Overall Design and Experimental Verification of Piezoelectric Smart Structures for Vibration and Noise Control

Ulrich Gabbert

Otto-von-Guericke University of Magdeburg Institute of Mechanics Computational Mechanics

Tel. +49-391-6718608, *Fax* +49-391-67-12439 *E-Mail: ulrich.gabbert@mb.uni-magdeburg.de*

Workshop on "Direct and Inverse Problems in Piezoelectricty" Johann Radon Institute Linz 6. – 7. October 2005

Contents

- I Objectives
- II Overall virtual development of smart systems
- III Finite element analysis of piezoelectric smart structures
- **IV** Modeling of piezoelectric fibre composites
- **V** Shell type models for piezoelectric composites
- VI Controller design
- **VII** Best positions of actuators/sensors at structures
- **VIII Test examples**
- IX Industrial examples
- X Summary

Otto-von-Guericke-Universität Magdeburg

- Vibration and noise control, shape control
- Modelling, simulation, overall design tools
- Experimental verification (hardware-in-the-loop realization) and applications

Linz, 7. Oktober 200

Otto-von-Guericke-Universität Magdeburg

Ulrich Gabbert: Overall Design and Experimental Verification of Piezoelectric Smart Structures for Vibration and Noise Control

3/44

||-1

Vibration and noise suppression under different operation conditions

Virtual Systems Design

- 1. Selection of appropriate actuators and sensors
- 2. Optimal placement of actuators and sensors at the structure
- 3. Design of the controller
- 4. Overall virtual simulation of the system
- 5. Optimisation of the system
- 6. Hardware-in-the-loop experiments

Linz, 7. Oktober 200

Otto-von-Guericke-Universität Magdeburg

AND HOLD THE REAL PROPERTY IN ACCOUNT OF THE PROPERTY IN A COUNT OF THE PROPERTY INTERPOPERTY INTERPOPE

Otto-von-Guericke-Universität Magdeburg

Constitutive Equations

Mechanic

$$T_{ik} = C_{iklm}^{E} S_{lm} - e_{lik} E_{l} - \lambda_{ik}^{E} \theta$$
$$D_{i} = e_{ilm} S_{lm} + \varepsilon_{il}^{\varepsilon} E_{l} + \pi_{i}^{E} \theta$$

Electric

Temperature

T- stresses,

- D el. displacements
- S- strains,
- E electric field

Görnand, A., Gabbert, U.: Finite element analysis of thermopiezoelectric smart structures. Acta Mechanica 154, 129-140 (2002).

Otto-von-Guericke-Universität Magdeburg

3D constitutive equations

Linz, 7. Oktober 200

Institut für Mechanik

Otto-von-Guericke-Universität Magdeburg

Balance equations

div
$$\mathbf{\sigma} + \rho \overline{\mathbf{b}} - \rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = 0$$

div $\mathbf{D} = 0$
div $\mathbf{q} - \rho r + \Theta \rho \dot{\eta} = 0$

Weak form of the balance equations

$$\int_{V} (\operatorname{div} \mathbf{\sigma} + \rho \overline{\mathbf{b}} - \rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}) \delta \mathbf{u} \, dV + \int_{V} (\operatorname{div} \mathbf{D}) \delta \phi \, dV + \int_{V} (\operatorname{div} \mathbf{q} - \rho \, r + \Theta \rho \, \dot{\eta}) \delta \vartheta \, dV + \dots BCs \dots = 0$$

Otto-von-Guericke-Universität Magdeburg

Approximation of the unknown fields

Displacements:
$$u_i = \sum_{L=1}^{M^{(me)}} N_L^{(me)} u_{iL}$$
 Electric potential: $\phi = \sum_{L=1}^{M^{(el)}} N_L^{(el)} \phi_L$
Temperature: $\mathcal{G} = \sum_{L=1}^{M^{(th)}} N_L^{(th)} \mathcal{G}_L$

Semi-discrete form of the equations of motion

$$\begin{bmatrix} \mathbf{M}_{uu} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{u}} \\ \ddot{\mathbf{\phi}} \\ \ddot{\mathbf{\theta}} \end{bmatrix} + \begin{bmatrix} \mathbf{R}_{uu} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{\Theta}\mathbf{K}_{\vartheta u} & -\mathbf{\Theta}\mathbf{K}_{\vartheta \phi} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{u}} \\ \dot{\mathbf{\phi}} \\ \dot{\mathbf{\phi}} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{uu} & \mathbf{K}_{u\phi} & -\mathbf{K}_{u\vartheta} \\ \mathbf{K}_{\phi u} & -\mathbf{K}_{\phi\phi} & \mathbf{K}_{\phi\vartheta} \\ \mathbf{0} & \mathbf{0} & \mathbf{K}_{\vartheta\vartheta} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{\phi} \\ \mathbf{\theta} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{u} \\ \mathbf{f}_{\phi} \\ \mathbf{f}_{\vartheta} \end{bmatrix}$$

Otto-von-Guericke-Universität Magdeburg

The basis is the linear acoustic wave equation (small perturbations related to an ambient reference state)

$$\Delta p = \frac{1}{c^2} \ddot{p}$$

With the velocity potential Φ , which is a scalar field related to the velocity as $\mathbf{v} = -\mathbf{D}_a \Phi$ of the fluid particles the pressure can be written as $p = \rho_0 \dot{\Phi}$. This results in

$$\Delta \Phi = \frac{1}{c^2} \ddot{\Phi}$$

The weak form of the acoustic wave equation results in

$$\chi = -\frac{1}{c^2} \int_f \delta \Phi \ddot{\Phi} dV - \frac{\rho_0}{\overline{Z}} \int_{O_Z} \delta \Phi \dot{\Phi} dO - \int_{V_i} \delta \Phi \mathbf{D}_a^T \mathbf{D}_a \Phi dV - \int_{O_v} \delta \Phi \overline{v}_n dO \mathbf{D}_a^T \mathbf{D}_a^T \Phi = 0$$

$$\mathbf{D}_{a}^{T} = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix}$$

Otto-von-Guericke-Universität Magdeburg

$$\begin{bmatrix} \mathbf{M}_{ww} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & -\rho_0 \mathbf{M}_a \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{w}} \\ \ddot{\mathbf{\phi}} \\ \ddot{\mathbf{\phi}} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{ww} & \mathbf{0} & -\mathbf{C}_{wc} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ -\mathbf{C}_{wc}^T & \mathbf{0} & -\rho_0 (\mathbf{C}_a + \mathbf{C}_I) \end{bmatrix} \begin{bmatrix} \dot{\mathbf{w}} \\ \dot{\mathbf{\phi}} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{ww} & \mathbf{K}_{w\varphi} & \mathbf{0} \\ \mathbf{K}_{w\varphi}^T & -\mathbf{K}_{\varphi\varphi} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & -\rho_0 (\mathbf{K}_a + \mathbf{K}_I) \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{\phi} \\ \mathbf{\phi} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_w \\ \mathbf{f}\varphi \\ -\rho_0 \mathbf{f}_a \end{bmatrix}$$

The velocity of the vibrating structure acts as a acoustic load of the fluid The normal velocity of the structure can be expressed as $\dot{\boldsymbol{\mu}}_n = \mathbf{n}^T \mathbf{N}_w \dot{\mathbf{w}}$

$$\mathbf{f}_{ac} = -\int_{O_{s}^{(e)}} \mathbf{N}_{a}^{T} \mathbf{n}^{T} \mathbf{N}_{w} dO \, \dot{\mathbf{w}} = \frac{1}{\rho_{0}} \mathbf{C}_{wc}^{T} \dot{\mathbf{w}}$$

With an additional load term due to the fluid pressure

$$\mathbf{f}_{wc} = \int_{O_{S}^{(e)}} \mathbf{N}_{w}^{T} \mathbf{n} p dO = \rho_{0} \int_{O_{S}^{(e)}} \mathbf{N}_{w}^{T} \mathbf{n} \mathbf{N}_{a} dO \dot{\mathbf{\Phi}} = \mathbf{C}_{wc} \dot{\mathbf{\Phi}}$$

AND ADDRESS OF THE PARTY OF THE

111-6

Otto-von-Guericke-Universität Magdeburg

111-7

*) siehe www.femcos.de

Otto-von-Guericke-Universität Magdeburg

(semi-loof elements)

Modelling piezoelectric fibres

Piezoelectric fiber composites

FhG's Würzburg, Dresden, Bremen

Piezoelectric fibres

Draft of a piezoelectric fiber composite

Linz, 7. Oktober 200

IV-2

Calculation of effective coefficients of PZT composites

Linz, 7. Oktober 200

Example

Piezoelectric fibres made from PZT 5A (N/m², C/m² and F/m)

	C11 * E10	C 12* E10	C 13 * E10	C 33 * E10	C 44 * E10
PZT	12.1	7.54	7.52	11.1	2.11
	e15	e31	e33	ε11 * E-9	ε33* E-9
PZT	12.3	-5.4	15.8	8.11	7.35

Matrixmaterial: Polymermaterial with E=1.806 E9 N/m², v= 0.3994

IV-3

Otto-von-Guericke-Universität Magdeburg

Example: Results

Selected results compared with calculations based on other methods

Linz, 7. Oktober 200

Otto-von-Guericke-Universität Magdeburg

Shell type models for piezoelectric composites

V-1

Otto-von-Guericke-Universität Magdeburg

Classical SemiLoof shell element

Triangular element with 24 dof's

- Basis: Discrete-Kirchhoff Theory (DKT)
- Lagrangian and Legendre polynomials
- Tangential rotations only

Linz, 7. Oktober 200

Otto-von-Guericke-Universität Magdeburg

- Electromechanical coupling is taken into account
- The piezoelectric layers are assumed to be complete metalized and electrodized, where the electric field ${\sf E}_{3i}$ is again assumed to be constant over thickness ${\sf h}_i$:

 The element is enhanced by additional electric potential differences ∆φ_i for each active layer *i*. The coupling is taken into account by:

$$\begin{bmatrix} \mathbf{K}_{e}^{(mm)} & \mathbf{K}_{e}^{(me)} \\ \mathbf{K}_{e}^{(me)^{\mathrm{T}}} & \mathbf{K}_{e}^{(ee)} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{e} \\ \Delta \boldsymbol{\varphi}_{e} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{e}^{(m)} \\ \mathbf{f}_{e}^{(e)} \end{bmatrix}$$

$$\mathbf{K}_{e}^{(mm)} = \int_{A_{e}} \mathbf{B}^{(m)^{T}} \mathbf{C} \, \mathbf{B}^{(m)} dA \; ; \; \mathbf{K}_{e}^{(me)} = \int_{A_{e}} \mathbf{B}^{(m)^{T}} \mathbf{e} \, \mathbf{B}^{(e)} \, dA \; ; \; \mathbf{K}_{e}^{(ee)} = \int_{A_{e}} \mathbf{B}^{(e)^{T}} \kappa \, \mathbf{B}^{(e)} dA$$

The assumption of the electric field has been intensively investigated!

Otto-von-Guericke-Universität Magdeburg

Institut für Mechanik Ulrich Gabbert: Overall Design and Experimental Verification of Piezoelectric Smart Structures for Vibration and Noise Control

19/44

Controller design

$$\mathbf{M}\ddot{\mathbf{q}} + \mathbf{D}_{d}\dot{\mathbf{q}} + \mathbf{K}\mathbf{q} = \mathbf{\overline{E}}\mathbf{f}(t) + \mathbf{\overline{B}}\mathbf{u}(t)$$

del reduction (e.g. modal space):
$$\mathbf{q} = \mathbf{\Phi}\mathbf{z}$$

State space representation:

 $\mathbf{x}^{\mathrm{T}} = \begin{bmatrix} \mathbf{z} & \dot{\mathbf{z}} \end{bmatrix}^{\mathrm{T}}$

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{\Lambda}_r & -\mathbf{\Delta}_r \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} \mathbf{0} \\ \mathbf{\Phi}_r^{\mathrm{T}} \overline{\mathbf{B}} \end{bmatrix} \mathbf{u}(t) + \begin{bmatrix} \mathbf{0} \\ \mathbf{\Phi}_r^{\mathrm{T}} \overline{\mathbf{E}} \end{bmatrix} \mathbf{f}(t)$$

x=**Ax**+**Bu**+**Ef y**=**Cx**+**Du**+**Ff**

Otto-von-Guericke-Universität Magdeburg

Mo

Otto-von-Guericke-Universität Magdeburg

see: T. Nestorović, PhD thesis, Uni Magdeburg, VDI Düsseldorf, 2005

Otto-von-Guericke-Universität Magdeburg

Best positions of actuators/sensors at structures

- I) Discrete continuous optimization (gradient based methods) [see the Weber/Gabbert (1998,99); Schulz/Gabbert(2001)]
- II) Controllability and observeability index [see Seeger/Köppe/Gabbert (2002)]
- III) Continuous optimization (gradient based methods) [see Seeger/Gabbert (2003)]
- IV) Evolutionary optimization [see Bohn/Gabbert (2004), WCCM VI]

Linz, 7. Oktober 200

Otto-von-Guericke-Universität Magdeburg

VII-2 Automatic integration of a patch mesh in a base mesh

- Projection of the FE-mesh of the piezoelectric patch into the host structure
- Identification of overlapping elements
- Local remeshing of the host structure with embedded piezoelectric patch

Linz, 7. Oktober 200

Institut für Mechanik

Otto-von-Guericke-Universität Magdeburg

Sensitivity

Accuracy

Objective function: accuracy sufficient with mesh a) and b) Gradients: accuracy <u>not</u> sufficient with mesh a) accuracy sufficient with mesh b)

see: F. Seeger, PhD thesis, Uni Magdeburg, VDI Düsseldorf, 2004

Institut für Mechanik Ulrich Gabbert: Overall Design and Experimental Verification of Piezoelectric Smart Structures for Vibration and Noise Control

Linz, 7. Oktober 200

$$\dot{\mathbf{z}}(t) = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{\Lambda} & -\mathbf{\Delta} \end{bmatrix} \mathbf{z}(t) + \begin{bmatrix} \mathbf{0} \\ \mathbf{\Phi}^T \mathbf{B} \end{bmatrix} \mathbf{u}(t) + \begin{bmatrix} \mathbf{0} \\ \mathbf{\Phi}^T \mathbf{E} \end{bmatrix} \mathbf{f}(t) = \mathbf{A}\mathbf{z} + \mathbf{B}\mathbf{u}(t) + \mathbf{E}\mathbf{f}(t)$$

$$\mathbf{y} = \mathbf{C}\mathbf{z}$$

Transformation in the frequency domain results in

$$j\omega \mathbf{Z}(j\omega) = \mathbf{A}\mathbf{Z}(j\omega) + \mathbf{B}\mathbf{U}(j\omega) + \mathbf{E}\mathbf{F}(j\omega)$$
$$\mathbf{Y}(j\omega) = \mathbf{C}\mathbf{Z}(j\omega)$$

Introducing a controller in the form of $U(j\omega) = -KZ(j\omega)$ results in

$$\mathbf{Y}(j\omega) = \underbrace{\mathbf{C}(j\omega\mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K})^{-1}\mathbf{E}}_{\mathbf{H}(j\omega)} \mathbf{F}(j\omega)$$
$$= \mathbf{H}(j\omega)\mathbf{F}(j\omega)$$

Otto-von-Guericke-Universität Magdeburg

The transfer function can be calculated by solving the linear system of equations

$$(j\omega \mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K})\hat{\mathbf{Z}}(j\omega) = \mathbf{E}$$

 $\mathbf{H}(j\omega) = \mathbf{C}\hat{\mathbf{Z}}(j\omega)$

For the optimization based on the frequency response function an objective function can be created, such as

$$J_F = \frac{1}{\omega_b - \omega_a} \int_{\omega_a}^{\omega_b} \left\| \mathbf{H} \right\|_2^2 d\omega.$$

In the gradient based optimization the gradients are required:

$$\frac{\partial J_F^c}{\partial p} = \frac{1}{\omega_b - \omega_a} \int_{\omega_a}^{\omega_b} \frac{\partial}{\partial p} \|\mathbf{H}\|_2^2 d\omega$$
$$\frac{\partial \mathbf{H}}{\partial p} = \frac{\partial \mathbf{C}}{\partial p} \hat{\mathbf{Z}} + \mathbf{C} \frac{\partial \hat{\mathbf{Z}}}{\partial p}.$$

Otto-von-Guericke-Universität Magdeburg

VIII-1

Test example: Optimal actuator and sensor positioning

Otto-von-Guericke-Universität Magdeburg

Test example: Results

Otto-von-Guericke-Universität Magdeburg

Modal Controllability Index

$$\mu_k = \boldsymbol{\varphi}_k^T \overline{\mathbf{B}} \overline{\mathbf{B}}^T \boldsymbol{\varphi}_k$$

This index can be quite simple evaluated based on a finite element model. It can be seen as the signal (voltage of a patch actuator at one point of the mesh, if the structure is excited in one eigenmode). For one mesh point *i* and the k^{th} eigenmode we receive:

$$\mu_{ki} = \varphi_{ki}^2$$

Example 3: Clamped plate

Modal controllability indices of the first five modes of a rectangular clamped plate

Linz, 7. Oktober 200

Otto-von-Guericke-Universität Magdeburg

VIII-4

Test example 3: Experimental setup

Thin plate made of Al (or steel, or GFC)

Thin ceramic patches made of PZT

Connection between the ceramic patches and the control unit

Otto-von-Guericke-Universität Magdeburg

VIII-5 Test example: Measurement, impulse excitation and LQ-controller

Linz, 7. Oktober 200

Otto-von-Guericke-Universität Magdeburg

Institut für Mechanik Ulrich Gabbert: Overall Design and Experimental Verification of Piezoelectric Smart Structures for Vibration and Noise Control 32/44

VIII-6

Test example: Optimal angel of patch actuator

Linz, 7. Oktober 200

Otto-von-Guericke-Universität Magdeburg

Test example: Acoustic box

sensor/actuat $F(t)$	for pairs Exc firs	Excitation with a sin-signal containing the first two eigenfrequencies of the system			
		Young's modulus E	210000N/mm ²		
	Y	Poisson's ratio v	0.3		
		Density ρ_P	2.63·10 ⁻⁹ Ns ² /mm ⁴	_	
	-3				
		Speed of sound <i>c</i>	340000mm/s		
		Fluid density ρ_0	1.29·10 ⁻¹² Ns ² /mm ⁴	_	
]	
	l2 Plate/Cavity	System	Actuators/Sensors		
		600mm	Length in x_1 -direction	100mm	
BC: Bottom: n=0	l_2	400mm	Length in x_2 -direction	50mm	
Sidewalls: $y=0$	l	400mm	Patch thickness	0.2mm	
	h (Plate thick	(mess) 2mm			

Elastic Constants			Piezoelectric Constants		Dielectric Constants		
$c_{11}^{}$	107600N/mm ²	<i>c</i> ₃₃	100400N/mm ²	<i>e</i> ₁₅	1.20·10 ⁻⁵ N/(mV)mm	κ ₁₁	1.74·10 ⁻¹⁴ N/(mV) ²
c ₁₂	63120N/mm ²	c ₄₄	19620N/mm ²	e ₃₁	-9.60·10 ⁻⁶ N/(mV)mm	к ₃₃	1.87·10 ⁻¹⁴ N/(mV) ²
c ₁₃	63850N/mm ²	c ₆₆	22200N/mm ²	e ₃₃	1.51·10 ⁻⁵ N/(mV)mm	Density ρ	7.80·10 ⁻⁹ Ns ² /mm ⁴

Linz, 7. Oktober 200

Otto-von-Guericke-Universität Magdeburg

Test example: Acoustic box, results

Otto-von-Guericke-Universität Magdeburg

IX-3

Industrial example: Active vibration control of a MRT

RAN STHR HODE HINH HARK ELEN COOR BOFO SOPT 202 STOP **SIEMENS** RAR LCAS NODR RESU COMP CUTS VALU ANIN' SOPR ACTPALL 20 X3 ×1 GHA V (O 0008-0 524E-07 048E-07 571E-0 619E 1478-0 810E 333E-0 8578 381E-429F-52 dE FEA-model for optimizing the **Funnel of a Siemens MRT** Actuator/sensor position R-X1 Excitation point 2 X3 X1 Sensor 3 Actuator 4 Actuator 3 Sensor 4 Sensor 1 Sensor 2 Actuator 1 Actuator 2 Sensor 5 Actuator 6 Actuator 5 Sensor 6 Eigenfrequencies of Interest Excitation point 1

<u> Linz, 7. Oktober 200</u>

Otto-von-Guericke-Universität Magdeburg

Active vibration reduction of a funnel of a MRT

Linz, 7. Oktober 200

Otto-von-Guericke-Universität Magdeburg

Hardware-in-the-loop experiments

Accelerometer

Experimental rig for the modal analysis with the funnel and LMS CADA-X system

Linz, 7. Oktober 200

Measured and identified Frequency Response Functions for actuator/sensor pairs A1R-S1L

A2R-S1R

A1R-S1L

Linz, 7. Oktober 200

Otto-von-Guericke-Universität Magdeburg

Optimal LQ control

Otto-von-Guericke-Universität Magdeburg

Industrial Example: Control of the first eigenfrequency

0.20 0.10 Sensor [V] 0.00 -0.10 -0.20 1 0 3 -9 10 11 12 13 15 16 17 18 Time (sec 2 Control [V] 0 -2 -6 0 з 5 9 Time [sec] 20 10 Solid: controlled Dashed: uncontrolled Magnitude [dB] -20 -30 -4 -50 -60 . 0 5 10 15 20 25 30 35 Frequency [Hz]

Actuator/sensor pairs A2R–S1R

Actuator/sensor pairs A1R–S1L

Linz, 7. Oktober 200

Institut für Mechanik Ulrich Gabbert: Overall Design and Experimental Verification of Piezoelectric Smart Structures for Vibration and Noise Control

41/44

Summary

- In the presentation it was shown, that an overall virtual development approach to design and to evaluate smart structures concepts is required.
- For smart structures design a finite element approach coupled with controller design software Matlab/Simulink was discussed.
- For piezoelectric fibre composites a homogenisation technique based on a RVE approach to evaluate effective material properties was presented.
- For thin-walled structures shell type finite elements were shown, which are an effective approach for an overall design procedure.
- In controller design we have used model based optimal LQ (FE-model and/or identified model) with Kalman estimator and additional dynamics, which was briefly discussed only.
- For calculating best positions of actuators/sensors at structures a gradient based optimization was presented. But simpler methods based on a modal criterion have shown to result in a first acceptable solution.
- The design procedure was applied to several test cases and industrial applications, where also hardware-in-the-loop realizations have been performed to evaluate the results.
- Recent activities are also focused on smart machine systems, which perform large motion, where as design basis an multi-body systems (MBS) approach is used.

Linz, 7. Oktober 2005

Otto-von-Guericke-Universität Magdeburg

