In der Heimioltz-Gemeinschaft

Institut für Materialforschung II

RICAM, Linz

October, 6th- 7th, 2005

Miniworkshop "Direct and Inverse Problems in Piezoelectricity"

Constitutive Properties of Ferroelectric Piezoceramics: Experimental Investigation, Microscopically Motivated Modeling, Finite Element Simulation

Marc Kamlah, Dayu Zhou, Bernd Laskewitz, Zhenggui Wang

- ferroelectric piezoceramics
- response behavior under large signal electro-mechanical loading
- micromechanical polycrystalline volume element
- micromechanically motivated constitutive model
- finite element simulation of poling processes

piezoceramics

ferroelectric ceramics

• Ba^{2+} • Ti^{4+} • O^{2-}

- BaTiO₃, Pb(Zr_xTi_{1-x})O₃ mixed oxid: PZT
- paraelectric-ferroelectric phase transition

 $T > T_{\rm c}$

 $\frac{c-a_0}{a_0} \approx 0.5...1.0\%$

 \longrightarrow spontaneous polarization and spontaneous strain

 \rightarrow direct und inverse piezoelectric effect (unit cell)

P^s

piezoceramics

• 6 variants at phase transition

• occurence of domains

as substructure in each grain

→ macroscopic isotropy after sintering

piezoceramics

• polycrystalline BaTiO₃, DEVRIES & BURKE [1957]

piezoceramics

- switching mechanisms
 - $|\mathrm{E}| > \mathrm{E_c}$: ferroelectricity

 $|\sigma| > \sigma_{\rm c}$: ferroelasticity

 \rightarrow limits of linear behavior: large signal regime

PI Ceramic, Lederhose (Thüringen)

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

hysteresis properties of ferroelectric ceramics

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

hysteresis properties of ferroelectric ceramics

• field depended coercive stress, time and temperature effects, ...

electro-mechanical switching criterion

• uniaxial compression: equal critical stresses for unpoled and poled states

 T_{33} vs. E₃

proportional loading paths

 D_3 vs. E_3

electro-mechanical switching criterion

macroscopic electromechanics

structure of continuum theory

- $(\rightarrow see presentation by Volkmar Mehling)$
- universal balance laws
 - dynamics: balance of linear momentum $\rho \, \ddot{\vec{u}} = {\rm div} \, {\pmb T} + \rho \, \vec{k}$
 - quasi-electrostatics: Gaussian law ${\rm div}\,(\epsilon_0\vec{\rm E}+\vec{\rm P})=q^{\rm ext}$
- macroscopic constitutive model, geometrically linear

$$\begin{array}{c} \mathbf{T} \\ \vec{\mathbf{P}} \end{array} \right\} \quad \longleftrightarrow \quad \left\{ \begin{array}{c} \mathbf{S} = \frac{1}{2} \Big(\mathsf{grad} \vec{\mathbf{u}} + (\mathsf{grad} \vec{\mathbf{u}})^T \Big) \\ \vec{\mathbf{E}} = -\mathsf{grad} \varphi \end{array} \right.$$

- micromechanics
- phenomenological methods

micromechanics

volume element: KAMLAH & MCMEEKING [2002]

• plane strain

10×10 ferroelectric grains (HUBER et al. [1999])

$$E^{av} = -\varphi/h$$

 $D^{av} = -Q/h$

$$S^{\mathrm{av}} = u/h$$

• macroscopic response of polycrystal during poling

3.0

generally accepted structure of constitutive models

Cocks & McMeeking [1999], Kamlah & Jiang [1999], \dots

• additive decomposition into reversible and irreversible parts

• representation of reversible behavior

$$S^{\mathrm{r}} = C^{-1} : T + \hat{\mathbf{d}}^{T} \cdot \vec{\mathrm{E}}$$

 $\vec{\mathrm{P}}^{\mathrm{r}} = \hat{\mathbf{d}} : T + \kappa \cdot \vec{\mathrm{E}}$

• history dependent anisotropy, $e_i = (\vec{e}^{P^i})_i$

$$\hat{d}_{kij}(q^1, \dots, q^n) = \frac{\|\vec{P}^i\|}{P^{\text{sat}}} \left\{ d_{33} e_i e_j e_k + d_{31} (\delta_{ij} - e_i e_j) e_k + d_{15} \frac{1}{2} \left[(\delta_{ki} - e_k e_i) e_j + (\delta_{kj} - e_k e_j) e_i \right] \right\}$$

 \rightarrow thermodynamical consistency (see presentation by Volkmar Mehling)

uniaxial formulation

• 45° cones about axis of loading

interpretation as orientation distribution function (KAMLAH & WANG [2003])

• integration: irreversible strain

 $S_{33}^{\rm i} = \frac{3}{2}(\beta - \frac{1}{3})S^{\rm sat} , \quad -\frac{1}{2}S^{\rm sat} \leq S_{33}^{\rm i} = \frac{3}{2}(\beta - \frac{1}{3})S^{\rm sat} \leq S^{\rm sat}$

• integration: maximum irreversible polarization

$$\mathbf{P}_3^{\mathbf{i}} = \gamma \mathbf{P}^{\mathbf{sat}} \ , \quad \mathbf{P}_3^{\mathbf{i}} \ \le \ \frac{3\,\beta+2}{5} \ \mathbf{P}^{\mathbf{sat}}$$

 \rightarrow Gibbs energy $g(\beta, \gamma)$, switching function $f(\phi^{\beta}, \phi^{\gamma})$: evolution equations *(see presentation by Volkmar Mehling)*

microscopically motivated constitutive model

mechanical depolarization

microscopically motivated constitutive model

three-dimensional domain state

• simplified representation

 $\vec{\mathrm{e}}^{\beta}$: history dependent axis of transversely isotropic ODF

• integration: irreversible strain

$$\boldsymbol{S}^{\mathrm{i}} = \frac{3}{2} S^{\mathrm{sat}} \frac{\beta - \beta^{\mathrm{ref}}}{1 - \beta^{\mathrm{ref}}} \left(\vec{\mathrm{e}}^{\beta} \otimes \vec{\mathrm{e}}^{\beta} - \frac{1}{3} \boldsymbol{I} \right)$$

- \rightarrow uniaxial, volume preserving
- irreversible polarization

$$\vec{\mathbf{P}}^{i} = \gamma \vec{\mathbf{e}}^{\gamma}$$

ightarrow two additional vectorial internal variables $ec{\mathrm{e}}^{eta}$, $ec{\mathrm{e}}^{\gamma}$

• non-proportional poling (HUBER & FLECK [2001])

• cyclic shearing after full poling

 \rightarrow finite element implementation: current project

simple phenomenological constitutive model

formulation based on loading conditions: KAMLAH & BÖHLE [2001]

• two contributions to the irreversible strain

 $\boldsymbol{S}^{\mathrm{i}} = \boldsymbol{S}^{\mathrm{p}} + \boldsymbol{S}^{\mathrm{f}}$

with

$$S^{\mathrm{p}} = \frac{3}{2} S_{\mathrm{sat}} \frac{\left\| \vec{\mathrm{P}}^{\mathrm{i}} \right\|}{\mathrm{P}_{\mathrm{sat}}} \left(\vec{\mathrm{e}}_{\mathrm{P}^{\mathrm{i}}} \otimes \vec{\mathrm{e}}_{\mathrm{P}^{\mathrm{i}}} - \frac{1}{3} I \right)$$

• onset of switching

$$\frac{f^{\mathrm{p}} = \left\| \vec{\mathrm{E}} - c^{\mathrm{p}} \vec{\mathrm{P}}^{\mathrm{i}} \right\| - \mathrm{E}_{\mathrm{c}} = 0}{f^{\mathrm{f}} = \sqrt{\frac{3}{2}} \left\| (\boldsymbol{T} - c^{\mathrm{f}} \boldsymbol{S}^{\mathrm{f}})^{D} \right\| - \hat{\sigma}_{\mathrm{c}} = 0}$$

• fully switched domain structure

$$\frac{h^{\mathrm{p}} = \left\| \vec{\mathrm{P}}^{\mathrm{i}} \right\| - \hat{\mathrm{P}}_{\mathrm{sat}} = 0}{h^{\mathrm{f}} = \sqrt{\frac{2}{3}} \left\| \boldsymbol{S}^{\mathrm{f}} \right\| - \left(S_{\mathrm{sat}} - \sqrt{\frac{2}{3}} \left\| \boldsymbol{S}^{\mathrm{p}} \right\| \right) = 0}$$

simple phenomenological constitutive model

representation of standard hystereses

finite element implementation

radial-return-algorithm: LASKEWITZ & KAMLAH [2005]

- last equilibrium state: $ec{\mathrm{E}}_n$, $ec{\mathrm{P}}_n^{\mathrm{i}}$, $(m{S}_n, \, m{S}_n^{\mathrm{f}})$
- Newton iteration

given: $ec{ ext{E}}_{n1}$, $(m{S}_{n1})$ unknown: $ec{ ext{P}}_{n1}^{ ext{i}}$, $(m{S}_{n1}^{ ext{f}})$

• electric switching criterion

$$\frac{f^{\mathrm{p}}}{c^{\mathrm{p}}} = \left\| \frac{\vec{\mathrm{E}}_{n1}}{c^{\mathrm{p}}} - \vec{\mathrm{P}}_{n}^{\mathrm{i}} \right\| - \frac{\mathbf{\mathrm{E}}^{\mathrm{c}}}{c^{\mathrm{p}}} > 0 \to \Delta \vec{\mathrm{P}}_{f}^{\mathrm{i}}$$

• electric saturation criterion

$$h^{\mathrm{p}} = \left\| \vec{\mathrm{P}}_{n}^{\mathrm{i}} + \Delta \vec{\mathrm{P}}_{f}^{\mathrm{i}} \right\| - \mathrm{P}_{\mathrm{sat}} > 0 \to \Delta \vec{\mathrm{P}}_{h}^{\mathrm{i}}$$

• update of internal variable

$$\vec{\mathbf{P}}_{n1}^{\mathrm{i}} = \vec{\mathbf{P}}_{n}^{\mathrm{i}} + \Delta \vec{\mathbf{P}}_{f}^{\mathrm{i}} + \Delta \vec{\mathbf{P}}_{h}^{\mathrm{i}}$$

finite element analysis

simplified model: poling stresses in stack actuator

• symmetries

• FE model, plane strain

arphi=0, all nodes same u_2 , $\int T_{22}\;\mathsf{d}\mathrm{x}_1=0$

• irreversible polarization after poling

• residual stresses along lower edge

→ influence of hysteresis effects on poled state

finite element analysis

65%

- **1-3 composite PZT-polymer** (Univ. Halle)
 - 5% P7T M2 M2 M2 M2 M2 M2 м2 M2 M2 м2 M2

poling cracks (Univ. Darmstadt)

• partly electroded specimens 2W 2b v • $t = 0.5, 1.0, 2.0 \text{ mm}, \text{ } \text{E}_{\text{nom}} = 2 \text{ } \text{E}^{\text{c}}$

 $\rightarrow\,$ inhomogenous poling: stresses

summary

- ferroelectric piezoceramics
- response behavior

hysteresis properties, electro-mechanical switching surface

- \rightarrow strong non-linear coupling of irrev. polarization, irrev. strain, piezoelectricity, ...
- micromechanical volume element
- micromechanically motivated constitutive model internal variables for orientation distribution function three dimensional formulation
- \rightarrow correct representation of tensorial properties
- finite element simulation of poling processes simple phenomenological constitutive law, finite element implementation stack actuator, 1-3 composite, poling cracks
- \rightarrow spatial distribution of macroscopic electro-mechanical fields