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Surface Acoustive Wave (SAW) Filters

are piezoelectric devices used for frequency filtering in cell phones, tv-sets, ...

Basically the device consists of

• piezoelectric substrate

• sender and receiver comb of electrodes on substrate surface

Sender and receiver consist in general of > 1000 periodically arranged electrodes
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Surface wave propagation and periodically arranged electrodes

Surface acoustic waves:
propagating along surface, amplitude negliable within depth of a few wavelengths.

Periodically arranged electrodes: partial reflection of propagating surface waves.
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Surface wave propagation and periodically arranged electrodes

Surface acoustic waves:
propagating along surface, amplitude negliable within depth of a few wavelengths.

Periodically arranged electrodes: partial reflection of propagating surface waves.

If period p of cell is half the wavelength, i.e. λ = 2.p, the reflected parts are in phase.

→ Constructive interference of reflected waves

→ Impedes the propagation of the surface wave

→ Excitation-frequency not in output signal

Frequency domain splitted in stop-bands and pass-bands → frequency-filtering
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Wave propagation in periodic geometries

We assume time-harmonic wave excitation:

u(x, t) = eiωtu(x)

Due to Floquet-Bloch Theorem (later) waves propagating in infinite 1D-periodically pertubed
geometries are quasi-periodic, i.e.

u(x, t) = up(x) e(α+iβ)x eiωt

with up(., .) and
α · p ... attenuation of wave per cell of length p,
β · p ... phase shift of wave per cell,
up(., .) ... p-periodic field in x1.

EVPs in SAW-Filter Simulations Page 5



The Diagram of Dispersion

u(x, t) = up(x) e(α+iβ)x eiωt

Connection between frequency ω and complex propagations constant α + iβ ?
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The Diagram of Dispersion

u(x, t) = up(x) e(α+iβ)x eiωt

Connection between frequency ω and complex propagations constant α + iβ ?

TASK: Compute all modes of wave propagation i.e. get the complete dispersion context.
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Mathematical Modeling

Three main steps in mathemtical modeling:

• piezoelectric coupled field equations

• infinite structure with periodic pertubations
→ Floquet-Bloch theory

• truncation of the computation domain in y-direction (depth of piezoelectric substrate)
volume wave radiation
→ non-reflecting boundary conditions for piezoelectric equations
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Piezoelectric Equations (1)

Linear coupling of mechanical and electrostatic field describing direct and indirect piezoelectric effect.

1. Mechanical field equations with displacement u in Rd, d = 2, 3

Newton’s law: divx T = ρ∂2u
∂t2

geometric property: Bu = S = 1
2(∇

T
x u +∇xu)

2. Electrical field equations

Maxwell’s equations:
electric potential: ∇× E = 0 → E = −∇ Φ
insulating material: divxD = qfree = 0
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Piezoelectric Equations (1)

Linear coupling of mechanical and electrostatic field describing direct and indirect piezoelectric effect.

1. Mechanical field equations with displacement u in Rd, d = 2, 3

Newton’s law: divx T = ρ∂2u
∂t2

geometric property: Bu = S = 1
2(∇

T
x u +∇xu)

2. Electrical field equations

Maxwell’s equations:
electric potential: ∇× E = 0 → E = −∇ Φ
insulating material: divxD = qfree = 0

3. Piezoelectric coupling

Linear coupling of mechanical strain S and electric field E
T = cS − eTE

D = eS + εE

Remarks:

Piezoelectric materials are anisitropic (45 material coefficients: in general 10 independent)

for d = 3 we assume plane strain (∂z = 0)
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Piezoelectric Equations (2)

Variational formulation of piezoelectric saddle point problem∫
Ω
(Bv)T : cBu− ω2ρ vTu dx +

∫
Ω
(Bv)T : eT∇Φ dx = f1 ∀ v ∈ (H1(Ω))3∫

Ω
(∇Ψ)T : eBu dx −

∫
Ω
(∇Ψ)T ε∇Φ dx = f2 ∀Ψ ∈ H1(Ω)

with strains Bu := 1
2((∇u)T +∇u)
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Piezoelectric Equations (2)

Variational formulation of piezoelectric saddle point problem∫
Ω
(Bv)T : cBu− ω2ρ vTu dx +

∫
Ω
(Bv)T : eT∇Φ dx = f1 ∀ v ∈ (H1(Ω))3∫

Ω
(∇Ψ)T : eBu dx −

∫
Ω
(∇Ψ)T ε∇Φ dx = f2 ∀Ψ ∈ H1(Ω)

with strains Bu := 1
2((∇u)T +∇u)

The according FE-system of the piezoelectric problem is of the form[ (
Kuu KuΦ

KT
uΦ −KΦΦ

)
− ω2

(
Muu 0

0 0

) ](
u
Φ

)
= fh

i.e. indefinite sitffness matrix K and positive semidefine mass matrix M .
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Piezoelectric Equations (2)

Variational formulation of piezoelectric saddle point problem∫
Ω
(Bv)T : cBu− ω2ρ vTu dx +

∫
Ω
(Bv)T : eT∇Φ dx = f1 ∀ v ∈ (H1(Ω))3∫

Ω
(∇Ψ)T : eBu dx −

∫
Ω
(∇Ψ)T ε∇Φ dx = f2 ∀Ψ ∈ H1(Ω)

with strains Bu := 1
2((∇u)T +∇u)

The according FE-system of the piezoelectric problem is of the form[ (
Kuu KuΦ

KT
uΦ −KΦΦ

)
− ω2

(
Muu 0

0 0

) ](
u
Φ

)
= fh

i.e. indefinite sitffness matrix K and positive semidefine mass matrix M .

Remark: Scaling properties of stiffness matrix due to material coefficients:

Kuu ≈ O(1010)
KΦΦ ≈ O(10−10)
KuΦ ≈ O(1).
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The Periodic Problem - Floquet-Bloch Theory

= Spectral theory of periodic partial differential operators
Let L be a partial differential operator, which is p-periodic in x1 and view the eigenvalue problem

Lu = λu in Ωstrip

+ BC on bottom and top
no radiation conditios as x1 → ±∞
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The Periodic Problem - Floquet-Bloch Theory

= Spectral theory of periodic partial differential operators
Let L be a partial differential operator, which is p-periodic in x1 and view the eigenvalue problem

Lu = λu in Ωstrip

+ BC on bottom and top
no radiation conditios as x1 → ±∞

Floquet-Bloch theorem:
The eigenfunctions are quasi-periodic Bloch waves, i.e. of the form

u(x1, x2) = up(x1, x2)e(α+iβ)x1,

with in x1 p-periodic function up(x1 + p, x2) = up(x1, x2)
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The Periodic Problem - Floquet-Bloch Theory

= Spectral theory of periodic partial differential operators
Let L be a partial differential operator, which is p-periodic in x1 and view the eigenvalue problem

Lu = λu in Ωstrip

+ BC on bottom and top
no radiation conditios as x1 → ±∞

Floquet-Bloch theorem:
The eigenfunctions are quasi-periodic Bloch waves, i.e. of the form

u(x1, x2) = up(x1, x2)e(α+iβ)x1,

with in x1 p-periodic function up(x1 + p, x2) = up(x1, x2)

Implies that solutions of infinite periodic strip are governed by

• solutions up(x) on a unit-cell Ωp,

• complex propagation constants α + iβ.
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The unit cell problem

−div(c 1
2((∇u)T +∇u) + eT ∇Φ) = ω2ρu in ΩP

−div(e 1
2((∇u)T +∇u)− ε Φ) = 0 in ΩP

T.n = 0, D.n = 0 on ΓN

Φ = 0 on ΓEl
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The unit cell problem

−div(c 1
2((∇u)T +∇u) + eT ∇Φ) = ω2ρu in ΩP

−div(e 1
2((∇u)T +∇u)− ε Φ) = 0 in ΩP

T.n = 0, D.n = 0 on ΓN

Φ = 0 on ΓEl

Quasi-periodic boundary conditions on ΓL,ΓR

ũ(p, x2) = γ ũ(0, x2)
∂ũ

∂Nr
(p, x2) = −γ ∂ũ

∂Nl
(0, x2)

with ũ = (u1, u2, u3,Φ)

with propagation parameter γ := e(α+iβ)p.
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The unit cell problem

−div(c 1
2((∇u)T +∇u) + eT ∇Φ) = ω2ρu in ΩP

−div(e 1
2((∇u)T +∇u)− ε Φ) = 0 in ΩP

T.n = 0, D.n = 0 on ΓN

Φ = 0 on ΓEl

Quasi-periodic boundary conditions on ΓL,ΓR

ũ(p, x2) = γ ũ(0, x2)
∂ũ

∂Nr
(p, x2) = −γ ∂ũ

∂Nl
(0, x2)

with ũ = (u1, u2, u3,Φ)

with propagation parameter γ := e(α+iβ)p.

Absorbing BCs on bottom
∂ũ

∂N
(x1, y) = iRũ(x1, y) on Γbot
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The effect of absorbing BCs on Γbot

Source problem (K − ω2M)u = q with 4 electrodes with given alternating potential
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The effect of absorbing BCs on Γbot

Source problem (K − ω2M)u = q with 4 electrodes with given alternating potential

u = 0 on Γbot
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The effect of absorbing BCs on Γbot

Source problem (K − ω2M)u = q with 4 electrodes with given alternating potential

u = 0 on Γbot
T.n = 0, D.n = 0 on Γbot
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The effect of absorbing BCs on Γbot

Source problem (K − ω2M)u = q with 4 electrodes with given alternating potential

u = 0 on Γbot
T.n = 0, D.n = 0 on Γbot

T.n = iRTu, D.n = iRDu on Γbot
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Mathematical Modeling

Three main points in mathemtical modelling:

• piezoelectric coupled field equations
→ indefinte system matrix (saddle point problem)

• infinite structure with periodic pertubations
→ Floquet-Bloch theory
→ parameter-dependent eigenproblem on unit-cell

• truncation of the computation domain in y-direction (depth of piezoelectric substrate)
volume wave radiation
→ non-reflecting boundary conditions for piezoelectric equations
→ complex-valued system matrices

⇒ Piezoelectric quasi-periodic unit-cell problem (γ = e(α+iβ).p, ω)
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Lagrange-parameter formulation of unit-cell problem

For the quasi-periodic problem

a(u, v) + i ω c(u, v)− ω2 m(u, v) +
∫
ΓL

∂u
∂N · v ds +

∫
ΓR

∂u
∂N · v ds = 0 ∀ v ∈

[
H1(Ω)

]4
ur = γul and ∂ur

∂Nr
= −γ ∂ul

∂Nl
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Lagrange-parameter formulation of unit-cell problem

For the quasi-periodic problem

a(u, v) + i ω c(u, v)− ω2 m(u, v) +
∫
ΓL

∂u
∂N · v ds +

∫
ΓR

∂u
∂N · v ds = 0 ∀ v ∈

[
H1(Ω)

]4
ur = γul and ∂ur

∂Nr
= −γ ∂ul

∂Nl

we introduce

• Lagrange-parameter λ = ∂u
∂Nl

∈
[
H−1

2(Γ)
]4

• Trace-Operators for left/right boundary trl :
[
H1(Ω)

]4 →
[
H

1
2(Γ)

]4
u → ul

, trr

and the adjoints tr∗l , tr∗r .
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Lagrange-parameter formulation of unit-cell problem

For the quasi-periodic problem

a(u, v) + i ω c(u, v)− ω2 m(u, v) +
∫
ΓL

∂u
∂N · v ds +

∫
ΓR

∂u
∂N · v ds = 0 ∀ v ∈

[
H1(Ω)

]4
ur = γul and ∂ur

∂Nr
= −γ ∂ul

∂Nl

we introduce

• Lagrange-parameter λ = ∂u
∂Nl

∈
[
H−1

2(Γ)
]4

• Trace-Operators for left/right boundary trl :
[
H1(Ω)

]4 →
[
H

1
2(Γ)

]4
u → ul

, trr

and the adjoints tr∗l , tr∗r .

and get a mixed variational formulation on the unit cell

Find (u, λ) in (H1(Ω),H−1
2(Γ)) such that

a(u, v) + i ω c(u, v)− ω2 m(u, v) +
∫
Γ
(trlv − γ trrv) λds = 0 ∀ v ∈

[
H1(Ω)

]4
∫
Γ
(trru− γ trlu)µds = 0 ∀µ ∈

[
H−1

2(Γ)
]4
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How to formulate the parameter-dependent eigenvalue problem ?

for the computation of the dispersion diagram

1. The more natural approach

Computation of the eigenfrequencies ω according to the given parameter γ

Problem: How to choose the input parameter γ since it depends on two parameters γ = eα+iβ ?

→ useful method for computing only pass-bands, γ = eiβ (unit-circle)

2. Alternative: Frequency-dependent eigenvalue problem

Compute for a given frequency ω the according complex propagation-constants γ.
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The frequency-dependent eigenvalue problem

For given parameters ω2 search for (γ, (u, λ)T ) such that

k(ω)(u,v)︷ ︸︸ ︷
a(u, v) + i ω c(u, v)− ω2m(u, v) + < (tr∗l − γtr∗r)λ, v > = 0 ∀ v ∈

[
H1(Ω)

]4
< (trr − γtrl)u, µ > = 0 ∀µ ∈

[
H−0.5(Γ)

]4
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The frequency-dependent eigenvalue problem

For given parameters ω2 search for (γ, (u, λ)T ) such that

k(ω)(u,v)︷ ︸︸ ︷
a(u, v) + i ω c(u, v)− ω2m(u, v) + < (tr∗l − γtr∗r)λ, v > = 0 ∀ v ∈

[
H1(Ω)

]4
< (trr − γtrl)u, µ > = 0 ∀µ ∈

[
H−0.5(Γ)

]4
The FE-discretiszed problem is of the form

(
K(ω) Tr T

l

Trr 0

)(
uh

λh

)
= γ

(
0 Tr T

r

Trl 0

)(
uh

λh

)

with K := K + iωC − ω2M complex-symmetric and indefinite (of saddle point structure).

General choice pf FE-space for dual space H−0.5(Γ) :
→ Mortar Finite Elements [Wohlmuth,Maday].
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The frequency-dependent eigenvalue problem (2)

If we use periodic FE-meshes (adaption of mesh-generator), we achieve Trl = Il, T rr = Ir.

Splitting in inner, left and right boundary nodes, we get
Kii K

T

li K
T

ri 0
Kli Kll 0 I
Kri 0 Krr 0
0 0 I 0




ui

ul

ur

λ

 = γ


0 0 0 0
0 0 0 0
0 0 0 I
0 I 0 0




ui

ul

ur

λ

 .

dim( A ) = ni + 3.nl

dim( ker B ) = ni + nl
⇒ 2.nl finite

= ni − nl infinite
eigenvalues
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The frequency-dependent eigenvalue problem (2)

If we use periodic FE-meshes (adaption of mesh-generator), we achieve Trl = Il, T rr = Ir.

Splitting in inner, left and right boundary nodes, we get
Kii K

T

li K
T

ri 0
Kli Kll 0 I
Kri 0 Krr 0
0 0 I 0




ui

ul

ur

λ

 = γ


0 0 0 0
0 0 0 0
0 0 0 I
0 I 0 0




ui

ul

ur

λ

 .

dim( A ) = ni + 3.nl

dim( ker B ) = ni + nl
⇒ 2.nl finite

= ni − nl infinite
eigenvalues

What eigenvalues are we interested in ?

pass-band α = 0, β.p ∈ [0, 2 π]
stop-band |α| 6= 0 small , β.p = π
volume-wave interaction |α| small , β.p ∈ [0, 2 π]

We are interested in eigenvalues γ = e(α+iβ)p on and near the unit-circle, i.e. |γ| ≈ 1.
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Inner-Node-Matrix Method(1)

Reduce the problem by eliminating some infinite eigenvalues

• Eliminate ur, since last line tells ur = γul

• Eliminate λ by λ = −Kliui −Kllul

EVPs in SAW-Filter Simulations Page 18



Inner-Node-Matrix Method(1)

Reduce the problem by eliminating some infinite eigenvalues

• Eliminate ur, since last line tells ur = γul

• Eliminate λ by λ = −Kliui −Kllul

we get the reduced generalized linear (non-hermitian) eigenvalue problem(
Kii Kil

K
T

ir 0

)(
ui

ul

)
= γ

(
0 −Kir

−K
T

il −Kll −Krr

)(
ui

ul

)
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Inner-Node-Matrix Method(1)

Reduce the problem by eliminating some infinite eigenvalues

• Eliminate ur, since last line tells ur = γul

• Eliminate λ by λ = −Kliui −Kllul

we get the reduced generalized linear (non-hermitian) eigenvalue problem(
Kii Kil

K
T

ir 0

)(
ui

ul

)
= γ

(
0 −Kir

−K
T

il −Kll −Krr

)(
ui

ul

)

By spectral-transformation we achieve an eigenvalue problem with pencil (A− λ̃B) where B is regular
and complex symmetric(

0 −Kir

−K
T

il −Kll −Krr

)(
ui

ul

)
=

1
γ − 1

(
Kii Kil + Kir

K
T

ir + K
T

il Kll + Krr

)(
ui

ul

)
.

This EVP is solved by non-hermitian Arnoldi solver (ARPACK) requiring sparse Cholesky-factorization for
B−1v.

EVPs in SAW-Filter Simulations Page 18



Schur-Complement Method

1. Start with the partially reduced system(
Kii Kil

K
T

ir 0

)(
ui

ul

)
= γ

(
0 −Kir

−K
T

il −Kll −Krr

)(
ui

ul

)

2. Eliminate the infinite eigenvalues by forming the Schur-complement according to the inner nodes
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Schur-Complement Method

1. Start with the partially reduced system(
Kii Kil

K
T

ir 0

)(
ui

ul

)
= γ

(
0 −Kir

−K
T

il −Kll −Krr

)(
ui

ul

)

2. Eliminate the infinite eigenvalues by forming the Schur-complement according to the inner nodes

Quadratic eigenvalue problem in ul (nodes on ΓL)

Find eigenvalues γ ∈ C with |γ| ≈ 1

γ2Slrul + γ(Sll + Srr)ul + S T
lr ul = 0
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Schur-Complement Method

1. Start with the partially reduced system(
Kii Kil

K
T

ir 0

)(
ui

ul

)
= γ

(
0 −Kir

−K
T

il −Kll −Krr

)(
ui

ul

)

2. Eliminate the infinite eigenvalues by forming the Schur-complement according to the inner nodes

Quadratic eigenvalue problem in ul (nodes on ΓL)

Find eigenvalues γ ∈ C with |γ| ≈ 1

γ2Slrul + γ(Sll + Srr)ul + S T
lr ul = 0

• dense, but small-dimensioned (]{dofs on left boundary})

• linearization to a generalized non-hermitian EVP (small-dimensioned)

• Application of direct QZ-Solver (LAPACK)
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On the special structure of the Eigenvalue problem

Since the Schur-complement is symmetric the reduced Schur-Complement eigenvalue problem

γ2Slrul + γ(Sll + Srr)ul + S T
lr ul = 0

is of the form
γ2Av + γBv + ATv = 0

with B = B T complex-symmetric.

If (γ, v) is an eigen-pair then (1/γ, vT ) is a left eigenpair.
I.e. the reduced problem is symplectic.

⇒ one can apply structure-preserving methods [Mehrmann]
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Requirements in each frequency step (ω)

for the Inner-Node-Matrix method

1. Large-dimensioned eigenvalue problem

2. Generalized eigenvalue problem”Ax = λ̃Bx”
with Cholesky factorization of sparse matrix B

3. Arnoldi sovler for (generalized) non-hermitian EVP (using only matrix-vector products)
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Requirements in each frequency step (ω)

for the Inner-Node-Matrix method

1. Large-dimensioned eigenvalue problem

2. Generalized eigenvalue problem”Ax = λ̃Bx”
with Cholesky factorization of sparse matrix B

3. Arnoldi sovler for (generalized) non-hermitian EVP (using only matrix-vector products)

for the Schur-Complement method

1. Evaluation of the Schur-Complement blocks via sparse Cholesky factorization

2. Small-dimensioned linear eigenvalue problems (2.]{dofs on left bd. }))

3. Direct solver computes all eigenvalues
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Results - Effect of periodic pertubations (1)

Elastic plane strain problem without/with periodic pertubation
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Results - Effect of periodic pertubations (1)

Elastic plane strain problem without/with periodic pertubation
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Real life problem - GSM-filter structure

Simulated diagram of dispersion for GSM-filter structure:
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Computational times for simulating piezoelectric problem:
500 frequency steps by 6972 unknowns last ≈ 8.5h.
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Using higher-order finite elements

hp-methods: In domains, where function is smooth: coarse elements of higher order.
Resolve singularities by h-refinement.
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Using higher-order finite elements

hp-methods: In domains, where function is smooth: coarse elements of higher order.
Resolve singularities by h-refinement.

• Singularities at cornerpoints: geometric h-refinement (→ trigs,quads)

• Adopt periodic BC’s to hierarchical high-order elements (→ identify periodic
vertex and edge dofs)
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Higher-order finite elements: TV-Filter Structure

8e+08

8.2e+08

8.4e+08

8.6e+08

8.8e+08

9e+08

9.2e+08

9.4e+08

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

fr
e

q
u

e
n

c
y

alpha.p

Attenuation for LiNbO3-Filter

8e+08

8.2e+08

8.4e+08

8.6e+08

8.8e+08

9e+08

9.2e+08

9.4e+08

2.6 2.8 3 3.2 3.4 3.6 3.8

fr
e

q
u

e
n

c
y

beta.p

Phase for LiNbO3-Filter

Compute complex propagation parameters (dispersion context) around 1st stop-band of LiNb-structure:
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Higher-order finite elements: TV-Filter Structure
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Phase for LiNbO3-Filter

Compute complex propagation parameters (dispersion context) around 1st stop-band of LiNb-structure:

p hp-level elements dofs time per frequ 500 steps
1 0 3450 4× 1817 42 s ≈ 6 h

1,..,3 2 59 4× 355 2.8 s ≈ 23 min
1,..,4 3 69 4× 667 9.8 s ≈ 1.4 h

The accuracy by using 2 hp-levels is competitive with h-version with 3450 elements !
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Conclusions

• Mathematical model for periodic piezoelectric structures

• Frequency-dependent eigenvalue problem (2 solution strategies)

• Acceleration by using hp-methods

Ongoing Work

1. Improve non-reflecting boundary condition → Perfectly Matched Layers for Piezo

2. Improve Eigenvalue solver:
e.g. exploit ”symplectic” structure of EVP: structure preserving methods
for 2D simulation: Schur-Complement Method is efficient
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