Slimgb

Gröbner bases with slim polynomials

The Aim

avoid intermediate expression swell
Classical Buchberger algorithm with parallel reductions guided by new weighted length functions

- Often: big computations -> small results
- experiments show: blow up often avoidable
- use combination of several techniques
- no reduction to other methods (like Walk, homogenization, mod P approaches)

Classical measures of expression swell

- Length (number of terms)
- Ecart (max degree - lead degree)
- Coefficient size

Need them all!!!

Weighted Length

- $Z / p\left[x_{1}, \ldots, x_{n}\right]$: length
- $Q\left[x_{1}, \ldots, x_{n}\right]$: size $(\mathrm{lc}(p))^{*}$ length (p)
- elimination orderings:

$$
\sum_{m \in \operatorname{supp}(p)}\left(1+|\operatorname{deg}(m)-\operatorname{deg}(\operatorname{lm}(p))|^{+}\right)
$$

where $\operatorname{supp}(p)$ are the monomials of p e.g. for $x>y$: wlen $\left(x^{3}+y^{5}\right)=I+(I+5-3)=4$

Meaning for slimgb -

 weighted length controls everything- sort basis elements for reduction of SPolynomials
- choice of critical pairs (together with Sugar)
- additional reductors
- exchange basis elements by "w. shorter" ones

Extended product criterion

Theorem: $\mathrm{f}, \mathrm{g}, \mathrm{m}$ polynomials, $\operatorname{gcd}(\operatorname{lm}(\mathrm{f}), \operatorname{lm}(\mathrm{g}))=\mathrm{I}$ then spoly $\left(m^{*} f, m^{*} g\right)$ has standard representation against $\left\{m^{*} f, m^{*} g\right\}$

Proof:

- apply normal product criterion to f,g
- multiply with m

Application of extended product criterion

- common factor m is a mononial
- for every basis f element compute gcd m_{f} of its terms
- pull out gcd $\left(\mathrm{m}_{\mathrm{f}}, \mathrm{m}_{\mathrm{g}}\right)$
- $f=x^{*} y^{2}+x^{*} y, g=x^{*} z+x, x>y>z$ (lex)
- $m_{f}=x y m_{g}=x, \operatorname{gcd}(y 2, z)=1$

nontrivial t-representations

- Let $\operatorname{spoly}(p, q)=g_{1} * f_{1}+\ldots+g_{n} * f_{n}(*)$
- Let t monomial, $\mathrm{t}>==\operatorname{lm}\left(\mathrm{g}_{\mathrm{i}}\right) * \operatorname{lm}\left(\mathrm{f}_{\mathrm{i}}\right)$ for all i
- this is called a t-representation
- of course $t>=\operatorname{lm}(\operatorname{spoly}(p, q))$
- $t=\operatorname{lm}(s p o l y(p, q)):\left(^{*}\right)$ standard representation
- $\mathrm{t}<\operatorname{lcm}(\operatorname{lm}(\mathrm{p}), \operatorname{lm}(\mathrm{q})):\left({ }^{*}\right)$ nontrivial t representation (or nontrivial syzygy)

Example

- $f=x y+1$
$g=x^{2}+1$ $h=x$
- Ordering lp: $x>y$
- s:=spoly $(\mathrm{f}, \mathrm{g})=x-y$
- $\left(^{*}\right):-y^{*} f+\left(y^{2}+I\right)^{*} h=s$ is a $x y^{2}$-representation
- $x<x y^{2}<x^{2} y$: $\left(^{*}\right)$ nontrivial, but not standard

Theorem

- Let $G=\left\{g \mid, \ldots, g_{n}\right\}$
- G is a Gröbner basis iff for every i, j : $\operatorname{spoly}\left(\mathrm{g}_{\mathrm{i}}, \mathrm{g}_{\mathrm{i}}\right)$ has a nontrivial t representation (some $\mathrm{t}<\operatorname{lcm}\left(\operatorname{lm}\left(\mathrm{g}_{\mathrm{i}}\right), \operatorname{lm}\left(\mathrm{g}_{\mathrm{i}}\right)\right)$)
- Buchberger criterion: $\mathrm{t}=\operatorname{lm}\left(\mathrm{spoly}\left(\mathrm{g}_{\mathrm{i}}, \mathrm{g}_{\mathrm{i}}\right)\right)$
cf. Becker,Weißpfenning

Algorithm 1 slimgb main procedure, calculates a Gröbner basis of F
Require: F finite tuple of polynomials (from $K\left[x_{1}, \ldots, x_{n}\right]^{r}$).
$P:=\{(i, j) \mid 1 \leq i<j \leq \# F\}$
apply criteria to P
while $P \neq \emptyset$ do
choose $\emptyset \neq S \subset P$
$P:=P \backslash S$
$(R, F):=\operatorname{slimgbReduce}(S, F)$
for $0 \neq r \in R$ do
$F:=\operatorname{append}(F, r)$
$P:=P \cup\{(i, \# F) \mid 1 \leq i<\# F\}$
apply criteria to P
end for
end while
return F

slimgbReduce

- reduction of several polynomials
- modifies basis by replacing polynomials by shorter ones with same leading term
- no linear algebra

Axioms for the reduction algorithm

- Input: F: Basis, S: S-Polynomials
- Output: F' new Basis, R:reduced S-Polynomials

1. $\left\langle F^{\prime} \cup R\right\rangle_{K\left[x_{1}, \ldots, x_{n}\right]}=\langle F\rangle_{K\left[x_{1}, \ldots, x_{n}\right]}$,
2. $\# F=\# F^{\prime}$,
3. F^{\prime} preserves the order of $F: \forall i: \operatorname{lm}(F[i])=\operatorname{lm}\left(F^{\prime}[i]\right)$ and $\operatorname{spoly}\left(F[i], F^{\prime}[i]\right)$ has standard representation w. r. t. $F^{\prime} \cup R$,
4. each $r \in S$ has a nontrivial t-representation w. r. t. $F^{\prime} \cup R$,
5. and for termination: $R \neq \emptyset \Rightarrow \exists r \in R: \operatorname{lm}(r) \notin L(F)$.

Sketch of proof (main)

- Algorithm terminates as usual: termination property of slimgb reduce
- the algorithm ensures, that every pair gets nontrivial t-representation at some time
- if you exchange an element of F the old one has still a standard representation
- in particular the property of having a nontrivial t-representation is never lost

Gaussian-like algorithm

+ extra operations

Each polynomial in S corresponds to a row in Gauss

- f, g in $\mathrm{S}, \operatorname{Im}(\mathrm{f})=\operatorname{Im}(\mathrm{g})$: $\mathrm{g}->\operatorname{spoly}(\mathrm{f}, \mathrm{g})$
- f in F, g in S: $\operatorname{lm}(f) \mid \operatorname{lm}(g): g->$ spoly (f, g)
- f in F, g in $S: \operatorname{lm}(f)=\operatorname{lm}(g)$: replace f in F by g, g in S by spoly (f, g)

Every choice is controlled by the weighted length

Sketch of proof for reduction

- All properties hold at the beginning, except

$$
R \neq \emptyset \Rightarrow \exists r \in R: \operatorname{lm}(r) \notin L(F)
$$

- The other properties are preserved in each step
- No element with leading term in $L(F)$ can remain, as there is an operation to reduce it

Example

```
ring r = 32003, (x,y,z,t,u,v,w,a,b,c,d,e,f,g,h,i,j,k), dp;
ideal i0=x3-x2y+x2z+xt-7uv+8xa+bc+gh+ij+vw+ak+tu,
a2b -x2,
abx-1,
```

- at some points computes spoly $\left(a^{2} b-x^{2}, a b x-I\right)=x^{3}+a$
- same leading term as $x^{3}-x^{2} y+\ldots$
- put $x^{3}+a$ at the place of $x^{3}-x^{2}+\ldots$ (in the basis) and vice versa
- critical pairs are updated automatically (only indices)
- use $x^{3}+a$ for reduction of $x^{3}-x^{2} y+\ldots$

Strengths of slimgb

- function fields
- elimination orderings
- rational numbers
- noncommutative rings
- treats also the case of modules

Implementation in Singular

- uses same low level functions and data structures as std (Buchberger)
- slightly tuned result of a diploma thesis
- still much room for optimization
- very easy to implement efficiently compared to F4

rational numbers

	Var.	Gen.	slimgb	std
Turaev / Viro 3 colors	44	1661	1 min 100 MB	$>1 \mathrm{~d}$ $>400 \mathrm{MB}$
Turaev / Viro m3n1OrAns+	111	10159	20 min	>1 week
Turaev / Viro mannuruaransmimp	53	892	1 h	>1 week
Diaz1	7	9	0.25 s $5,8 \mathrm{MB}$	$>45 \mathrm{~h}$ $>1 \mathrm{~GB}$

Smaller Coefficients

	slimgb	std
time	0.42 s	243.49 s
aver. inter. coeff. size	109	1188
multiplications	1190	3867

Chou 2742 over $\mathrm{F}_{32003}(\mathrm{P} \mid, \ldots, \mathrm{Ps})\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{7}\right]$, singuar-2-1.99

Function fields

Further Elimination

	O.	Ch.	Var.	Slimgb		Std	
Katsura 6	IP	\mathbf{P}	7	0.19	2.5	>1819	>21000
Katsura 5	IP	\mathbf{P}	5	0.01	0.8	1.8	69.8
ZeroDim 57	IP	\mathbf{P}	$\mathbf{8}$	0.3	3.0	>1591	>15000
ZeroDim 29	IP	\mathbf{P}	$\mathbf{8}$	0.03	0.8	>1451	>15000

Noncommutative

	0.	Ch	Par	Var.	${ }_{\text {smmb }}$	sod
ucha2	pod	0	0	7	sasme	Unse
ucta 4	'	0	0	6	ootemem	aromes
anase 2	${ }^{\circ}$	0	2	4	,	,3802606
bems	pod	0	0	6		2mesee

