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The Aim
avoid intermediate expression swell

• Often: big computations -> small results

• experiments show: blow up often avoidable

• use combination of several techniques

• no reduction to other methods (like Walk, 
homogenization, mod p approaches)

Classical Buchberger algorithm with parallel reductions 
guided by new weighted length functions



Classical measures of 
expression swell

• Length (number of terms)

• Ecart (max degree - lead degree)

• Coefficient size

Need them all!!!



Weighted Length

• Z/p[x1, ... ,xn]: length

• Q[x1, ..., xn]: size(lc(p))*length(p)

• elimination orderings: 

where supp(p) are the monomials of p
e.g. for x>y: wlen(x3+y5)=1+(1+5-3)=4

We introduce now the notion of a weighted length by requiring certain prop-
erties which seem to be reasonable.

Definition 7 (weighted length) A weighted length function is a map wlen :
K[x1, . . . , xn]r → N with the following properties:

• wlen(p) = 0 ⇔ p = 0
• wlen(p) ≥ # supp(p)
• if t is a term, lm(t) /∈ supp(p), and lm(p) > lm(t) then wlen(p+t) > wlen(p)
• m a monomial ⇒ wlen(p) = wlen(m · p)

However none of these properties is required for the algorithm to be correct,
but they are essential for the performance. Maybe in some settings one has to
drop certain properties. For example, when extending this algorithm to the
noncommutative case, the wlen might be nonconstant under multiplication
with a monomial (as this is already the case with the normal length).

Important weighted length functions are:

• length: wlen(p) = # supp(p)
• coefficient strategy length: wlen(p) = coeffSize(lc(p))·# supp(p) (works very

good over function fields)
• elimination strategy length: wlen(p) =

∑
m∈supp(p)(1+| deg(m)−deg(lm(p))|+)

(good for elimination orderings, |x|+ := x if x is positive, 0 else).
• elimination and coefficient strategy length:

wlen(p) = coeffSize(lc(p)) ·
∑

m∈supp(p)

(1 + | deg(m)− deg(lm(p))|+)

Remark 8 When using buckets as polynomial data structure, the length can
only be estimated (but this is no serious problem). The elimination strategy
weighted length uses the algebraic structure, it cannot easily be transfered to
linear algebra like in Faugère’s F4 ((Faugère, J.-C., 1999)). The elimination
strategy speeds up many lexicographical examples up to a factor of 1000 (com-
pared to the same algorithm with normal lengths).

3.5 The reduction algorithm of slimgb

The idea of the reduction algorithm is to eliminate effects of disadvantageous
order of computations. For this aim the reduction is done parallel, and gen-
erating system members of the considered system F are exchanged by better
ones, which are found later.

The reduction algorithm works similar to Gaussian elimination with extra
operations.
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Meaning for slimgb -
weighted length controls everything

• sort basis elements for reduction of S-
Polynomials

• choice of critical pairs (together with 
Sugar)

• additional reductors

• exchange basis elements by “w. shorter” 
ones



Extended product 
criterion

Theorem: f, g, m polynomials, gcd(lm(f),lm(g))=1
then spoly(m*f, m*g) has standard 
representation against {m*f,m*g}

Proof:
- apply normal product criterion to f,g
- multiply with m



Application of extended 
product criterion

• common factor m is a mononial

• for every basis f element compute gcd mf of 
its terms

• pull out gcd(mf, mg)

• f=x*y2+x*y, g= x*z+x,  x>y>z (lex)

• mf=xy mg=x, gcd(y2,z)=1



nontrivial t-representations

• Let spoly(p,q)=g1*f1+... +gn*fn  (*)

• Let t monomial, t>=lm(gi)*lm(fi) for all i

• this is called a t-representation

• of course t>=lm(spoly(p,q))

• t=lm(spoly(p,q)): (*) standard representation

• t< lcm(lm(p),lm(q)): (*) nontrivial t-
representation (or nontrivial syzygy)



Example

• f=xy+1
g=x2+1
h=x

• Ordering lp: x>y

• s:=spoly(f,g)=x-y

• (*): -y*f+(y2 +1)*h=s is a xy2-representation

• x<xy2<x2y: (*) nontrivial, but not standard



Theorem

• Let G={g1,  ..., gn}

• G is a Gröbner basis iff
for every i,j: spoly(gi,gj) has a nontrivial t-
representation (some t<lcm(lm(gi),lm(gj)))

• Buchberger criterion: t=lm(spoly(gi,gj))

cf. Becker, Weißpfenning



Algorithm 1 slimgb main procedure, calculates a Gröbner basis of F

Require: F finite tuple of polynomials (from K[x1, . . . , xn]r).
P := {(i, j)|1 ≤ i < j ≤ #F}
apply criteria to P
while P "= ∅ do

choose ∅ "= S ⊂ P
P := P\S
(R, F ) := slimgbReduce(S, F )
for 0 "= r ∈ R do

F := append(F, r)
P := P ∪ {(i, #F )|1 ≤ i < #F}
apply criteria to P

end for

end while

return F

In particular the approach in this paper is completely orthogonal to the
major advancements done in (Caboara, M.; Kreuzer M.; Robbiano, L., 2004).
So a combination of these techniques is recommended.

The extended product criterion is also admitted, as it sorts out pairs, which
have, for a temporary state of the list F, nontrivial t-representation. By the
following specification of the reduction algorithm this property is never lost.

3.2 The Reduction Algorithm Specification

The reduction algorithm slimgbReduce takes as arguments the index set S (sub-
set of the pair set), and a finite tuple of polynomials F (the generating system)
and gives back a new set R and a finite tuple of polynomials F ′, s.t. the following
holds:

1. 〈F ′ ∪ R〉K[x1,...,xn]=〈F 〉K[x1,...,xn],

2. #F = #F ′,

3. F ′ preserves the order of F : ∀i : lm(F [i]) = lm(F ′[i]) and spoly(F [i], F ′[i])
has standard representation w. r. t. F ′ ∪ R,

4. each r ∈ S has a nontrivial t-representation w. r. t. F ′ ∪ R,

5. and for termination: R "= ∅ ⇒ ∃r ∈ R : lm(r) /∈ L(F ).

Remark 3.2. The third condition implies, that each f ∈ F has standard rep-
resentation w.r.t. F ′ ∪ R. This implies again, that for each (i, j) the fact that
spoly(F [i], F [j]) has nontrivial t-representation with respect to F implies that
the index pair (i, j) has the same property with respect to F ′ ∪R. The applica-
tion of the classical Buchberger normal form of (Greuel, G.-M. and Pfister, G.,
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slimgbReduce

• reduction of several polynomials

• modifies basis by replacing polynomials by 
shorter ones with same leading term

• no linear algebra



Axioms for the reduction 
algorithm

• Input: F: Basis,  S: S-Polynomials

• Output: F’ new Basis, R:reduced S-Polynomials

Algorithm 1 slimgb main procedure, calculates a Gröbner basis of F

Require: F finite tuple of polynomials (from K[x1, . . . , xn]r).
P := {(i, j)|1 ≤ i < j ≤ #F and lm(F [i]), lm(F [j]) ly
the same component} /* P is the set of critical pair indices */
apply criteria to P
while P "= ∅ do

choose ∅ "= S ⊂ P
P := P\S
(R, F ) := slimgbReduce(S, F ) /* where slimgbReduce is specified later */
for 0 "= r ∈ R do

F := append(F, r)
P := P ∪ {(i, #F )|1 ≤ i < #F}
apply criteria to P

end for

end while

return F

In particular the approach in this paper is completely orthogonal to the
major advancements done in (Caboara, M.; Kreuzer M.; Robbiano, L., 2004).
So a combination of these techniques is recommended.

The extended product criterion is also admitted, as it sorts out pairs, which
have, for a temporary state of the list F, nontrivial t-representation. By the
following specification of the reduction algorithm this property is never lost.

3.2 The Reduction Algorithm Specification

The reduction algorithm slimgbReduce takes as arguments the index set S (sub-
set of the pair set), and a finite tuple of polynomials F (the generating system)
and gives back a new set R and a finite tuple of polynomials F ′, s.t. the following
holds:

1. 〈F ′ ∪ R〉K[x1,...,xn]=〈F 〉K[x1,...,xn],

2. #F = #F ′,

3. F ′ preserves the order of F : ∀i : lm(F [i]) = lm(F ′[i]) and spoly(F [i], F ′[i])
has standard representation w. r. t. F ′ ∪ R,

4. each r ∈ S has a nontrivial t-representation w. r. t. F ′ ∪ R,

5. and for termination: R "= ∅ ⇒ ∃r ∈ R : lm(r) /∈ L(F ).

Remark 3.2. The third condition implies, that each f ∈ F has standard rep-
resentation w.r.t. F ′ ∪ R. This implies again, that for each (i, j) the fact that
spoly(F [i], F [j]) has nontrivial t-representation with respect to F implies that
the index pair (i, j) has the same property with respect to F ′ ∪R. The applica-
tion of the classical Buchberger normal form of (Greuel, G.-M. and Pfister, G.,
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Sketch of proof (main)

• Algorithm terminates as usual: termination 
property of slimgb reduce

• the algorithm ensures, that every pair gets 
nontrivial t-representation at some time

• if you exchange an element of F the old one 
has still a standard representation

• in particular the property of having a 
nontrivial t-representation is never lost



Gaussian-like algorithm 
+ extra operations

• f,g in S, lm(f)=lm(g): g->spoly(f,g)

• f in F, g in S: lm(f)|lm(g): g->spoly(f,g)

• f in F, g in S: lm(f)=lm(g): replace f in F by g, g 
in S by spoly(f,g)

Each polynomial in S corresponds to a row in Gauss

Every choice is controlled by the weighted length



Sketch of proof for 
reduction

• All properties hold at the beginning, except 

• The other properties are preserved in each 
step

• No element with leading term in L(F) can 
remain, as there is an operation to reduce 
it

have, for a temporary state of the list F, nontrivial t-representation. By the
following specification of the reduction algorithm this property is never lost.

3.2 The reduction algorithm specification

The reduction algorithm slimgbReduce takes as arguments the index set S
(subset of the pair set), and a finite tuple of polynomials F (the generating
system) and gives back a new set R and a finite tuple of polynomials F ′, s.t.
the following holds:

(1) 〈F ′ ∪R〉K[x1,...,xn]=〈F 〉K[x1,...,xn],
(2) #F = #F ′,
(3) F ′ preserves the order of F : ∀i : lm(F [i]) = lm(F ′[i]) and spoly(F [i], F ′[i])

has standard representation w. r. t. F ′ ∪R,
(4) each r ∈ R has a nontrivial t-representation w. r. t. F ′ ∪R,
(5) and for termination: R &= ∅ ⇒ ∃r ∈ R : lm(r) /∈ L(F ).

Remark 6 The third condition implies, that each f ∈ F has standard repre-
sentation w.r.t. F ′ ∪ R. This implies again, that for each (i, j) the fact that
spoly(F [i], F [j]) has nontrivial t-representation with respect to F implies that
the index pair (i, j) has the same property with respect to F ′ ∪ R. The appli-
cation of the classical Buchberger normal form of (Greuel, G.-M. and Pfister,
G., 2002) for all elements in R fullfills the desired properties of a reduction al-
gorithm for slimgb. Note also that using Gaussian elimination like in Faugère’s
F4 is a valid reduction algorithm. We will introduce a different algorithm fea-
turing parallel reduction, modifying F by following our main strategy.

3.3 Termination and Correctness of the main algorithm

Theorem 3.1 Let F = (f1, . . . , fk) be a polynomial system (fi ∈ K[x1, . . . , xn]r).
For i, j with lm(fi), lm(fj) lying in the same module component define mi,j as
follows: If lm(fi) = xα · el, lm(fj) = xβ · el, then define mi,j = lcm(xα, xβ)/xα.
The following are equivalent:

(1) F is a Gröbner basis of 〈F 〉K[x1,...,xn]

(2) Set

M := {(i, j)|1 ≤ i < j ≤ #F , lm(F [i]), lm(F [j]) ly in the same component}.
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Example

• at some points computes 
spoly(a2b-x2,abx-1)=x3+a

• same leading term as x3-x2y+...

• put x3+a at the place of x3-x2+... (in the 
basis) and vice versa

• critical pairs are updated automatically 
(only indices)

• use x3+a for reduction of x3-x2y+...

ring r = 32003, (x,y,z,t,u,v,w,a,b,c,d,e,f,g,h,i,j,k), dp; 
ideal i0=x3-x2y+x2z+xt-7uv+8xa+bc+gh+ij+vw+ak+tu, 
a2b -x2, 
abx-1, 
....



Strengths of slimgb

• function fields

• elimination orderings

• rational numbers

• noncommutative rings

• treats also the case of modules



Implementation in 
Singular

• uses same low level functions and data 
structures as std (Buchberger)

• slightly tuned result of a diploma thesis

• still much room for optimization

• very easy to implement efficiently 
compared to F4



rational numbers
Var. Gen. slimgb std

Turaev/Viro
3 colors 44 1661 1 min

100MB
> 1d

> 400MB

Turaev/Viro 
m3n1OrAns+

111 10159 20 min > 1 week

Turaev /Viro
m4n1UnorAnsSimpl

53 892 1h > 1 week

Diaz1 7 9 0.25s
5,8MB

>45h
>1GB

measured on Dual Opteron 2,2GHz 16GB RAM, Singular-3-0-1/CVS
 



Smaller Coefficients
slimgb std

time 0.42s 243.49s

aver. inter. 
coeff. size

109 1188

multiplications 1190 3867

Chou 274 2 over F32003(p1,...,p5)[x1, ..., x7], Singular-2-1-99



Function fields

O. Ch. Par. Var. Slimgb Std

s MB s MB

H. Simson 3 dp p 4 10 128 128 > 66735 >13160

H. Butterly 1 dp p 4 8 0.86 6.1 110 103

Chou 303 1 lp p 5 8 2.6 6.3 >158370 >2200

Chou 274 2 lp p 4 7 102 26.8 >163709 >500

Chou 302 1 lp p 5 8 2.32 9.8 >150634 >2700

p:=32003



Further Elimination

O. Ch. Var.
Slimgb Std

s MB s MB

Katsura 6 lp p 7 0.19 2.5 > 1819 >21000

Katsura 5 lp p 5 0.01 0.8 1.8 69.8

ZeroDim 
57 lp p 8 0.3 3.0 >1591 >15000

ZeroDim 
29 lp p 8 0.03 0.8 >1451 >15000



Noncommutative

O. Ch. Par. Var. Slimgb
Std

ucha 2 prod. 0 0 7 5,6s 5,9MB 16m 332MB

ucha 4 lp 0 0 6 0.01s 0,6MB 0,27 0,6MB

tarasov 2 dp 0 2 4 1,45min 26MB >3,5h >2,4GB

bern5 prod. 0 0 6 2,11min 16,8 MB >2h >7,5GB


