Control of Bending Vibrations within Subdomains of Thin Plates by Piezoelectric Actuation

MICHAEL KROMMER

TECHNICAL MECHANICS

Mechatronics Group Johannes Kepler University Linz

Johann Radon Institute for Computational and Applied Mathematics

DIRECT and INVERSE PROBLEMS in PIEZOELECTRICITY Miniworkshop

Linz, Austria October 6th, 2005

Support from the Linz Center of Mechatronics is gratefully acknowledged.

- Krommer, M., Varadan, V.V.: Control of Bending Vibrations within Sub Domains of Thin plates; Part I: Theory and Exact Solution. Journal of Applied Mechanics 72(3), 2005, pp. 432-444.
- Krommer, M.: The Significance of Non-Local Constitutive Relations for Composite Thin Plates Including Piezoelastic Layers with Prescribed Electric Charge. Smart Materials and Structures 12, 2003, pp. 318-330.
- Krommer, M., Varadan, V.V.: Control of Bending Vibrations within Sub Domains of Thin plates; Part II: Piezoelectric Actuation and Approximate Solution. Scheduled for publication January 2006: Journal of Applied Mechanics.

Control of Bending Vibrations within Subdomains of Thin Plates by Piezoelectric Actuation

PART II

PART I

PART I: Bending Vibrations of Thin Plates

 $A: \quad div(div\mathbf{M}) + p_z = P\ddot{w}_0$

 $P: \quad (\mathbf{Mn} \cdot \mathbf{s}) \delta w_0 \Big]_{P^+}^{P^-} = 0$

$$C: [div\mathbf{M}\cdot\mathbf{n} + \nabla(\mathbf{M}\mathbf{n}\cdot\mathbf{s})\cdot\mathbf{s} - \overline{q}]\delta w_0 = 0, \quad (\mathbf{M}\mathbf{n}\cdot\mathbf{n} - \overline{m})(\nabla\delta w_0\cdot\mathbf{n}) = 0$$

Mechatronics Group Johannes Kepler University Linz

M ... bending moment tensor **M**^{*} ... self moment tensor $\mathbf{\kappa} - \frac{1}{2} \Big[\nabla \nabla w_0 + (\nabla \nabla w_0)^T \Big]$... curvature tensor w_0 ... deflection p_z ... transversee force loading

$$\int_{A} \hat{p}_{z}^{d} \hat{w}_{0} dA - \int_{C_{\psi}} \left(\hat{\mathbf{M}}^{d} \mathbf{n} \cdot \mathbf{n} \right) \hat{\overline{\psi}} dC + \int_{C_{w}} \left[div \hat{\mathbf{M}}^{d} \cdot \mathbf{n} + \nabla \left(\hat{\mathbf{M}}^{d} \mathbf{n} \cdot \mathbf{s} \right) \cdot \mathbf{s} \right] \hat{\overline{w}}_{0} dC =$$

$$= \int_{A} \hat{\overline{p}}_{z} \hat{w}_{0}^{d} dA + \int_{A} \hat{\mathbf{M}}^{*} : \hat{\mathbf{\kappa}}^{d} dA - \int_{C_{m}} \hat{\overline{m}} \left(\nabla \hat{w}_{0}^{d} \cdot \mathbf{n} \right) dC + \int_{C_{q}} \hat{\overline{q}} \hat{w}_{0}^{d} dC + \sum_{i} \left[\hat{\mathbf{M}}^{d} \mathbf{n} \cdot \mathbf{s} \hat{w}_{0} \right]_{P_{wi}^{+}}^{P_{wi}^{-}}$$

Mechatronics Group

Johannes Kepler University Linz

• $\hat{\overline{p}}_z = \hat{p}_z + P(sw_0(t=0) + \dot{w}_0(t=0))$... accounts for initial conditions

• "dummy" loading case: $\begin{cases} \text{homogenous initial conditions} \\ \text{homogenous kinematical and dynamical bc's} \\ \text{no self - moment applied: } \mathbf{M}^{*d} = \mathbf{0} \end{cases}$

$$\int_{A} \hat{p}_{z}^{d} \hat{w}_{0} dA - \int_{C_{\psi}} \left(\hat{\mathbf{M}}^{d} \mathbf{n} \cdot \mathbf{n} \right) \hat{\overline{\psi}} dC + \int_{C_{w}} \left[div \hat{\mathbf{M}}^{d} \cdot \mathbf{n} + \nabla \left(\hat{\mathbf{M}}^{d} \mathbf{n} \cdot \mathbf{s} \right) \cdot \mathbf{s} \right] \hat{\overline{w}}_{0} dC =$$

Mechatronics Group Johannes Kepler University Linz

$$= \int_{A} \hat{\overline{p}}_{z} \hat{w}_{0}^{d} dA + \int_{A} \hat{\mathbf{M}}^{*} : \hat{\mathbf{\kappa}}^{d} dA - \int_{C_{m}} \hat{\overline{m}} \left(\nabla \hat{w}_{0}^{d} \cdot \mathbf{n} \right) dC + \int_{C_{q}} \hat{\overline{q}} \hat{w}_{0}^{d} dC + \sum_{i} \left[\hat{\mathbf{M}}^{d} \mathbf{n} \cdot \mathbf{s} \hat{w}_{0} \right]_{P_{wi}^{+}}^{P_{wi}^{-}}$$

• kinematical bc's ...
$$\begin{cases} C = C_w \cup C_q, & C = C_\psi \cup C_m \\ C_w : w_0 = \overline{w}_0, & C_\psi : \nabla w_0 \cdot \mathbf{n} = \overline{\psi} \end{cases}$$

• C_w and C_{ψ} such that, if $\overline{w}_0 = 0$ and $\overline{\psi} = 0$, then no rigid body motion can occur!

• Decomposition of deflection,
$$w_0 = \vec{w}_0 + \vec{w}_0$$
, with:
$$\begin{cases} C_w : \vec{w}_0 = \vec{w}_0 \\ C_\psi : \nabla \vec{w}_0 \cdot \mathbf{n} = \vec{\psi} \end{cases}$$

$$\int_{A} \hat{p}_{z}^{d} \hat{\tilde{w}}_{0} dA = \int_{A} \hat{\tilde{p}}_{z} \hat{w}_{0}^{d} dA + \int_{A} \hat{\mathbf{M}}^{*} : \hat{\mathbf{\kappa}}^{d} dA - \int_{C_{m}} \hat{\tilde{m}} \left(\nabla \hat{w}_{0}^{d} \cdot \mathbf{n} \right) dC + \int_{C_{q}} \hat{\tilde{q}} \hat{w}_{0}^{d} dC$$

• A:
$$\hat{\tilde{p}}_z = \hat{p}_z + P(sw_0(t=0) + \dot{w}_0(t=0)) - Ps^2 \hat{\tilde{w}}_0 + div(div \hat{\mathbf{M}})$$

•
$$\begin{cases} C_m: \quad \hat{\tilde{m}} = \hat{\overline{m}} - \hat{\breve{\mathbf{M}}} \mathbf{n} \cdot \mathbf{n} \\ C_q: \quad \hat{\tilde{q}} = \hat{\overline{q}} - div \hat{\breve{\mathbf{M}}} \cdot \mathbf{n} - \nabla \left(\hat{\breve{\mathbf{M}}} \mathbf{n} \cdot \mathbf{s} \right) \cdot \mathbf{s} \end{cases} \text{ with } \breve{\mathbf{M}} = \mathbf{D}: \breve{\kappa}, \quad \breve{\kappa} = -\frac{1}{2} \left[\nabla \nabla \breve{w}_0 + \left(\nabla \nabla \breve{w}_0 \right)^T \right]$$

• statically admissible moment tensor **M**^{*p*}:

$$A: \quad div(div\mathbf{M}^{p}) + \tilde{p}_{z} = 0$$

$$C_{q}: \quad div\mathbf{M}^{p} \cdot \mathbf{n} + \nabla (\mathbf{M}^{p}\mathbf{n} \cdot \mathbf{s}) \cdot \mathbf{s} = \tilde{q}$$

$$C_{m}: \quad \mathbf{M}^{p}\mathbf{n} \cdot \mathbf{n} = \tilde{m}, \ \overline{P}_{i}: \quad \left[\mathbf{M}^{p}\mathbf{n} \cdot \mathbf{s}\right]_{\overline{P}_{i}^{+}}^{\overline{P}_{i}^{-}} = 0$$

$$\int_{0}^{t} \int_{A} p_{z}^{d}(\mathbf{x},\tau) \tilde{w}_{0}(\mathbf{x},t-\tau) dA d\tau = \int_{0}^{t} \int_{A} \left[\mathbf{M}^{p}(\mathbf{x},\tau) + \mathbf{M}^{*}(\mathbf{x},t-\tau) \right] : \mathbf{\kappa}^{d} dA d\tau$$

TECHNICAL MECHANICS

Mechatronics Group Johannes Kepler University Linz

Due to the arbitriness of p_z^d the deflection $\tilde{w}_0 = w_0 - \tilde{w}_0$ vanishes identically, if $\mathbf{M}^p + \mathbf{M}^* = \mathbf{0}$. Therefore, applying control by means of a self moment can be used to elliminate the bending motion \tilde{w}_0 . The motion \tilde{w}_0 , which we account to the non homogenous kinematical bc's is not elliminated.

Hence,
$$w_0 = \breve{w}_0$$
.

• statically admissible moment tensor $\mathbf{M}^{p} = m^{p}\mathbf{I}$: $\begin{cases} A: \quad \Delta m^{p} + \tilde{p}_{z} = 0\\ C_{q}: \quad \nabla m^{p} \cdot \mathbf{n} = \tilde{q}\\ C_{m}: \quad m^{p} = \tilde{m} \end{cases}$

 \rightarrow solution for \mathbf{M}^{p} exists, but may be non unique!

PART I: Subdomain control

• Boundary conditions for free body A: $C: \begin{cases} w_0 = \overline{w}_0, & \mathbf{Mn} \cdot \mathbf{n} = \overline{m} \\ div\mathbf{M} \cdot \mathbf{n} + \nabla(\mathbf{Mn} \cdot \mathbf{s}) \cdot \mathbf{s} = \overline{q}, & \nabla w_0 \cdot \mathbf{n} = \overline{\psi} \\ w_0 = \overline{w}_0, & \nabla w_0 \cdot \mathbf{n} = \overline{\psi} \end{cases}$

• Desired deflection \breve{w}_0 :

$$A_{sub}: \quad \breve{w}_0 = 0 , \quad C_{sub}: \quad \breve{w}_0 = 0 , \quad \nabla \breve{w}_0 \cdot \mathbf{n}_{sub} = 0$$
$$C: \quad \begin{cases} \breve{w}_0 = \overline{w}_0 \\ \nabla \breve{w}_0 \cdot \mathbf{n} = \overline{\psi} \\ \breve{w}_0 = \overline{w}_0 , \quad \nabla \breve{w}_0 \cdot \mathbf{n} = \overline{\psi} \end{cases}$$

• Statically admissible moment tensor:

$$A: \quad \Delta m^{p} + \tilde{p}_{z} = 0$$

$$C: \quad \begin{cases} m^{p} = \tilde{m} \\ \nabla m^{p} \cdot \mathbf{n} = \tilde{q} \\ no \text{ boundary conditions to be satisfied} \end{cases}$$

PART I: Axisymmetric bending of circular plates

Controlled domain

- Mechatronics Group
- Clamped circular plate:

$$p_z(r,\varphi,t) = p_0(t)$$

Johannes Kepler University Linz

• Boundary conditions for free subdomain $r \le R$: $w_0 = \overline{w}_0$, $\partial w_0 / \partial r = \overline{\psi}$

• Desired deflection \breve{w}_0 :

$$r \leq R_{sub} : \quad \overline{w}_0 = 0$$

$$R_{sub} \leq r \leq R : \quad \overline{w}_0 = C_1 + C_2 r^2 + C_3 r^4 + C_4 r^6 + C_5 r^8 + C_6 r^{10}$$

$$r = R_{sub} : \quad \overline{w}_0 = 0 , \quad \frac{\partial \overline{w}_0}{\partial r} = 0 \quad \text{and} \quad r = R : \quad \overline{w}_0 = \overline{w}_0 , \quad \frac{\partial \overline{w}_0}{\partial r} = \overline{\psi}$$

 \tilde{w}_0 is adjusted to the four conditions; hence four unknowns remain!

PART I: Axisymmetric bending of circular plates

• Statically admissible moment:

$$r \leq R: \quad \frac{1}{r} \frac{\partial m^{p}}{\partial r} + \frac{\partial^{2} m^{p}}{\partial r^{2}} + \tilde{p}_{0} = 0$$

$$r \leq R_{sub}: \quad \tilde{p}_{0} = p_{0} , \quad R_{sub} \leq r \leq R: \quad \tilde{p}_{0} = p_{0} - P \ddot{\breve{w}}_{0} - D \Delta \Delta \breve{w}_{0}$$

TECHNICAL MECHANICS

Mechatronics Group Johannes Kepler University Linz

No bc for m^p ; hence, one more unknown!

If $\mathbf{M}^* = -\mathbf{M}^p = -m^p \mathbf{I}$ then the motion for $r \leq R_{sub}$ vanishes;

for $R_{sub} \leq r \leq R$ the motion is \breve{w}_0 , as it has been specified in the series.

Five unknowns present in the solution!

 $\overline{w}_0, \overline{\psi}$, m^p is not unique, 2 constants from power series

- 2 from to be admissible
- 2 from post calculation: $\overline{w}_0, \overline{\psi}$ are deflection and slope of controlled plate at r = R
- 1 remains as additional degree of freedom

• Parameters:

$$D = 162.45 Nm$$
, $P = 8.1 kgm^{-2}$, $p_0(t) = P_0 e^{i\omega t}$, $P_0 = 100 Nm^{-2}$

TECHNICAL MECHANICS

- Geometry: $R_{tot} = 0.2m$, R = 0.04m, $R_{sub} = 0.03m$
- Natural frequencies: $f_1 = 182.0Hz$, $f_2 = 708.7Hz$, $f_3 = 1588Hz$

 $W_0(r,t) = W(r)e^{i\omega t}$, $\overline{W}_0(r,t) = \overline{W}_0(r)e^{i\omega t}$

$$D\Delta\Delta W(r) - P\omega^2 W(r) = \begin{cases} 0 \le r \le R_{sub} : = 0\\ R_{sub} \le r \le R : = -P\omega^2 \overline{W}_0 + D\Delta\Delta \overline{W}_0(r)\\ R \le r \le R_{tot} : = P_0 \end{cases}, r = R_{tot} : W = 0, \frac{\partial W}{\partial r} = 0$$

$$W(r=R)e^{i\omega t} = \overline{w}_0 = \overline{W}_0e^{i\omega t}, \quad \frac{\partial W}{\partial r}(r=R)e^{i\omega t} = \overline{\Psi} = \overline{\Psi}e^{i\omega t}$$

Mechatronics Group Johannes Kepler University Linz

Deflection and self-moment for clamped plate: $\omega = 2\pi 100 s^{-1}$

Mechatronics Group Johannes Kepler University Linz

Deflection and self-moment for clamped plate: $\omega = 2\pi 500 s^{-1}$

of Thin Plates by Piezoelectric Actuation

Mechatronics Group Johannes Kepler University Linz

Deflection and self-moment for clamped plate: $\omega = 2\pi 1000 s^{-1}$

PART I: Numerical results; control of alternative subdomains

TECHNICAL MECHANICS

PART I: Numerical results; control of alternative subdomains

Mechatronics Group Johannes Kepler University Linz

Deflection and self-moment for clamped plate: $\omega = 2\pi 1000 s^{-1}$

PART II: Governing equations; mechanical

 $\mathbf{M} = \sum_{k=1}^{N} \int_{z^{k-1}}^{z^{*}} \mathbf{\sigma}^{k} z dz , \quad P = \sum_{k=1}^{N} \int_{z^{k-1}}^{z^{*}} \rho^{k} dz$

 σ^k ... plane stress tensor

 ρ^k ... density

- A: $div(div\mathbf{M}) + p_z = P\ddot{w}_0$
- $C: \quad \left\lceil div \mathbf{M} \cdot \mathbf{n} + \nabla (\mathbf{M}\mathbf{n} \cdot \mathbf{s}) \cdot \mathbf{s} \overline{q} \right\rceil \delta w_0 = 0, \quad (\mathbf{M}\mathbf{n} \cdot \mathbf{n} \overline{m}) (\nabla \delta w_0 \cdot \mathbf{n}) = 0$

$$P: \quad (\mathbf{Mn} \cdot \mathbf{s}) \delta w_0]_{P^+}^{P^-} = 0$$

TECHNICAL MECHANICS

Mechatronics Group Johannes Kepler University Linz

reference surface

PART II: Constitutive relation; mechanical

Johannes Kepler University Linz

$$\boldsymbol{\sigma}^{k} = \mathbf{C}^{k} \boldsymbol{z} : \boldsymbol{\kappa} - \mathbf{e}^{k} \boldsymbol{E}_{\boldsymbol{z}}^{k} = \mathbf{C}^{k} : (\boldsymbol{z}\boldsymbol{\kappa} - \boldsymbol{\varepsilon}^{*k}), \quad \boldsymbol{\varepsilon}^{*k} \dots \text{ eigenstrain}$$

 \mathbf{C}^{k} ... tensor of elastic moduli \mathbf{e}^k ... tensor of piezoelectric coefficients $E_z^k = -\nabla \phi \cdot \mathbf{e}_z$... thickness component of electric field vector

 $M = D : \kappa - M^*$

$$\mathbf{M} = \sum_{k=1}^{N} \int_{z^{k-1}}^{z^{k}} \boldsymbol{\sigma}^{k} z dz = \underbrace{\left(\sum_{k=1}^{N} \int_{z^{k-1}}^{z^{k}} \mathbf{C}^{k} z^{2} dz\right)}_{\mathbf{D}} : \mathbf{\kappa} - \underbrace{\sum_{k=1}^{N} \int_{z^{k-1}}^{z^{k}} \mathbf{e}^{k} E_{z}^{k} z dz}_{\mathbf{M}^{*}}$$

PART II: Governing equations; electrostatic

TECHNICAL MECHANICS

Johannes Kepler University Linz

Mechatronics Group

$$D_{z}^{k} = \mathbf{e}^{k} : z\mathbf{\kappa}^{k} + \eta^{k}E_{z}^{k} = \eta^{k}\left(E_{z}^{k} - E_{z}^{*k}\right)$$
$$\eta^{k} \dots \text{ electric permittivity}$$
$$\mathbf{e}^{k} : z\mathbf{\kappa}^{k}$$

$$E_z^{*k} = \frac{\mathbf{e}^k : z \mathbf{\kappa}^k}{\eta^k}$$
 ... electric eigenfield

- D_z^k ... thickness component of electric displacement vector
- \rightarrow due to the thinness of the layer we neglect \mathbf{D}^k

PART II: Governing equations; electrostatic

$$\int \frac{\partial D_{z}^{k}}{\partial z} = 0, \quad D_{z}^{k} = \eta^{k} \left(E_{z}^{k} - E_{z}^{*k} \right)$$

$$D_{z}^{k} = const. = \frac{1}{z^{k} - z^{k-1}} \int_{z^{k-1}}^{z^{k}} D_{z}^{k} dz = \eta^{k} \frac{V^{k}}{z^{k} - z^{k-1}} - \frac{1}{z^{k} - z^{k-1}} \int_{z^{k-1}}^{z^{k}} \eta^{k} E_{z}^{*k} dz$$

$$\bullet \text{ Relation between } Q^{k} \text{ and } V^{k} \text{ from Gauss law of electrostatics:}$$

$$Q^{k} = \int_{A} D_{z}^{k} dA = A\eta^{k} \frac{V^{k}}{z^{k} - z^{k-1}} - \int_{A} \frac{1}{z^{k} - z^{k-1}} \int_{z^{k-1}}^{z^{k}} \eta^{k} E_{z}^{*k} dz dA$$

$$\to E_{z}^{k} = E_{z}^{k,c} + E_{z}^{*k} - \left[\frac{1}{z^{k} - z^{k-1}} \int_{z^{k-1}}^{z^{k}} E_{z}^{*k} dz - \kappa_{Q}^{k} \frac{1}{A} \int_{A} \frac{1}{z^{k} - z^{k-1}} \int_{z^{k-1}}^{z^{k}} E_{z}^{*k} dz dA \right]$$

$$E_{z}^{k,c} = \kappa_{Q}^{k} \frac{Q^{k}}{A\eta^{k}} + (1 - \kappa_{Q}^{k}) \frac{V^{k}}{h^{k}}$$

PART II: Effective constitutive relations

 $\mathbf{M} = \mathbf{D} : \mathbf{\kappa} - \mathbf{M}^*$

TECHNICAL MECHANICS

Mechatronics Group Johannes Kepler University Linz

$$\mathbf{M}^{*} = \sum_{k=1}^{N} \int_{z^{k-1}}^{z^{k}} \mathbf{e}^{k} E_{z}^{k} z dz , \quad E_{z}^{k} = E_{z}^{k,c} + E_{z}^{*k} - \left[\frac{1}{z^{k} - z^{k-1}} \int_{z^{k-1}}^{z^{k}} E_{z}^{*k} dz - \kappa_{Q}^{k} \frac{1}{A} \int_{A} \frac{1}{z^{k} - z^{k-1}} \int_{z^{k-1}}^{z^{k}} E_{z}^{*k} dz dA \right]$$

• Reformulation of constitutive relations: $\mathbf{M} = \mathbf{D}^{eff} : \mathbf{\kappa} + \mathbf{d} : \overline{\mathbf{\kappa}} - \mathbf{M}^{*,eff}$

$$\mathbf{D}^{eff} = \mathbf{D} + \sum_{k=1}^{N} \int_{z^{k-1}}^{z^{k}} \frac{\mathbf{e}^{k} \otimes \mathbf{e}^{k}}{\eta^{k}} \left(z - \frac{1}{2} \left(z^{k} + z^{k-1} \right) \right) z dz , \quad \mathbf{d} = \sum_{k=1}^{N} \kappa_{Q}^{k} \int_{z^{k-1}}^{z^{k}} \frac{\mathbf{e}^{k} \otimes \mathbf{e}^{k}}{\eta^{k}} \frac{1}{2} \left(z^{k} + z^{k-1} \right) z dz$$
$$\overline{\mathbf{\kappa}} = \frac{1}{A} \int_{A} \mathbf{\kappa} dA \dots \text{ mean curvature tensor}$$
$$\mathbf{M}^{*,eff} = \sum_{k=1}^{N} \int_{z^{k-1}}^{z^{k}} \mathbf{e}^{k} E_{z}^{k,c} z dz \dots \text{ effective piezoelectric (self-) moment tensor}$$

- Transversally isotropic materials
- Isotropic plane parallel to reference surface

$$\mathbf{M} = D^{eff} \mathbf{v}^{eff} \mathbf{I} tr \mathbf{\kappa} + D^{eff} \left(1 - \mathbf{v}^{eff} \right) \mathbf{\kappa} + d\mathbf{I} tr \mathbf{\overline{\kappa}} - m^{*,eff} \mathbf{I}$$

$$D^{eff} = D + D^{me}, \quad v^{eff} = \frac{Dv + D^{me}}{D + D^{me}}, \quad d = \sum_{k=1}^{N} \kappa_Q^k \int_{z^{k-1}}^{z^k} \frac{e^k e^k}{\eta^k} \frac{1}{2} (z^k + z^{k-1}) z dz$$

$$D = \sum_{k=1}^{N} \int_{z^{k-1}}^{z^k} Y^k z^2 dz, \quad v = \frac{1}{D} \sum_{k=1}^{N} \int_{z^{k-1}}^{z^k} Y^k v^k z^2 dz, \quad D^{me} = \sum_{k=1}^{N} \int_{z^{k-1}}^{z^k} \frac{e^k e^k}{\eta^k} \left(z - \frac{1}{2} (z^k + z^{k-1}) \right) z dz$$

$$m^{*,eff} = \sum_{k=1}^{N} \int_{z^{k-1}}^{z^k} e^k \left(\kappa_Q^k \frac{Q^k}{A\eta^k} + (1 - \kappa_Q^k) \frac{V^k}{h^k} \right) z dz$$
• sensor equation:
$$y^k = Q^k - A\eta^k \frac{V^k}{h^k} = -\int_{z^k}^{z^k} e^k \Delta w_0 z_m^k dA$$

Control of Bending Vibrations within Subdomains of Thin Plates by Piezoelectric Actuation

A

Mechatronics Group Johannes Kepler University Linz

- Simply supported edges
- Polygonal domain

$$\Delta (D^{eff} \Delta w_0) + P \ddot{w}_0 = p_z - \Delta m^{*,eff}, \quad at \ C: \quad w_0 = 0, \quad D^{eff} \Delta w_0 + d \frac{1}{A} \int_A \Delta w_0 dA = -m^{*,eff}$$

• domain wise constant parameters

$$D^{eff}\Delta\Delta w_{0} + P\ddot{w}_{0} = p_{z} - D^{eff}\left(1 - v^{eff}\right)\Delta\kappa^{eff}, \quad at \ C: \quad w_{0} = 0, \quad \Delta w_{0} = -\left(1 - v^{eff}\right)\kappa^{eff}$$
$$\kappa^{eff} = \frac{m^{*,eff} + d\frac{1}{A}\int_{A}\Delta w_{0}dA}{D^{eff}\left(1 - v^{eff}\right)} = \frac{m^{*,eff} + m^{*,f}}{D^{eff}\left(1 - v^{eff}\right)}$$

- Mechatronics Group Johannes Kepler University Linz
- Frequency domain formulation: $p_z = \hat{p}e^{i\omega t}$, $m^{*,eff} = \hat{m}^{*,eff}e^{i\omega t}$, $w_0 = \hat{W}e^{i\omega t}$
 - $$\begin{split} D^{eff}\Delta\Delta\hat{W} \mu\hat{W} &= \hat{p} D^{eff}\left(1 v^{eff}\right)\Delta\hat{\kappa}^{eff} , \quad at \ C: \quad \hat{W} = 0 , \quad \Delta\hat{W} = -\left(1 v^{eff}\right)\hat{\kappa}^{eff} \\ \mu &= \omega^2 P , \quad \hat{\kappa}^{eff} = \frac{\hat{m}^{*,eff} + d\frac{1}{A}\int_A\Delta\hat{W}dA}{D^{eff}\left(1 v^{eff}\right)} = \frac{\hat{m}^{*,eff} + \hat{m}^{*,f}}{D^{eff}\left(1 v^{eff}\right)} \end{split}$$
 - Decomposition of fourth order problem into two second order problems of Helmholtz - Klein - Gordon type:

$$\hat{W} = \hat{W}_1 + \hat{W}_2 , \quad \Delta \hat{W}_j - (-1)^j \alpha \hat{W}_j = (-1)^j \frac{\alpha}{2\mu} \hat{p} - \frac{\hat{m}^{*,eff} + \hat{m}^{*,f}}{2D^{eff}} , \quad at \ C_0 : \quad \hat{W}_j = 0$$

$$\alpha = \sqrt{\frac{\mu}{D^{eff}}} , \quad \hat{m}^{*,f} = d \frac{1}{A} \int_A \Delta \hat{W} dA = d \frac{1}{A} \int_A \Delta \left(\hat{W}_1 + \hat{W}_2 \right) dA$$

• Green's function method for solution: $G_j^{\alpha}(\mathbf{x}, \boldsymbol{\xi})$

$$\Delta \hat{W}_{j} - (-1)^{j} \alpha \hat{W}_{j} = 0, \quad at \ C_{0}: \quad \hat{W}_{j} = 0$$

Mechatronics Group Johannes Kepler University Linz

$$\hat{W}_{j}(\boldsymbol{\xi}) = -\frac{\hat{m}^{*,f}}{2D^{eff}} \int_{A} G_{j}^{\alpha}(\mathbf{x},\boldsymbol{\xi}) dA(\mathbf{x}) + \int_{A} \left((-1)^{j} \frac{\alpha}{2\mu} \hat{p}(\mathbf{x}) - \frac{\hat{m}^{*,eff}(\mathbf{x})}{2D^{eff}} \right) G_{j}^{\alpha}(\mathbf{x},\boldsymbol{\xi}) dA(\mathbf{x})$$

• Integrate solution with respect to plate area *A*:

$$\hat{m}^{*,f}\left(1-\frac{\alpha}{2A}\frac{d}{D^{eff}+d}\int_{A}\left[\int_{A}\left(G_{1}^{\alpha}\left(\mathbf{x},\boldsymbol{\xi}\right)-G_{2}^{\alpha}\left(\mathbf{x},\boldsymbol{\xi}\right)\right)dA(\mathbf{x})\right]dA(\boldsymbol{\xi})\right)=$$

$$=\frac{1}{2}\frac{d}{D^{eff}+d}\frac{1}{A}\left(\int_{A}\left[\int_{A}\hat{p}\left(\mathbf{x}\right)\left(G_{1}^{\alpha}\left(\mathbf{x},\boldsymbol{\xi}\right)+G_{2}^{\alpha}\left(\mathbf{x},\boldsymbol{\xi}\right)\right)dA(\mathbf{x})+\int_{A}\hat{m}^{*,eff}\left(\mathbf{x}\right)\left(G_{1}^{\alpha}\left(\mathbf{x},\boldsymbol{\xi}\right)-G_{2}^{\alpha}\left(\mathbf{x},\boldsymbol{\xi}\right)\right)dA(\mathbf{x})-2\hat{m}^{*,eff}\left(\boldsymbol{\xi}\right)\right]dA(\boldsymbol{\xi})\right)$$

FREE VIBRATIONS (for $\hat{m}^{*,f} = 0$ classical problem)

• characteristic equation for $\hat{m}^{*,f} \neq 0$:

$$2A = \alpha \frac{d}{D^{eff} + d} \int_{A} \left[\int_{A} \left(G_{1}^{\alpha} \left(\mathbf{x}, \boldsymbol{\xi} \right) - G_{2}^{\alpha} \left(\mathbf{x}, \boldsymbol{\xi} \right) \right) dA(\mathbf{x}) \right] dA(\mathbf{\xi}), \quad \boldsymbol{\omega}_{i} = \alpha_{i} \sqrt{\frac{D^{eff}}{P}}$$

• Eigenfunctions:

$$\hat{W}^{\alpha_{i}}\left(\boldsymbol{\xi}\right) = \int_{A} \left(G_{1}^{\alpha_{i}}\left(\mathbf{x},\boldsymbol{\xi}\right) + G_{2}^{\alpha_{i}}\left(\mathbf{x},\boldsymbol{\xi}\right) \right) dA\left(\mathbf{x}\right)$$

FORCED VIBRATIONS

$$y^{k} = -e^{k} z_{m}^{k} \left\{ \int_{A} \left[\alpha \left(\hat{W}_{2} \left(\boldsymbol{\xi} \right) - \hat{W}_{1} \left(\boldsymbol{\xi} \right) \right) - \frac{\hat{m}^{*,eff} \left(\boldsymbol{\xi} \right)}{D^{eff}} \right] dA(\boldsymbol{\xi}) - \frac{\hat{m}^{*,f}}{D^{eff}} A \right\}$$

Control of Bending Vibrations within Subdomains of Thin Plates by Piezoelectric Actuation

Mechatronics Group Johannes Kepler University Linz

Mechatronics Group Johannes Kepler University Linz

- SQUARE PLATE: a = b = 1m and h = 0.06m
- TWO identical PZT-5A layers: interface is grounded and outer sides are electroded
- Electrodes either short circuited or left open

•
$$p_z(\mathbf{x},t) = \hat{p}(\mathbf{x})e^{i\omega t} = p_0 e^{i\omega t}, m^{*,eff} = 0$$

• FREE VIBRATIONS:

• $m^{*,f} = 0$: Short - circuited electrodes or either n or m are even

$$\omega_{mn} = \alpha_{mn} \sqrt{\frac{D^{eff}}{P}} = \left[\left(\frac{m\pi}{a} \right)^2 + \left(\frac{n\pi}{a} \right)^2 \right] \sqrt{\frac{D^{eff}}{P}}, \quad \hat{W}_{mn}(x, y) = \sin\left(\frac{m\pi}{a} x \right) \sin\left(\frac{n\pi}{a} y \right)$$

• $m^{*,f} \neq 0$: Electrodes left open and n and m odd

$$2A = \alpha_{mn} \frac{d}{D^{eff} + d} \int_{A} \left[\int_{A} \left(G_{1}^{\alpha_{mn}} \left(\mathbf{x}, \boldsymbol{\xi} \right) - G_{2}^{\alpha_{mn}} \left(\mathbf{x}, \boldsymbol{\xi} \right) \right) dA(\mathbf{x}) \right] dA(\mathbf{\xi}), \quad \hat{W}_{mn} \left(\boldsymbol{\xi} \right) = \int_{A} \left(G_{1}^{\alpha_{mn}} \left(\mathbf{x}, \boldsymbol{\xi} \right) + G_{2}^{\alpha_{mn}} \left(\mathbf{x}, \boldsymbol{\xi} \right) \right) dA(\mathbf{x})$$

$$\int_{A} G_{j}^{\alpha_{mn}} \left(\mathbf{x}, \boldsymbol{\xi} \right) dA(\mathbf{x}) = \sum_{k=1,3,\dots}^{\infty} \sum_{l=1,3,\dots}^{\infty} \frac{16}{kl\pi^{2}} \frac{1}{-(-1)^{j} \alpha_{mn}} - \left[\left(\frac{k\pi}{a} \right)^{2} + \left(\frac{l\pi}{a} \right)^{2} \right] \sin \left(\frac{k\pi}{a} \boldsymbol{\xi} \right) \sin \left(\frac{l\pi}{a} \boldsymbol{\eta} \right)$$

$$j = 1, 2, \quad 0 \le x \le a, \quad 0 \le y \le a$$

Mechatronics Group Johannes Kepler University Linz

Natural frequencies [rad/s] and mode shapes of the square plate

• FORCED VIBRATIONS:

Mechatronics Group Johannes Kepler University Linz

• Sensor signal in upper layer:
$$y^{u} = -ez_{m}^{u} \left[\alpha \int_{A} \left(\hat{W}_{2}(\xi) - \hat{W}_{1}(\xi) \right) dA(\xi) - \frac{\hat{m}^{*,f}}{D^{eff}} A \right]$$

• Dynamic magnification factor:
$$\hat{y} = 20 \log \left| y^u / y_{SPC}^{u(qs)} \right|$$

• Solution is:

$$\hat{W}_{j}(\boldsymbol{\xi}) = -\frac{\hat{m}^{*,f}}{2D^{eff}} \int_{A} G_{j}^{\alpha}(\mathbf{x},\boldsymbol{\xi}) dA(\mathbf{x}) + \int_{A} (-1)^{j} \frac{\alpha}{2\mu} \hat{p}(\mathbf{x}) G_{j}^{\alpha}(\mathbf{x},\boldsymbol{\xi}) dA(\mathbf{x})$$
with $\hat{m}^{*,f} \left(1 - \frac{\alpha}{2A} \frac{d}{D^{eff} + d} \int_{A} \left[\int_{A} \left(G_{1}^{\alpha}(\mathbf{x},\boldsymbol{\xi}) - G_{2}^{\alpha}(\mathbf{x},\boldsymbol{\xi}) \right) dA(\mathbf{x}) \right] dA(\boldsymbol{\xi}) \right) =$

$$= \frac{1}{2} \frac{d}{D^{eff} + d} \frac{1}{A} \left(\int_{A} \left[\int_{A} \hat{p}(\mathbf{x}) \left(G_{1}^{\alpha}(\mathbf{x},\boldsymbol{\xi}) + G_{2}^{\alpha}(\mathbf{x},\boldsymbol{\xi}) \right) dA(\mathbf{x}) \right] dA(\boldsymbol{\xi}) \right)$$

Dynamic magnification factor for different ranges of α

Electric potential distribution for $\alpha = 99.2$

PART III: Governing equations

- $A: \quad div(div\mathbf{M}) + p_z = P\ddot{w}_0$
- $C: \left[div \mathbf{M} \cdot \mathbf{n} + \nabla (\mathbf{M}\mathbf{n} \cdot \mathbf{s}) \cdot \mathbf{s} \overline{q} \right] \delta w_0 = 0, \quad (\mathbf{M}\mathbf{n} \cdot \mathbf{n} \overline{m}) (\nabla \delta w_0 \cdot \mathbf{n}) = 0$ $P: \left(\mathbf{M}\mathbf{n} \cdot \mathbf{s} \right) \delta w_0 \Big]_{P^+}^{P^-} = 0$

Č

Mechatronics Group Johannes Kepler University Linz

with patch:
$$\mathbf{M} = \mathbf{D}^{eff}$$
 : $\mathbf{\kappa} - \mathbf{M}^{*,eff}$, $P = P_0 + \Delta P$
without patch: $\mathbf{M} = \mathbf{D}_0$: $\mathbf{\kappa}$, $P = P_0$
 $P_0 = \int_{z_0}^{z_0} \rho^{substrate} dz$, $\Delta P = 2 \int_{z_0}^{z_0} \rho^{patch} dz$
 $\mathbf{M}^{*,eff} = \int_{z_0}^{z_0} \overline{\mathbf{e}} \frac{V^u}{h_p} z dz + \int_{z_0}^{z_0} \overline{\mathbf{e}} \frac{V^l}{h_p} z dz = \int_{z_0}^{z_0} \overline{\mathbf{e}} \frac{2V^u}{h_p} z dz$, $\mathbf{D}_0 = \int_{z_0}^{z_0} \mathbf{C}^{substrate} z^2 dz$
 $\Delta \mathbf{D} = \int_{z_0}^{z_0} \left[\mathbf{C}^{patch} z + \frac{\overline{\mathbf{e}} \otimes \overline{\mathbf{e}}}{\eta} \left(z - \frac{1}{2} (z_0 + z_1) \right) \right] z dz + \int_{z_0}^{z_0} \left[\mathbf{C}^{patch} z + \frac{\overline{\mathbf{e}} \otimes \overline{\mathbf{e}}}{\eta} \left(z - \frac{1}{2} (z_2 + z_3) \right) \right] z dz$

PART III: **Exact solution**

$$\mathbf{W}_{0} = \overline{w}_{0}, \quad \mathbf{M}\mathbf{n} \cdot \mathbf{s} = \overline{q}, \quad \mathbf{M}\mathbf{n} \cdot \mathbf{n} = \overline{m}$$

$$div\mathbf{M} \cdot \mathbf{n} + \nabla(\mathbf{M}\mathbf{n} \cdot \mathbf{s}) \cdot \mathbf{s} = \overline{q}, \quad \mathbf{M}\mathbf{n} \cdot \mathbf{n} = \overline{m}$$

$$div\mathbf{M} \cdot \mathbf{n} + \nabla(\mathbf{M}\mathbf{n} \cdot \mathbf{s}) \cdot \mathbf{s} = \overline{q}, \quad \nabla w_{0} \cdot \mathbf{n} = \overline{\psi}$$

$$w_{0} = \overline{w}_{0}, \quad \nabla w_{0} \cdot \mathbf{n} = \overline{\psi}$$

TECHNICAL MECHANICS

Mechatronics Group

$$\int_{0}^{t} \int_{A} \left[\mathbf{M}^{p} + \mathbf{M}^{*,eff} \right] (\mathbf{x}, t - \tau) : \mathbf{\kappa}^{d} (\mathbf{x}, t) dA dt =$$

$$\int_{0}^{t} \left[\int_{A} p_{z}^{d} (\mathbf{x}, t - \tau) \tilde{w}_{0} (\mathbf{x}, t) dA + \int_{C_{q}} \overline{q}^{d} (\mathbf{x}, t - \tau) \tilde{w}_{0} (\mathbf{x}, t) dC - \int_{C_{m}} \overline{m}^{d} (\mathbf{x}, t - \tau) \left(\nabla \tilde{w}_{0} (\mathbf{x}, t) \cdot \mathbf{n} \right) dC \right] dt$$

If $\mathbf{M}^{p} + \mathbf{M}^{*} = \mathbf{0}$, then $w_{0} = \breve{w}_{0}$.

of Thin Plates by Piezoelectric Actuation

PART III: Exact solution

$$A: \quad div(div\mathbf{M}^{p}) + \tilde{p}_{z} = 0$$

$$\begin{cases}
div\mathbf{M}^{p} \cdot \mathbf{n} + \nabla(\mathbf{M}^{p}\mathbf{n} \cdot \mathbf{s}) \cdot \mathbf{s} = \tilde{q}, \quad \mathbf{M}^{p}\mathbf{n} \cdot \mathbf{n} = \tilde{m} \\
\mathbf{M}^{p}\mathbf{n} \cdot \mathbf{n} = \tilde{m} \\
div\mathbf{M}^{p} \cdot \mathbf{n} + \nabla(\mathbf{M}^{p}\mathbf{n} \cdot \mathbf{s}) \cdot \mathbf{s} = \tilde{q} \\
no \ boundary \ conditions \ to \ be \ satisfied
\end{cases}$$

$$A: \quad \tilde{p}_{z} = p_{z} - \bar{P}\ddot{w}_{0} + div(div\mathbf{M}), \quad \mathbf{M} = \mathbf{\bar{D}} : \mathbf{\bar{\kappa}}, \quad \mathbf{\bar{\kappa}} = -\frac{1}{2} \Big[\nabla\nabla \mathbf{\bar{w}}_{0} + (\nabla\nabla \mathbf{\bar{w}}_{0})^{T} \Big] \\
C: \quad \tilde{q} = \bar{q} - div\mathbf{\bar{M}} \cdot \mathbf{n} - \nabla(\mathbf{\bar{M}}\mathbf{n} \cdot \mathbf{s}) \cdot \mathbf{s}, \quad \tilde{m} = \bar{m} - \mathbf{\bar{M}}\mathbf{n} \cdot \mathbf{n}$$

$$A: \nabla \nabla \breve{w}_0 = \mathbf{0}, \quad C: \begin{cases} no \ conditions \ to \ be \ satisfied \\ \breve{w}_0 = \overline{w}_0 \\ \nabla \breve{w}_0 \cdot \mathbf{n} = \overline{\psi} \\ \breve{w}_0 = \overline{w}_0, \quad \nabla \breve{w}_0 \cdot \mathbf{n} = \overline{\psi} \end{cases}$$

PART III: Approximate solution

- i = 1, ..., n patches within A

• Each patch is laocated within
$$A_i^{sub}$$
 with $A_i^{sub} \subseteq A_i$ and $\bigcap_{i=1}^n A_i = A$

• Piezoelectric actuation at patch *i*: $\mathbf{M}_{i}^{*,eff}(t)$

$$\int_{0}^{t} \iint_{A} \left[\mathbf{M}^{p} + \mathbf{M}^{*,eff} \right] (\mathbf{x}, t - \tau) : \mathbf{\kappa}^{d} (\mathbf{x}, t) dA dt =$$
$$= \int_{0}^{t} \left[\sum_{i=1}^{n} \left(\mathbf{M}^{*,eff}_{i} (t - \tau) : \iint_{A^{sub}_{i}} \mathbf{\kappa}^{d} (\mathbf{x}, t) dA \right) + \iint_{A} \mathbf{M}^{p} (\mathbf{x}, t - \tau) : \mathbf{\kappa}^{d} (\mathbf{x}, t) dA \right] dt$$

PART III: Approximate solution; direct method

$$\int_{0}^{t} \int_{A} \left[\mathbf{M}^{p} + \mathbf{M}^{*,eff} \right] (\mathbf{x}, t - \tau) : \mathbf{\kappa}^{d} (\mathbf{x}, t) dA dt =$$
$$= \int_{0}^{t} \left[\sum_{i=1}^{n} \left(\mathbf{M}_{i}^{*,eff} (t - \tau) : \int_{A_{i}^{sub}} \mathbf{\kappa}^{d} (\mathbf{x}, t) dA \right) + \int_{A} \mathbf{M}^{p} (\mathbf{x}, t - \tau) : \mathbf{\kappa}^{d} (\mathbf{x}, t) dA \right] dt$$

Mechatronics Group Johannes Kepler University Linz

$$\mathbf{M}_{i}^{*,eff}(t) = -\frac{1}{A_{i}^{sub}} \int_{A_{i}} \mathbf{M}^{p}(\mathbf{x},t) dA$$

- High number of piezoelectric patches possible
- Easy to use

PART III: Approximate solution; indirect method

$$\int_{0}^{t} \int_{A} \left[\mathbf{M}^{p} + \mathbf{M}^{*,eff} \right] (\mathbf{x}, t - \tau) : \mathbf{\kappa}^{d} (\mathbf{x}, t) dA dt =$$

$$= \int_{0}^{t} \left[\sum_{i=1}^{n} \left(\mathbf{M}_{i}^{*,eff} (t - \tau) : \int_{A_{i}^{sub}} \mathbf{\kappa}^{d} (\mathbf{x}, t) dA \right) + \int_{A} \mathbf{M}^{p} (\mathbf{x}, t - \tau) : \mathbf{\kappa}^{d} (\mathbf{x}, t) dA \right] dt$$

Mechatronics Group Johannes Kepler University Linz

• Special dummy loading cases are considered; for each case

$$\int_{0}^{t} \sum_{i=1}^{n} \left(\mathbf{M}_{i}^{*,eff}(t-\tau) : \int_{A_{i}^{sub}} \mathbf{\kappa}^{d,j}(\mathbf{x},t) dA \right) dt = -\int_{0}^{t} \int_{A} \mathbf{M}^{p}(\mathbf{x},t-\tau) : \mathbf{\kappa}^{d,j}(\mathbf{x},t) dA dt$$

- *n* dummy loading cases required
- Mechanical interpretation of quality of approximate solution

$$\begin{cases} \overline{m}^{d,j} = 0, \quad \overline{q}^{d,j} = 0, \quad p_z^{d,j}(\mathbf{x},t) = f(t) \\ \text{then } \int_0^t f(t-\tau) \int_A \widetilde{w}_0(\mathbf{x},t) dA dt = 0 \end{cases}$$

PART III: Approximate solution; combined method

$$\int_{0}^{t} \iint_{A} \left[\mathbf{M}^{p} + \mathbf{M}^{*,eff} \right] (\mathbf{x}, t - \tau) : \mathbf{\kappa}^{d} (\mathbf{x}, t) dA dt =$$
$$= \int_{0}^{t} \left[\sum_{i=1}^{n} \left(\mathbf{M}_{i}^{*,eff} (t - \tau) : \int_{A_{i}^{sub}} \mathbf{\kappa}^{d} (\mathbf{x}, t) dA \right) + \int_{A} \mathbf{M}^{p} (\mathbf{x}, t - \tau) : \mathbf{\kappa}^{d} (\mathbf{x}, t) dA \right] dt$$

Mechatronics Group Johannes Kepler University Linz

• Statically admissible moment and self-moment seperable:

$$\mathbf{M}^{p}(\mathbf{x},t) = \sum_{j=1}^{m} \mathbf{M}_{j}^{p}(\mathbf{x}) f_{j}(t), \quad \mathbf{M}^{*,eff}(\mathbf{x},t) = \sum_{j=1}^{m} \mathbf{M}_{j}^{*,eff}(\mathbf{x}) g_{j}(t)$$

• $\mathbf{M}_{i}^{p}(\mathbf{x})$'s account for space wise distributions of: $\tilde{p}_{z}, \tilde{m}, \tilde{q}$

• Patch self-moment are taken as:
$$\mathbf{M}_{i}^{*,eff}(t) = \sum_{j=1}^{m} \mathbf{M}_{ij}^{*,eff} g_{j}(t)$$
 with: $\mathbf{M}_{ij}^{*,eff} = -\frac{1}{A_{i}^{sub}} \int_{A_{i}} \mathbf{M}_{j}^{p}(\mathbf{x}) dA$

PART III: Approximate solution; combined method

• *m* equations for *m* unknown time variations $g_i(t)$

TECHNICAL MECHANICS

Mechatronics Group Johannes Kepler University Linz

$$\int_{0}^{t} g_{j}(t-\tau) \sum_{i=1}^{n} \left(\mathbf{M}_{ij}^{*,eff} : \int_{A_{i}^{sub}} \mathbf{\kappa}^{d,j}(\mathbf{x},t) dA \right) dt = -\int_{0}^{t} \int_{A} \mathbf{M}^{p}(\mathbf{x},t-\tau) : \mathbf{\kappa}^{d,j}(\mathbf{x},t) dA dt$$

by using *m* dummy loading cases:

$$p_z^{d,j}(\mathbf{x},t) = \tilde{p}_z(\mathbf{x},t), \quad \overline{m}^{d,j}(\mathbf{x},t) = \tilde{m}(\mathbf{x},t), \quad \overline{q}^{d,j}(\mathbf{x},t) = \tilde{q}(\mathbf{x},t)$$

- High number of piezoelectric patches possible
- Mechanical interpretation of quality of approximate solution

- Clamped circular Plate: $R_{tot} = 0.2m$ and h = 3mm
- Natural frequencies of aluminium plate: $f_1 = 182.0Hz$, $f_2 = 708.7Hz$, $f_3 = 1588Hz$
- Control deflection within $r \le R = 3cm$ to be $w_0(r,t) = \overline{w}_0 f(t)$
- Statically admissible moment: $r \le R$: $div(div\mathbf{M}^p) + p_z \overline{\rho}^{(0)}\overline{w}_0\ddot{f}(t) = 0$, r = R: $\mathbf{M}^p\mathbf{n} \cdot \mathbf{n} = \overline{m}$
- Force loading: $r \le R$: $p_z(r,t) = p_0 e^{i\omega t}$, $p_0 = 100 N / m^2$, $\omega = 2\pi f = 2\pi (100, 500, 1000) s^{-1}$
- Statically admissible moment: $r \le R$: $\Delta M^p + p_0 + \omega^2 \overline{\rho}^{(0)} \overline{w}_0 = 0$, r = R: $M^p = \overline{m}$

• Indirect method:
$$\sum_{i=1}^{3} \left(M_{i}^{*,eff} \int_{r_{i}-0.0025}^{r_{i}+0.0025} \Delta w_{0}^{d,j}(r) 2\pi r dr \right) + \int_{0}^{R} M^{p}(r) \Delta w_{0}^{d,j}(r) 2\pi r dr = 0$$

• Dummy loadings: $p_z^{d,1}(r,t) = 1e^{i\omega t}$, $p_z^{d,2}(r,t) = (\overline{P} / P_0)e^{i\omega t}$, $\overline{m}^{d,2} = 1e^{i\omega t}$ then $\int_0^R \tilde{w}_0(r) 2\pi r dr = 0$ and $\int_0^R \frac{\overline{P}}{P_0} \tilde{w}_0(r) 2\pi r dr = 0$ and $\left[\frac{\partial \tilde{w}_0(r)}{\partial r}\right]_{r=R} = 0$.

TECHNICAL MECHANICS

Mechatronics Group Johannes Kepler University Linz

PART III: Combined method

- 6 PZT-5A concentric patches: $h_p = 0.5mm$ $r \in [\overline{r_i} \pm 0.125cm], \quad \overline{r_i} = (0.25, 0.75, 1.25, 1.75, 2.25, 2.75)cm$
- Combined method: $M_{ij}^{*,eff} \int_{r_i-0.00125}^{r_i+0.00125} 2\pi r dr = -\int_{r_i-0.0025}^{r_i+0.0025} M_j^P(r) 2\pi r dr$

$$M_1^P \leftrightarrow p_0$$
, $M_2^P \leftrightarrow \overline{P} / P_0$, $M_3^P \leftrightarrow \overline{m}$ at $r = R$

• Self-moment at each concentric ring: $M_i^{*,eff} e^{i\omega t} = \sum_{i=1}^{3} M_{ij}^{*,eff} K_j e^{i\omega t}$

$$\sum_{i=1}^{6} \left(\sum_{j=1}^{3} M_{ij}^{*,eff} K_{j} \right)_{r_{i}-0.00125}^{r_{i}+0.00125} \Delta w_{0}^{d,k}(r) 2\pi r dr = -\int_{0}^{R} M^{p}(r) \Delta w_{0}^{d,k}(r) 2\pi r dr$$

• Dummy loadings: $p_z^{d,1}(r,t) = 1/(2\pi\overline{r})e^{i\omega t}$, $p_z^{d,2}(r,t) = (\overline{P} / P_0)e^{i\omega t}$, $\overline{m}^{d,2} = 1e^{i\omega t}$

then
$$\int_{0}^{R} \tilde{w}_{0}(r)r / \bar{r}dr = 0$$
 and $\int_{0}^{R} \frac{\bar{P}}{P_{0}} \tilde{w}_{0}(r) 2\pi r dr = 0$ and $\left[\frac{\partial \tilde{w}_{0}(r)}{\partial r}\right]_{r=R} = 0.$

Control of Bending Vibrations within Subdomains of Thin Plates by Piezoelectric Actuation

TECHNICAL MECHANICS

Mechatronics Group Johannes Kepler University Linz

PART III: Combined method

Mechatronics Group Johannes Kepler University Linz

 $\omega = 2\pi 500 s^{-1}$

PART III: Control of alternative subdomain

• $0.16m = R_{sub} \le r \le R_{tot} = 0.2m$: 4 PZT-5A concentric patches $r \in [\overline{r_i} \pm 0.25 cm], \quad \overline{r_i} = (0.165, 0.175, 0.185, 0.195)m$

$$R_{sub} \le r \le R_{tot}$$
: $\Delta M^p + p_0 = 0$, $r = R_{sub}$: $M^p = \overline{m}$ and $\frac{\partial M^p}{\partial r} = \overline{q}$

• Combined method: $M_{ij}^{*,eff} \int^{r_i+0.0025} 2\pi r dr = -\int^{r_i+0.005} M_j^P(r) 2\pi r dr$ $r_i - 0.0025$ $M_1^P \leftrightarrow p_0$, $M_2^P \leftrightarrow \overline{q}$ at r = R, $M_3^P \leftrightarrow \overline{m}$ at r = R

• Self-moment at each concentric ring: $M_i^{*,eff} e^{i\omega t} = \sum_{i=1}^{5} M_{ij}^{*,eff} K_j e^{i\omega t}$

PART III: Control of alternative subdomain

Mechatronics Group Johannes Kepler University Linz

$$\sum_{i=1}^{4} \left(\sum_{j=1}^{3} M_{ij}^{*,eff} K_{j} \right)_{r_{i}-0.0025}^{r_{i}+0.0025} \Delta w_{0}^{d,k}(r) 2\pi r dr = -\int_{R_{sub}}^{R_{tot}} M^{p}(r) \Delta w_{0}^{d,k}(r) 2\pi r dr$$

• Dummy loadings:
$$p_z^{d,1}(r,t) = 1/(2\pi\overline{r})e^{i\omega t}$$
, $\overline{q}^{d,2} = 1e^{i\omega t}$, $\overline{m}^{d,2} = 1e^{i\omega t}$

then
$$\int_{R_{sub}}^{R_{tot}} \tilde{w}_0(r) \frac{2\pi r}{2\pi \overline{r}} dr = 0$$
 and $\left[\tilde{w}_0(r)\right]_{r=R_{sub}} = 0$ and $\left[\frac{\partial \tilde{w}_0(r)}{\partial r}\right]_{r=R} = 0.$

PART III: Control of alternative subdomain

Mechatronics Group Johannes Kepler University Linz

 $\omega = 2\pi 100 s^{-1}$

