\Omega} \gamma^{\top} \underline{\underline{\boldsymbol{C}} \gamma \mathrm{d} \underline{\boldsymbol{x}}} & \geq C_{0}\|\gamma\|_{\left[L_{2}(\Omega)\right]^{3}}^{2}-\rho \omega^{2}\|\underline{\boldsymbol{u}}\|_{\left[L_{2}(\Omega)\right]^{2}}^{2} \\
& \stackrel{\operatorname{Korn}}{ } C_{0, \operatorname{Korn}}\left(C_{0}, \Omega, \Gamma_{M}^{D}\right)\|\underline{\boldsymbol{u}}\|_{\left[L_{2}(\Omega)\right]^{2}}^{2}-\rho \omega^{2}\|\underline{\boldsymbol{u}}\|_{\left[L_{2}(\Omega)\right]^{2}}^{2} \\
& \geq \tilde{C}_{0}\|\underline{\boldsymbol{u}}\|_{\tilde{\mathcal{V}}}^{2}
\end{aligned}
$$

with $\tilde{C}_{0}>0$ for $C_{0, \text { Korn }}>\rho \omega^{2}$ and ω small.

Electrical part

$$
\begin{aligned}
\int_{\Omega} \underline{\boldsymbol{E}}^{\top} \stackrel{\underline{\boldsymbol{\varepsilon}}}{\underline{\boldsymbol{E}}} \mathrm{d} \underline{\boldsymbol{x}} & \geq \varepsilon_{0} \int_{\Omega} \nabla \Phi \nabla \Phi \mathrm{d} \underline{\boldsymbol{x}} \\
& \geq \geq \varepsilon_{0, \text { Friedrichs }}\left(\varepsilon_{0}, \Omega, \Gamma_{e}^{D}\right)\|\Phi\|_{\mathcal{V}}^{2}
\end{aligned}
$$

Computation of mechanical and electric fields

Resulting block-LES:

$$
\left(\begin{array}{ll}
\underline{\underline{\boldsymbol{C}}} & -\underline{\underline{E}}^{\top} \tag{2}\\
\underline{\underline{\underline{E}}} & \underline{\underline{\boldsymbol{E P}} \boldsymbol{S}}
\end{array}\right)\binom{\underline{\boldsymbol{U}}}{\underline{\boldsymbol{\Phi}}}=\binom{\underline{\boldsymbol{F}}_{1}}{\underline{\boldsymbol{F}}_{2}}
$$

The skew-symmetric block-system (2) is solved with the Bramble Pasciak CG (BPCG) (see e.g. O. Steinbach: Numerische Näherungsverfahren für elliptische Randwertprobleme)

Steady oscillation case

\rightarrow For small frequencies, we can neglect the term $\rho \omega^{2} \underline{\boldsymbol{u}}$:
\Rightarrow Stationary boundary-transmission-problem
\rightarrow For large frequencies, the term $\rho \omega^{2} \underline{\boldsymbol{u}}$ should be taken into account.
What are "small frequencies"?

Steady oscillation case

\rightarrow For small frequencies, we can neglect the term $\rho \omega^{2} \underline{\boldsymbol{u}}$:
\Rightarrow Stationary boundary-transmission-problem
\rightarrow For large frequencies, the term $\rho \omega^{2} \underline{\boldsymbol{u}}$ should be taken into account.

What are "small frequencies"?

Barium-Titanate

Steady oscillation case

\rightarrow For small frequencies, we can neglect the term $\rho \omega^{2} \underline{\boldsymbol{u}}$:
\Rightarrow Stationary boundary-transmission-problem
\rightarrow For large frequencies, the term $\rho \omega^{2} \underline{\boldsymbol{u}}$ should be taken into account.
What are "small frequencies"?
PZT-4

Static case, reference temperature $20^{\circ} \mathrm{C}$

PZT 4, $20^{\circ} \mathrm{C}$	
potential $[\mathrm{kV}]$	$[-0.256,0.243]$
stroke $[\mathrm{mm}]$	0.000828

Stack after heating at $30^{\circ} \mathrm{C}$

PZT 4, $30^{\circ} \mathrm{C}$	
potential $[\mathrm{kV}]$	$[-0.311,0.303]$
stroke $[\mathrm{mm}]$	0.000893

Static case, reference temperature $20^{\circ} \mathrm{C}$

Static case, reference temperature $200^{\circ} \mathbf{C}$

PZT 4, $200^{\circ} \mathrm{C}$	
potential [kV]	$[-0.256,0.243]$
stroke $[\mathrm{mm}]$	0.000828

Stack after heating at $210^{\circ} \mathrm{C}$

PZT 4, $210^{\circ} \mathrm{C}$	
potential [kV]	$[-0.296,0.287]$
stroke $[\mathrm{mm}]$	0.000713

Conclusion and future prospects

Conclusion

1. The linear Voigt model for the composite has a uniquely defined weak solution $\underline{U} \in \mathcal{V}$
2. The linear Voigt model for the simplified asymptotic problem has a uniquely defined weak solution $\underline{\boldsymbol{U}} \in \tilde{\mathcal{V}}$.
3. The 2D mechanical and electric fields can be computed by FEM with a Bramble Pasciak Conjugated Gradient (BPCG) solver.
4. Numerical experiments confirm, that the simplified model gives a sufficiently exact solution. It can be calculated more efficient than the full problem (factor 10).
5. The static model is applicable for "small exciting frequencies".
6. The given temperature field has a great influence on the expansion of the stack actuator.

Future Prospects

1. Computation of stress singularities in the electrode tips of the stack actuator.
2. Derivation and computation of a local failure criterion to reflect the damage.
