Slimgb

Gröbner bases with slim polynomials

The Aim

avoid intermediate expression swell Classical Buchberger algorithm with parallel reductions guided by new weighted length functions

- Often: big computations -> small results
- experiments show: blow up often avoidable
- use combination of several techniques
- no reduction to other methods (like Walk, homogenization, mod p approaches)

Classical measures of expression swell

- Length (number of terms)
- Ecart (max degree lead degree)
- Coefficient size

Need them all!!!

Weighted Length

- Z/p[x₁, ...,x_n]: length
- Q[x₁, ..., x_n]: size(lc(p))*length(p)
- elimination orderings: $\sum_{m \in \text{supp}(p)} (1+|\deg(m) - \deg(\ln(p))|^+)$

where supp(p) are the monomials of p e.g. for x>y: wlen(x^3+y^5)=1+(1+5-3)=4

Meaning for slimgb -

weighted length controls everything

- sort basis elements for reduction of S-Polynomials
- choice of critical pairs (together with Sugar)
- additional reductors
- exchange basis elements by "w. shorter" ones

Extended product criterion

Theorem: f, g, m polynomials, gcd(lm(f),lm(g))=1 then spoly(m*f, m*g) has standard representation against {m*f,m*g}

- Proof:
- apply normal product criterion to f,g
- multiply with m

Application of extended product criterion

- common factor m is a mononial
- for every basis f element compute gcd m_f of its terms
- pull out gcd(m_f, m_g)
- f=x*y²+x*y, g= x*z+x, x>y>z (lex)

•
$$m_f = xy m_g = x, gcd(y2,z) = I$$

nontrivial t-representations

- Let $spoly(p,q)=g_1*f_1+...+g_n*f_n$ (*)
- Let t monomial, $t \ge \lim(g_i)^* \lim(f_i)$ for all i
- this is called a t-representation
- of course t>=lm(spoly(p,q))
- t=lm(spoly(p,q)): (*) standard representation
- t < lcm(lm(p),lm(q)): (*) nontrivial trepresentation (or nontrivial syzygy)

- f=xy+l
 g=x²+l
 h=x
- Ordering lp: x>y
- s:=spoly(f,g)=x-y
- (*): $-y^*f^+(y^2+I)^*h^=s$ is a xy^2 -representation
- x<xy²<x²y: (*) nontrivial, but not standard

Theorem

- Let $G = \{g_1, ..., g_n\}$
- G is a Gröbner basis iff for every i,j: spoly(g_i,g_j) has a nontrivial trepresentation (some t<lcm(lm(g_i),lm(g_j)))
- Buchberger criterion: t=lm(spoly(g_i,g_j))

cf. Becker, Weißpfenning

Algorithm 1 slimgb main procedure, calculates a Gröbner basis of F

```
Require: F finite tuple of polynomials (from K[x_1, \ldots, x_n]^r).
  P := \{(i, j) | 1 \le i < j \le \#F\}
  apply criteria to P
  while P \neq \emptyset do
     choose \emptyset \neq S \subset P
     P := P \backslash S
     (R, F) := \text{slimgbReduce}(S, F)
     for 0 \neq r \in R do
        F := \operatorname{append}(F, r)
        P := P \cup \{ (i, \#F) | 1 \le i < \#F \}
        apply criteria to P
     end for
  end while
  return F
```

slimgbReduce

- reduction of several polynomials
- modifies basis by replacing polynomials by shorter ones with same leading term
- no linear algebra

Axioms for the reduction algorithm

- Input: F: Basis, S: S-Polynomials
- Output: F' new Basis, R:reduced S-Polynomials

1.
$$\langle F' \cup R \rangle_{K[x_1,...,x_n]} = \langle F \rangle_{K[x_1,...,x_n]},$$

- 2. #F = #F',
- 3. F' preserves the order of $F: \forall i : \operatorname{lm}(F[i]) = \operatorname{lm}(F'[i])$ and $\operatorname{spoly}(F[i], F'[i])$ has standard representation w. r. t. $F' \cup R$,
- 4. each $r \in S$ has a nontrivial t-representation w. r. t. $F' \cup R$,
- 5. and for termination: $R \neq \emptyset \Rightarrow \exists r \in R : lm(r) \notin L(F)$.

Sketch of proof (main)

- Algorithm terminates as usual: termination property of slimgb reduce
- the algorithm ensures, that every pair gets nontrivial t-representation at some time
- if you exchange an element of F the old one has still a standard representation
- in particular the property of having a nontrivial t-representation is never lost

Gaussian-like algorithm + extra operations

Each polynomial in S corresponds to a row in Gauss

- f,g in S, lm(f)=lm(g): g->spoly(f,g)
- f in F, g in S: lm(f) |lm(g): g->spoly(f,g)
- f in F, g in S: lm(f)=lm(g): replace f in F by g, g in S by spoly(f,g)

Every choice is controlled by the weighted length

Sketch of proof for reduction

- All properties hold at the beginning, except $R \neq \emptyset \Rightarrow \exists r \in R : lm(r) \notin L(F)$
- The other properties are preserved in each step
- No element with leading term in L(F) can remain, as there is an operation to reduce it

Example

```
ring r = 32003, (x,y,z,t,u,v,w,a,b,c,d,e,f,g,h,i,j,k), dp;
ideal i0=x3-x2y+x2z+xt-7uv+8xa+bc+gh+ij+vw+ak+tu,
a2b -x2,
abx-1,
```

 at some points computes spoly(a²b-x²,abx-1)=x³+a

. . . .

- same leading term as $x^3-x^2y+...$
- put x³+a at the place of x³-x²+... (in the basis) and vice versa
- critical pairs are updated automatically (only indices)
- use x^3 +a for reduction of x^3 - x^2y +...

Strengths of slimgb

- function fields
- elimination orderings
- rational numbers
- noncommutative rings
- treats also the case of modules

Implementation in Singular

- uses same low level functions and data structures as std (Buchberger)
- slightly tuned result of a diploma thesis
- still much room for optimization
- very easy to implement efficiently compared to F4

rational numbers

	Var.	Gen.	slimgb	std
Turaev/Viro 3 colors	44	1661	1 min 100MB	> 1d > 400MB
Turaev/Viro m3n10rAns+			20 min	>1 week
Turaev / Viro m4n1UnorAnsSimpl	53	892	1h	>1 week
Diaz1	7	9	0.25s 5,8MB	>45h >1GB

Smaller Coefficients

	slimgb	std
time	0.42s	243.49s
aver. inter. coeff. size	109	1188
multiplications	1190	3867

Chou 274 2 over F₃₂₀₀₃(p₁,...,p₅)[x₁, ..., x₇], Singular-2-1-99

Function fields

	О.	Ch	Par.	Dar	Dar	Dan Van	Slimgb		Std	
	U.			val.	S	MB	S	MB		
H. Simson 3	dp	Ρ	4	10	128	128	> 66735	> 3 60		
H. Butterly I	dp	Ρ	4	8	0.86	6.1	110	103		
Chou 303 I	lp	Ρ	5	8	2.6	6.3	>158370	>2200		
Chou 274 2	lp	Ρ	4	7	102	26.8	>163709	>500		
Chou 302 I	lp	Ρ	5	8	2.32	9.8	>150634	>2700		

p:=32003

Further Elimination

	О.	Ch		Slimgb		Std	
	U.	Ch.	Var.	S	MB	S	MB
Katsura 6	lр	Ρ	7	0.19	2.5	> 8 9	>21000
Katsura 5	lp	Ρ	5	0.01	0.8	1.8	69.8
ZeroDim 57	lp	Ρ	8	0.3	3.0	> 59	>15000
ZeroDim 29	lp	Ρ	8	0.03	0.8	>1451	>15000

Noncommutative

	О.	Ch.	Par.	Var.	Slimgb	Std
ucha 2	prod.	0	0	7	5,6s 5,9MB	16m 332MB
ucha 4	lp	0	0	6	0.01s 0,6MB	0,27 0,6MB
tarasov 2	dp	0	2	4	I,45min 26MB	>3,5h >2,4GB
bern5	prod.	0	0	6	2,11min 16,8 MB	>2h >7,5GB