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Introduction
• Piezoelectric devices represent an important new group of

actuators and sensors for active vibration control. This
technology allows to construct spatially distributed devices.

• This fact requires special control techniques to improve the
dynamical behavior of this kind of smart structures.

• A deeper insight in the mathematical structure of the models
of smart structures will be given by the PCHD-approach.

• The controller design is based on a method for infinite
dimensional Hamiltonian systems, which requires the
collocation of sensors and actuators and therefore, certain
distributed and/or integral quantities must be measured by
means of the piezoelectric sensors.

• Some facts of modern control theory and of differential
geometry are required
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PCHD-Systems, ODE
Choice of a state space:
X : q-dimensionale manifold with coordinates(xα), α = 1, . . . , q .

Tangential-T (X ), cotangential bundleT ∗ (X ):

holonomic bases{∂α}, {dxα} with coordinates(xα, ẋα), (xα, ẋα).

Structure matrix:J = −JT , dissipative effects:R = RT , R ≥ 0,

J ;R : T ∗ (X )→ T (X ) ẋα =
(

Jαβ (x)− Rαβ (x)
)

ẋβ .

Ports: The input spaceU = span {eς}, a vector space with
coordinates(uς), ς = 1, . . . ,m and a mapB,

B : U → T (X ) , ẋα = Bα
ς (x)uς .
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ODE (2)
The system

ẋα = vα
H =

(

Jαβ − Rαβ
)

∂βH +Bα
ς u

ς ,

yς = Bα
ς ∂αH

meets withvH = vα
H∂α,

vH(H) = −∂α (H)Rαβ∂βH + yςu
ς ≤ yςu

ς

with the output spaceY = U∗ = span {eς} with coordinates(yς) and
HamiltonianH ∈ C∞ (X ).

Exterior derivative:

R → C∞ (X )
d
→ ∧1 (T ∗ (X )) · · ·

d
→ ∧q (T ∗ (X ))

d
→ {0} .
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ODE (3)
Interior product:

⌋ : T (X )× ∧r (T ∗ (X ))→ ∧r−1 (T ∗ (X )) , r ≥ 0 .

Fact:vH is no vector field. Choose a sectionσ of the bundle
U × X

ρ
→ X , then

(
vα
H ◦ σ

)
∂α ∈ Γ (T (X )) is met.

ρ∗ (T (X ))
τ∗(ρ)
→ T (X )

↓ ρ∗(τ) ↓ τ

U × X
ρ
→ X

(xα, uς , ẋα)
τ∗(ρ)
→ (xα, ẋα)

↑ vH (x, u) v∗ ↑ vH ◦ g (x)

(xα, uς)
g(x)
← (xα)

One getsvH ∈ Γ (ρ∗ (τ)) with

ρ∗ (T (X ))
ρ∗(τ)
→ U ×X .
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Coordinate Transformations
The structure of a PCHD-system is preserved by transformations of
the type

x̄ᾱ = ϕᾱ (x)

ūς̄ = M ς̄
ς (x) (uς + f ς (x))

ȳς̄ = M̄ ς
ς̄ (x)

(
yς + ∂αHfB

α
ς

)
, M ς̄

σM̄
σ
ς = δς̄

ς ,

provided that one finds a functionHf ∈ C
∞ (X ) such that

(

Jαβ −Rαβ
)

∂βHf +Bα
ς f

ς = 0 .

Remark: Forf ς = 0 one choosesHf = 0.
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C.trans. (2)
Further relations

H̄ =
(
H +Hf

)
◦ ϕ−1

J̄ ᾱβ̄ =
(

∂αϕ
ᾱJαβ∂βϕ

β̄
)

◦ ϕ−1

R̄ᾱβ̄ =
(

∂αϕ
ᾱRαβ∂βϕ

β̄
)

◦ ϕ−1

B̄ᾱ
ς̄ =

(
∂αϕ

ᾱBα
ς M̄

ς
ς̄

)
◦ ϕ−1 .

Remark 1: The transformation fory, u is affine, therefore we get

yςu
ς 6= ȳς̄ ū

ς̄ .

Remark 2: A functionHf , which meets the PDE withf ς = 0, does
not change the equations.
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An Alternative
If there exist functionsHς (x) ∈ C∞ (X ), such that

Bα
σ = −Jαβ∂βHς , Rαβ∂βHς = 0 , ∂β (Hς) J

αβ∂βHς = 0

is met, then one can rewrite the system as

ẋα = vα
H =

(

Jαβ − Rαβ
)

∂β (H −Hςu
ς) ,

yς = vH (Hς) .

Remark: Often one chooses the outputYς = Hς instead ofyς .
Furthermore,

yς =
d

dt
Yς

is met along a solution of the system.
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D-Control
Damping injectionRm×m ∋ D ≥ 0:

x̄α = xα

ūς = Dςτyτ + uς = DςτBα
ς ∂αH + uς

ȳς = yς

One derives the PCHD-system

ẋα =
(

Jαβ −Rαβ
)

∂βH + Bα
ς (−Dςτyτ + ūς)

=
(

Jαβ −Rαβ −Bα
ς D

ςτBβ
τ

)

∂βH +Bα
ς ū

ς ,

which meets

vH(H) = −∂α (H)
(

Rαβ + Bα
ς D

ςτBβ
τ

)

∂βH + yς ū
ς ≤ yς ū

ς .
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P/I-Regler
Choose the controller

˙̃xς = ũς

ỹς = ∂ςH̃ = Pςτ x̃
τ

which is a PCHD system with̃J = 0, R̃ = 0, H̃ (x̃) = 1
2 x̃

ςPςτ x̃
τ ,

R
m×m ∋ P ≥ 0,

Connect the system

ẋα =
(

Jαβ −Rαβ
)

∂βH + Bα
ς u

ς

yς = Bα
ς ∂αH

with the controller using the interconnection

uς = −δςτ ỹτ + vς , ũς = δςτyτ .
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P/I (2)

ẋα = Jαβ∂β

(

H + H̃
)

−Bα
τ δ

τς∂ς

(

H + H̃
)

−Rαβ∂β

(

H + H̃
)

˙̃xς = δςτBα
τ ∂α

(

H + H̃
)

The transformation

x̄α = xα

¯̃xς = x̃ς − δςτYτ (x)
¯̃
H = H̃ (¯̃x+ Y )

leads to a lengthy PCHD-system.

Assumption: If relation∂α (Yς) J
αβ∂βH = yς = Bα

ς ∂αH and

R∂β (H) ∂αYς = Bα
υ ∂αYς = ∂α (Yς) J

αβ∂βYτ = 0

Mathematical Description and Modelling of Piezoelectric Systems – p.12/58



P/I (3)
are met, then one gets

˙̄xα =
(

Jαβ − Rαβ
)

∂βH −B
α
ς P

ςτ (¯̃xτ + δςτYτ ) +Bα
ς v

ς

˙̃̄xς̄ = 0

or

˙̄xα =
(

Jαβ −Rαβ
)

∂β

(

H + (¯̃xτ + δςτYτ )
P ςτ

2
(¯̃xτ + δςτYτ )

)

+ Bα
ς v

ς .
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H2-Control
Find a control law, such that the objective functional

1

2

∫ ∞

0

(
yςD

ςτyτ + uςD̄ςτu
τ
)
dt

with DςχD̄χτ = δς
τ is minimized.

The HJB-inequality for this problem is

inf
u

(
2vH (V ) + yςD

ςτyτ + uςD̄ςτu
τ
)
≤ 0 .

Provided thatH is a positive definite function then the choice

V = H

leads to
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H2-Control (2)x

inf
u

(

2∂α (H)Rαβ∂βH + 2yςu
ς + yςD

ςτyτ + uςD̄ςτu
τ
)

≤ 0

−2∂α (H)Rαβ∂βH ≤ 0

with the optimal control law

yς = −D̄ςτu
τ , uς = −Dςτyτ .
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H∞-Control
The system is given by

ẋα =
(

Jαβ −Rαβ
)

∂β

(

H −Hςu
ς − Ĥς û

ς
)

yς = ∂α (Hς) J
αβ∂βH

ŷς = ∂α

(

Ĥς

)

Jαβ∂βH ,

with K ∈ R
qm, whereu is the control and̂u is the disturbance input.

Find a control law, such that the objective functional

1

2

∫ ∞

0

(
λ2yςδ

ςτyτ + uςδςτu
τ − γ2ûςδςτ û

τ
)
dt

is minimized with respect tou and maximized with respect tôu.
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H∞-Control (2)
The HJBI-inequality for this problem is

inf
u

sup
û

(
2vH (V ) + λ2yςδ

ςτyτ + uςδςτu
τ − γ2ûςδςτ û

τ
)
≤ 0 .

Provided thatH is a positive definite function, then the choice
V = H leads to

inf
u

sup
û

(

2∂α (H))Rαβ∂βH + 2yςu
ς + 2ŷς û

ς

+λ2yςδ
ςτyτ + uςδςτu

τ − γ2ûςδςτ û
τ
)
≤ 0

−2∂α (H))Rαβ∂βH +
(
λ2 − 1

)
yςδ

ςτyτ +
1

γ2
ŷςδ

ςτ ŷτ ≤ 0

with the optimal choice
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H∞-Control (3)

γ2ûςδςτ = ŷτ , yς = −δςτu
τ , uς = −δςτyτ .

In the caseHς = Ĥς the condition simplifies to

−2∂α (H))Rαβ∂βH +

(

λ2 − 1 +
1

γ2

)

yςδ
ςτyτ ≤ 0

E.g. one chooses

λ2 ≤
γ2 − 1

γ2
.
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PCHD-Systeme, PDE
Choice of a state space:

B an orientable smoothp-dimensional manifold with coordinates
(
Xi
)
, i = 1, . . . , p.

A compactp-dimensional manifoldD ⊂ B with boundary∂D and
volume formdX.

Inclusion map:i : ∂D → D with coordinates
(

X̄ ī
)

, ī = 1, . . . , p− 1

for ∂D and volume formdX̄.

Bundle:X π
→ D with coordinates

(
Xi, xα

)
, α = 1, . . . , q.

A sectionσ ∈ Γ (X ),

π ◦ σ = idD , π
(
Xi, xα

)
=
(
Xi
)

represents the state of a distributed system.
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PDE (2)
The first jetj (σ) of σ, the functionsσα and∂iσ

α, is a section of the

J (X )
π1

→ D with the first jet-manifoldJ (X ), or J (π), of X . We use
the adapted coordinates

(
Xi, xα, xα

1i

)
.

Analogously one defines then-th order jetjn (σ) of σ with ∂Iσ
α,

#I ≤ n.

The indexI = i1, . . . , ip is an ordered multi-index with
#I =

∑p
j=1 ip,

which meetsI + J = i1 + ji, . . . , ip + jp and1i = i1, . . . , ij , . . . , ip,
ij = δi

j as well as

∂I = (∂1)
i1 · · · (∂p)

ip .

The coordinates ofJn (X ) are denoted by
(
Xi, xα

I

)
, 0 ≤ #I ≤ n.
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PDE (3)
With the projections

πn
m

(
Xi, xα, xα

I

)
=
(
Xi, xα, xα

J

)
, 0 ≤ #I ≤ n , 0 ≤ #J ≤ m , m < n

one derives the bundles

Jn (X )
πn

m→ Jm (X ) ,

with the identityJ0 (X ) = X .

With the projection

πn
m

(
Xi, xα, xα

I

)
=
(
Xi, xα

)

one gets

Jn (X )
πn

→ D .
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PDE (4)

The total derivativedi with respect toXi,
di : C∞ (Jn (X ))→ C∞

(
Jn+1 (X )

)
,

di = ∂i + xα
I+1i

∂I
α , ∂I

α = ∂xα
I
.

meets
∂i (f ◦ j

n (σ)) = (dif) ◦ jn+1 (σ)

with f ∈ C∞ (Jn (X )), σ ∈ Γ (X ).

Remark: A sectionγ ∈ Γ (J (π)) does not necessarily metj (σ) = γ

with σ ∈ Γ (π), since the integrability conditions

γα
I = ∂Iς

α

must be met.
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PDE (5)
A sectionσ ∈ Γ (π) defines a state. Obviously,σ fixesj (σ).

Let us choose a sectionγ ∈ Γ
(
π1
)

with j (σ) = γ, and a sectionϑ

of i∗ (π) : i∗ (X )
π|

∂D→ ∂D.

Obviously, the state follows from

σ = π1
0 ◦ γ ,

where the functionsσα are solutions of the PDE

∂iσ
α = γα

1i

with the boundary conditions given byϑ.
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PDE (6)
This is only possible for distributed parameter systems (PDEs) !

Ideal rod with Hamiltonian desnsityH =
(x2)

2

2ρ +
E(x1

11
)
2

2 :

ẋ1 =
1

ρ
x2 , ẋ2 = Ex1

21
.

Die Lie-Bäcklund Transformation

x̄1 = x1
11
, x̄2 = x2

leads to

˙̄x1 =
1

ρ
x̄2

11
, ˙̄x2 = Ex̄1

11
, H̄ =

1

2ρ

(
x̄2
)2

+
E

2

(
x̄1
)2

.
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PDE (7)
Telegraphers equation with Hamiltonian density

H =
1

2C

(
x1
)2

+
1

2L

(
x2
)2

and

ẋ1 = −
1

L
x2

11
, ẋ2 = −

1

C
x1

11
.

Remark: We confine ourselves to the case, where a state is defined
by σ ∈ Γ (π).
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PDE (8)

Given the bundleX π
→ D one gets several important bundles by

standard constructions:

The tangent bundlesT (X ), T (D),

the cotangent bundlesT ∗ (X ), T ∗ (D).

The vertical tangential bundle ofX ,

V (X ) = ker (π∗) ⊂ T (X ) ,

and the horizontal cotangent bundle

H∗ (X ) = π∗ (T ∗ (D)) ⊂ T ∗ (X ) ,

which annulsV (E), or

V (E)⌋H∗ (E) = {0} .
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PDE (9)
Given these vector bundles one gets the further vector bundles

∧0
r (T ∗ (X )) = ∧r (H∗ (X )) , r ≤ p

and
∧1

p (T ∗ (X )) = (T ∗ (X )) ∧ (∧p (H∗ (X ))) ,

with
V (X )⌋ ∧1

r (T ∗ (X )) = ∧0
r (T ∗ (X )) .

The interior product

⌋ : V (X )× ∧1
p (T ∗ (X ))→ ∧0

p (T ∗ (X )) , r = ẋαṙα

replaces the canonical product of the lumped parameter case.
(
Xi, xα, r

)
,
(
Xi, xα, ṙα

)
are coordinates for∧0

p (T ∗ (X )),
∧1

p (T ∗ (X )).
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PDE (10)
The total derivativedi and the horizontal exterior derivatvedh are
connected by

dh = dXi ∧ di ,

or by
jn+1 (σ)∗ (dhω) = d

(
jn (σ)∗ (ω)

)

is met for allσ ∈ Γ (X ), ω ∈ Γ (∧T ∗ (Jn (X ))).

Remark: The sequence

R → C∞ (X )
dh→ ∧0

1 (T ∗ (X )) · · ·
dh→ ∧0

p (T ∗ (X ))
dh→ {0}

is exact.

Mathematical Description and Modelling of Piezoelectric Systems – p.28/58



PDE (11)
Considerdh as a map

dh : πn,∗ (∧r (H∗ (X )))→ πn+1,∗ (∧r+1 (H∗ (X ))) ,

then one derives a version of Stokes’s Theorem, adapted to
bundles: ∫

∂D
jn (σ)∗ (ω) =

∫

D
jn+1 (σ)∗ (dhω)

is met for allσ ∈ Γ (X ), ω ∈ Γ (πn,∗ (∧p−1 (T ∗ (D)))).

The Hamiltonian of the lumped parameter case is replaced by the
Hamiltonian density

HdX ∈ π1,∗
0

(
∧0

p (T ∗ (D))
)
.
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PDE (12)
The exterior derivative of

d (HdX) = ∂αHdxα ∧ dX + ∂i
αHdxα

1i
∧ dX

= ∂αHdxα ∧ dX + ∂i
αHdi (dxα ∧ dX)

=
((
∂α − di∂

i
α

)
H
)

︸ ︷︷ ︸

δα

dxα ∧ dX + dh

(
∂i

αH∂i⌋dx
α ∧ dX

)

induces two new maps: The variational derivativeδ,

δ : π1,∗
0

(
∧0

p (T ∗ (X ))
)
→ π

2,∗
0

(
∧1

p (T ∗ (X ))
)
.

Using the coordinates
(
Xi, xα, ṙα

)
for ∧1

p (T ∗ (X )) we get

ṙα = δα (H) with δα = ∂α +
∑

I

(−1)#I
dI∂

I
α .

Mathematical Description and Modelling of Piezoelectric Systems – p.30/58



PDE (13)
Remark: The sequence

∧0
p−1 (T ∗ (X ))

dh→ ∧0
p (T ∗ (X ))

δ
→ ∧1

p (T ∗ (X ))

is exact.

Now, on the boundary∂D the bundle

∧1
p−1 (T ∗ (i∗ (X )))

with local coordinates
(

X̂i, x̂α, ˙̂rα

)

takes over the function of

∧1
p (T ∗ (X )).
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PDE (14)
From

i∗
(
∂i

αH∂i⌋dx
α ∧ dX

)
= i∗

(
∂i

αH
)
γidx

α ∧ dX̄ , γi ∈ C
∞ (∂D)

one gets the second map

ζ : π1,∗
0

(
∧0

p (T ∗ (X ))
)
→ π

1,∗
0

(
∧1

p−1T
∗ (i∗ (X ))

)
,

given in coordinates by

˙̂rα = i∗ (ζα (H)) , ζα = γi∂
i
α .

Fact: The exterior derivative of the Hamiltonian density splits into
the two mapsδ, ζ in a natural manner.
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PDE (15)
Given a skew symmetric map

J : π2,∗
0

(
∧1

p (T ∗ (X ))
)
→ π

2,∗
0 (V (X ))

or in coordinates

ẋα = Jαβ ṙβ , Jαβ ∈ C∞
(
J2 (X )

)

one derives the evolutionary Hamiltonian equations as

ẋα = vα , vα = Jαβδβ (H)

with the Hamiltonian operatorv ∈ π2,∗
0 (V (E)).

The change of
∫

DHdX along solutions of the system is given by
∫

D
j (v) (HdX) =

∫

D
δα (H)Jαβδβ (H)
︸ ︷︷ ︸

=0

dX +

∫

∂D
vα
(
∂i

αH
)
γidX̄ .
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PDE (16)
Remark 1: If suitable boundary condition are choosen, such that

vα
(
∂i

αH
)
γi = 0

is met, then
∫

DHdX is an invariant.

Remark 2: The interior product

V (i∗ (X ))× ∧1
p−1T

∗ (i∗ (X ))→ ∧0
p−1T

∗ (i∗ (X ))

measure the flow of power over the boundary.

Remark 3:J can be replaced by skew symmetric differential
operator,

Jαβ = JαβIdI , #I ≤ r , dI = (d1)
i1 ◦ · · · ◦ (d1)

i1 .
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PDE (17)
The choice of a positive semi definite map

R : π2,∗
0

(
∧1

p (T ∗ (X ))
)
→ π

2,∗
0 (V (X ))

allows us to take dissipative effects into accout. One gets

ẋα = vα , vα =
(

Jαβ −Rαβ
)

δβ (H) ,

as well as
∫

D
j (v) (HdX) = −

∫

D
δα (H)Rαβδβ (H)
︸ ︷︷ ︸

≥0

dX+

∫

∂D
vα
(
∂i

αH
)
γidX̄ .

Remark 1: Provided that suitable boundary conditions are choosen,
then

∫

DHdX is non-increasing along solutions.
Remark 2: One can also replaceR by a differential operator.
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PDE (18)
To introduce ports we choose the vector bundleU as as input space

(U , ρ,D) with coordiantes
(
Xi, uς

)
, ς = 1, . . . ,m .

The output space is given by the vector bunde(Y , ρ∗,D), which is
dual with repect to the product

ρ× ρ∗ → ∧p (T ∗ (D))

and in coordinates given byr = uςyς , with coordinates
(
Xi, yς

)
for

Y.

Let us choose a linear mapB : U → π2,∗ (V (X )), then one derives
the system

ẋα = vα
H =

(

Jαβ −Rαβ
)

δβH +Bα
ς u

ς

yς = Bα
ς δαH ,
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PDE (19)
as well as
∫

D
j (v) (HdX) = −

∫

D
δα (H)Rαβδβ (H)
︸ ︷︷ ︸

≥0

dX +

∫

D
yςu

ςdX

+

∫

∂D
vα
(
∂i

αH
)
γidX̄ ≤

∫

D
yςu

ςdX .

Remark 1: One can replaceB by a differential operator.

Remark 2: Ports on the boundary can be introduced in a similar
manner.

H. Ennsbrunner, K. Schlacher:On the geometrical representation
and interconnection of infinite dimensional port controlled
Hamiltonian systems.To appear in the proceedings of CDC-ECC,
Sevilla, Spain 2005.
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PDE (20)
An alternative approach: One chooses finite dimensional vector
spacesU , Y = U∗.

Given a linear map

B : U → π2,∗ (V (X ))

and its dual
B∗ : π2,∗

0

(
∧1

p (T ∗ (X ))
)
→ Y ,

then one derives the system

ẋα = vα
H =

(

Jαβ −Rαβ
)

δβH +Bα
ς u

ς

yς =

∫

D
Bα

ς δαHdX .
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PDE (21)
An alternative: If there exists functionsHς ∈ C

∞ (X ), such that

Bα
σ = −JαβδβHς , RαβδβHς = 0 , δβ (Hς) J

αβδβHς = 0

is met, then one can rewrite the system as

ẋα = vα
H =

(

Jαβ − Rαβ
)

δβ (H −Hςu
ς) ,

yς = vH (Hς) .

Remark: Often one chooses the outputYς = Hς instead ofyς .
Furthermore,

yς =
d

dt
Yς

is met along solutions of the system.
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PDE (22)
Remark: IfHς ∈ C

∞ (J (X )) is met, then the input mapB is
already a differential operator because of

Jαβδβ (Hςu
ς) = Jαβ

(

∂α (Hς)u
ς +

∑

I

(−1)#I
dI

(

∂I
α (Hς)u

ς
)
)

,

wheredi is extended byuς
I+1i

∂I
σ.
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Coordinaten transformations, PDE
The structure of a PCHD system is invariant with respect to bundle
isomorphism(ψ,ϕ) of the type

X̄ ī = ψī (x)

x̄ᾱ = ϕᾱ (X,x) .

One gets

H̄ = H0 ◦ j (ψ,ϕ)−1

J̄ ᾱβ̄ =
(

∂αϕ
ᾱJαβ∂βϕ

β̄
)

◦ j2 (ψ,ϕ)−1

R̄ᾱβ̄ =
(

∂αϕ
ᾱRαβ∂βϕ

β̄
)

◦ j2 (ψ,ϕ)−1
,

wherej (ψ,ϕ), j2 (ψ,ϕ) denote the prolongations of(ψ,ϕ) to J (π),
J2 (π).
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K.trans. PDE (2)
Remark: E.g.j (ψ,ϕ) is given by

x̄ᾱ
1ī
∂iψ

ī = diϕ
ᾱ .

Input and output transformation according to

ūς̄ = M ς̄
ς (uς + f ς)

ȳς̄ = M̄ ς
ς̄

(
yς + δα

(
Hf

)
Bα

ς

)
, M ς̄

σM̄
σ
ς = δς̄

ς

with M ς̄
ς , f

ς ∈ C∞
(
J2 (X )

)
, provided that there exist a function

Hf ∈ C
∞
(
J2 (X )

)
, which meets
(

Jαβ − Rαβ
)

δβHf +Bα
ς f

ς = 0 .
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K.trans. PDE (3)
Remark: Take into account, that the kernel ofδ is non-trivial.

The input matrixB transforms as

B̄ᾱ
ς̄ =

(
∂αϕ

ᾱBα
ς M̄

ς
ς̄

)
◦ j2 (ψ,ϕ)−1

.

Remark 1: Inputs and outputs are transformed in an affine manner.

Remark 2: Given a solutionHf for f = 0, then the choiceH +Hf

leads to the same evolutionary equations, but may change the
boundary conditions.
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D-Control, PDE
Damping injection: One connects the system

ẋα = vα
H =

(

Jαβ −Rαβ
)

δβH +Bα
ς u

ς

yς = Bα
ς δαH ,

with
uς = −ỹς + vς , ũς = yς , ỹς = Dςτ ũτ ,

C∞ (D)m×m ∋ D ≥ 0 and derives

ẋα =
(

Jαβ − Rαβ
)

δβH +Bα
ς (−Dςτyτ + ūς)

=
(

Jαβ − Rαβ − Bα
ς D

ςτBβ
τ

)

δβH +Bα
ς ū

ς .
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D, PDE (2)
Damping injection on the boundary: Let us introduce ports on∂D

such that
vα
(
∂i

αH
)
γi = ŷς̂ û

ς̂ ,

ς̂ = 1, . . . , m̂ is met, then the choice

ûς̂ = −D̂ς̂ τ̂ ŷτ̂

with C∞ (D)m̂×m̂ ∋ D ≥ 0 leads to
∫

∂D
vα
(
∂i

αH
)
γidX̄ = −

∫

∂D
ŷς̂D̂

ς̂ τ̂ ŷτ̂dX̄ ≤ 0 .
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P/I-Control, PDE
Connect the system

ẋα =
(

Jαβ − Rαβ
)

δβH +Bα
ς u

ς

yς = Bα
ς ∂αH

by
uς = −ỹς + vς , ũς = yς

with the controller

˙̃xς = ũς

ỹς = ∂ςH̃ = δςH̃ = Pςτ x̃
τ

with J̃ = 0, R̃ = 0, H̃ (x̃) = 1
2 x̃

ςPςτ x̃
τ , C∞ (D)m×m ∋ P ≥ 0, then

one gets
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P/I, PDE (2)

ẋα =
(

Jαβ − Rαβ
)

δβH −B
α
ς ∂

ςH̃ +Bα
ς v

ς

˙̃xς = Bα
ς δαH .

Provided thatJαβδβ (H) ∂αYς = yς = Bα
ς δαH and

Rαβδβ (H) ∂αYς = 0 , Bα
υ ∂αYς = 0 , Jαβδβ (Hτ ) ∂αYς = 0

is met, then the transformation

x̄α = xα

¯̃xς = x̃ς − Yς (X,x)
¯̃
H = H̃ (¯̃x+ Y )

Mathematical Description and Modelling of Piezoelectric Systems – p.47/58



P/I, PDE (3)
leads to

˙̄xα =
(

Jαβ −Rαβ
)

∂β (H+)− Bα
ς P

ςτ (¯̃xτ + Yτ ) + Bα
ς v

ς

˙̃̄xς = 0

or

˙̄xα =
(

Jαβ − Rαβ
)

∂β

(

H + (¯̃xς + Yς)
P ςτ

2
(¯̃xτ + Yτ )

)

+ Bα
ς v

ς .

Remark: P/I-design for a boundary control is analogous.
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Etc. PDE
H2-Control andH∞-control are extensible to the PDE case.

Controller design with Casimirs:

A. Macchelli, A. van der Schaft, C. Melchiorri:Control by
interconnection for distributed port Hamiltonian systems.
Proceedings: IFAC World Congress, Prague, 2005.

State feedback, simple or IDA-PBC, can be extended to the PDE
case.

In certain cases the controller can be any passive system.

Open problem: A simple and straightforward stability proofis
missing.
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Summary PDE
The approach is based on

lumped parameter distributed parameter

H ∈ C (X ) HdX ∈ ∧0
p (T ∗ (D))

d : C (X )→ T ∗ (X )
δ : ∧0

p (T ∗ (X ))→ ∧1
p (T ∗ (X ))

ζ : ∧0
p (T ∗ (X ))→ ∧1

p−1T
∗ (i∗ (X ))

J,R : T ∗ (X )→ T (X ) J,R : ∧0
p (T ∗ (X ))→ V (X )

vH ∈ Γ (T (X )) vH ∈ Γ (V (X ))

B : U → T (X ) B : (U , ρ,D)→ V (X )

B∗ : T ∗ (X )→ Y = U∗ B∗ : ∧1
p (T ∗ (X ))→ Y = U∗
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Piezoelectric Systems
We consider the linear elastic and time invariant case only.

D manifold of the independent spatial coordinates
(
Xi
)
, i = 1, 2, 3,

which is the standard 3-dimensional Euclidean space.

The total manifold(X , π,D) is equipped with the local coordinates
(
Xi, xχ

)
, χ = 1 . . . 6 with x = (uα, pα) , α = 1, 2, 3, uα are the

displacements ,pα are the generalized momenta.

We assume, that there exists an energy functioneE,

d (eE + EαD
α) ∧ dX =

(

σαβdεαβ + EαdDα
)

∧ dX

=
(

σαβdεαβ + d (EαDα)−DαdEα

)

∧ dX

with the stress

σ = σαβ∂α ⊗ ∂β , σαβ = σβα ,
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Piezo (2)
the strain

ε = εαβdxα ⊗ dxβ , 2εαβ = uα
1β

+ u
β
1α
,

the electrical field strengthE = EαdXα and the electrical
displacementD = Dα∂α⌋dX.

The linearized constitutive equations are

σαβ = Cαβγδεγδ −G
αβγEγ

Dα = Gβγαεβγ + FαβEβ,

β, γ = 1, 2, 3 with Cαβγδ, Gαβγ , Fα ∈ C∞ (D).

Mathematical Description and Modelling of Piezoelectric Systems – p.52/58



Piezo (3)

If the integrability conditions areCαβγδ = Cβαγδ = Cαβδγ = Cγδαβ,
Gαβγ = Gβαγ, Fαβ = F βα are met, we get the densityeEdX,

eEdX =

(
1

2
εαβC

αβγδεγδ −G
αβγEγεαβ −

1

2
FαβEαEβ

)

dX .

With the kinetic energy densityeKdX,

eKdX =
1

2ρ
pαδ

αβpβdX ,

with ρ ∈ C∞ (D), we derive the Hamiltonian densityHdX of the
free system,

HdX =

(

ek +
1

2
εαβC

αβγδεγδ

)

dX .
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Piezo (4)
If one choosesEγ as the control input, then the Hamiltonian
density of the plant is

(

H −GαβγεαβEγ

)

dX ,

and we derive the evolutionary equations as

u̇α = δαH =
1

ρ
pα

ṗα = −δαH = di

(

εγδC
αiγδ −GαiγEγ

)

with J , R,

J =

[

0 I3x3

−I3x3 0

]

, R = 0 .

Mathematical Description and Modelling of Piezoelectric Systems – p.54/58



Piezo (5)
The collocated output is

yγ = di

(
1

ρ
pαG

αiγ

)

.

Of special interest is the case, where the electrical field strengthE
has a potentialU ςΦς , or

E = U ςdhΦς , Φς ∈ C
∞ (Jn (X ))

is met.

Let us choose the voltagesU ς , ς = 1, . . . ,m as inputs, then the
Hamiltonian density is given by

(

H −Gαβγεαβdγ (Φς)U
ς
)

dX = (H −HςU
ς) dX .
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Piezo (5)
Let the the Hamiltonian density be is given by

(

H −HςU
ς − Ĥς d̂

ς
)

dX

with the disturbancêdς .

Actuator shaping: How must we design the actuator, such thatit
acts in the same manner on the structure like the disturbances?

Answer: The relation

δ
((

Hτa
τ
ς − Ĥς

)

dX
)

= 0

must be met foraτ
ς ∈ R. Furthermore, one has to add suitable

boundary condition.

Mathematical Description and Modelling of Piezoelectric Systems – p.56/58



Conclusions
• PCHD-systems have turned out to be a very useful tool for the

analysis and design in the ODE case.
• The extension of the approach to the PDE case is not unique at

all.
• The presented approach works well for piezoelectric systems.
• Temperature effects lie outside the presented framework, but

they can be taken into account by a nonlinear approach.
• Several control schemes like D- or PD-control can be adopted

in a more or less straightforward manner, others likeH2- or
H∞-control can be extended under certain circumstances.
Also state feedback design approaches like IDA-PBC need
further investigations concerning the implementation.
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. . .

Thank you for attending.
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