Gröbner Bases and Identities in Witt Rings

Josef Schicho and Georg Regensburger
Johann Radon Institute for Computational and Applied Mathematics (RICAM)
Austrian Academy of Sciences
\{josef.schicho,georg.regensburger\}@oeaw.ac.at

Special Semester on Gröbner Bases 2006
Gröbner Bases in Symbolic Analysis

Quadratic Forms

F field char $F \neq 2$
n-ary quadratic form

$$
\begin{aligned}
f\left(X_{1}, \ldots, X_{n}\right)= & \sum_{i, j} a_{i j} X_{i} X_{j} \in F\left[X_{1}, \cdots, X_{n}\right]=F[X] \\
\operatorname{dim} f=n & a_{i j}=a_{j i} \quad a_{i j}^{\prime}=\frac{1}{2}\left(a_{i j}+a_{j i}\right)
\end{aligned}
$$

$M_{f}=\left(a_{i j}\right) \quad$ symmetric matrix
$f(X)=X^{t} \cdot M_{f} \cdot X \quad X=\left(X_{1}, \ldots, X_{n}\right)^{t}$
f is regular if $\quad M_{f}$ is regular
All quadratic forms considered are regular

Equivalent Forms

$f, g \quad \mathrm{n}$-ary quadratic forms
$f \cong g \quad$ if there exists $C \in \mathrm{G}_{n}(F)$

$$
\begin{aligned}
f(X) & =g(C \cdot X) \\
M_{f} & =C^{t} \cdot M_{g} \cdot C
\end{aligned}
$$

Example: $\quad X_{1} X_{2} \cong X_{1}^{2}-X_{2}^{2} \quad X_{1} \mapsto X_{1}+X_{2}$

$$
X_{2} \mapsto X_{1}-X_{2}
$$

Every quadratic form is equivalent to a diagonal form

$$
d_{1} X_{1}^{2}+\cdots+d_{n} X_{n}^{2} \quad d_{i} \in \dot{F}
$$

Notation: $\left\langle d_{1}, \ldots, d_{n}\right\rangle$
Example: $\quad X_{1} X_{2} \cong\langle 1,-1\rangle$

Quadratic Maps

f quadratic form $\quad M_{f}$

$$
q_{f}: F^{n} \rightarrow F \quad q_{f}(x)=x^{t} \cdot M_{f} \cdot x
$$

$q_{f}(a x)=a^{2} q_{f}(x)$ quadratic

$$
q_{f}=q_{g} \Rightarrow f=g
$$

Adding and Multiplying Quadratic Forms

Orthogonal sum

$$
q_{1}, q_{2} \quad \operatorname{dim} q_{1}, q_{2}=m, n
$$

$$
\begin{aligned}
& q=q_{1} \perp q_{2} \quad q(x \oplus y)=q_{1}(x)+q_{2}(y) \\
& \quad x \oplus y \in F^{m} \oplus F^{n} \\
& \operatorname{dim} q=m+n \quad\left\langle a_{1}, \ldots, a_{m}\right\rangle \perp\left\langle b_{1}, \ldots, b_{n}\right\rangle \cong\left\langle a_{1} \ldots, a_{m}, b_{1}, \ldots, b_{n}\right\rangle
\end{aligned}
$$

Tensor product (Kronecker product)

$$
\begin{array}{lr}
q=q_{1} \otimes q_{2} & q(x \otimes y)=q_{1}(x) \cdot q_{2}(y) \\
\operatorname{dim} q=m n & x \otimes y \in F^{m} \otimes F^{n}
\end{array}
$$

$$
\left\langle a_{1}, \ldots, a_{m}\right\rangle \otimes\left\langle b_{1}, \ldots, b_{n}\right\rangle \cong\left\langle a_{1} b_{1} \ldots, a_{i} b_{j}, \ldots, a_{m} b_{n}\right\rangle
$$

Equivalence classes
commutative, associative, distributive semiring
$q \quad \operatorname{dim} q=n \quad x \in F^{n}, x \neq 0$ isotropic if $\quad q(x)=0$
q isotropic if there exists an isotropic vector anistropic otherwise
$\operatorname{dim} q=2 \quad q$ isotropic $\Leftrightarrow q \cong\langle 1,-1\rangle \Leftrightarrow q \cong X_{1} X_{2}$
Equivalence class for $\langle 1,-1\rangle$ is called the hyperbolic plane q isotropic $\Leftrightarrow q \cong\left\langle 1,-1, a_{3}, \ldots, a_{n}\right\rangle \quad a_{i} \in \dot{F}$

Witt decomposition: $\quad q=q_{h} \perp q_{a} \quad$ unique up to equivalence hyperbolic anisotropic

$$
q_{h} \cong n \cdot\langle 1,-1\rangle \cong X_{1} X_{2}+\cdots+X_{2 m-1} X_{m}
$$

Witt's Cancellation Theorem

$$
q \perp q_{1} \cong q \perp q_{2} \Rightarrow q_{1} \cong q_{2}
$$

Can be done constructively:

$$
\begin{array}{ccc}
M_{1}, M_{2} & \text { symmetric matrices } & q \perp q_{1}, q \perp q_{2} \\
N_{1}, N_{2} & \text { corresponding to } & q_{1}, q_{2}
\end{array}
$$

Given an invertible matrix C such that

$$
M_{1}=C^{t} \cdot M_{2} \cdot C
$$

We can compute an invertible matrix D such that

$$
N_{1}=D^{t} \cdot N_{2} \cdot D
$$

The Witt Ring

$$
\begin{aligned}
& q \cong q_{h} \perp q_{a} \quad q^{\prime} \cong q_{h}^{\prime} \perp q_{a}^{\prime} \\
& \quad q \sim q^{\prime} \text { Witt similar if } q_{a} \cong q_{a}^{\prime}
\end{aligned}
$$

Witt ring: $W(F)$ equivalence classes with \perp and

$$
\begin{aligned}
& q=0 \in W(F) \Leftrightarrow q \text { is hyperbolic } q \cong n \cdot\langle 1,-1\rangle \\
& q=q^{\prime} \in W(F) \Leftrightarrow q \cong q^{\prime}
\end{aligned}
$$

$\operatorname{dim} q=\operatorname{dim} q^{\prime}$

$$
\begin{aligned}
W(F):\langle a\rangle \perp\langle-a\rangle & =\langle a,-a\rangle=\langle 1,-1\rangle=0 \\
\left\langle a^{2}\right\rangle & =\langle 1\rangle \quad a \in \dot{F}
\end{aligned}
$$

Identities in Witt Rings

Prop:
$\langle a, b, c\rangle$ isotropic $\Leftrightarrow\langle b c, a c, a b, 1\rangle$ hyberpolic $\Leftrightarrow\langle b c, a c, a b, 1\rangle=0 \in W(F)$
We want to prove:

$$
\begin{gathered}
\langle a, b, f\rangle,\langle 1,-f,-a b\rangle \text { isotropic } \Rightarrow\langle a, b, a b\rangle \cong\langle 1,-f,-f\rangle \\
\text { and we want to find an invertible matrix } \quad C
\end{gathered}
$$

compute at every step the
We have to show in $W(F)$ corresponding matrices
(especially Witt cancellation)

$$
\begin{aligned}
\langle b f, a f, a b, 1\rangle & =0 \\
\langle a b f,-a b,-f, 1\rangle & =0
\end{aligned} \Rightarrow \quad \begin{aligned}
& \langle a, b, a b\rangle-\langle 1,-f,-f\rangle \\
& =\langle a, b, a b,-1, f, f\rangle=0
\end{aligned}
$$

Gröbner Bases and Witt Rings I

$$
\begin{aligned}
\langle b f, a f, a b, 1\rangle & =0 \\
\langle a b f,-a b,-f, 1\rangle & =0
\end{aligned} \Rightarrow\langle a, b, a b,-1, f, f\rangle=0
$$

Polynomials
$f_{1}=B F+A F+A B+1$
$f_{2}=A B F-A B-F+1$

$$
f_{3}=A+B+A B-1+2 F
$$

$$
g_{1}=A^{2}-1, g_{2}=B^{2}-1, g_{3}=F^{2}-1
$$

Gröbner Basis for the ideal $f_{1}, f_{2}, g_{1}, g_{2}, g_{3} \quad \begin{aligned} & \mathbb{Z}[A, B, F] \\ & <_{\text {lex }}, B<A<F\end{aligned}$
$G=f_{3}, g_{1}, g_{2}, g_{3}$

Prove the result in the Witt ring

$\langle a, b, a b\rangle$	$\xlongequal[\uparrow]{\cong}\langle 1,-f,-f\rangle$	
Can compute	C	Witness for
the proof		

Gröbner Bases and Witt Rings II

$$
\begin{aligned}
& f_{1}: B F+A F+A B+1=1-1+1-1=0 \\
& f_{2}: A B F-A B-F+1=1-1+1-1=0 \\
& \operatorname{SP}\left(f_{1}, f_{2}\right) \text { s-Polynomial } B f_{1}-f_{2} \\
& B f_{1}: B^{2} F+A B F+A F B^{2}+B=B-B+B-B=1-1+1-1=0 \\
& B^{2} F+A B F+A B^{2}+B=A B F-A B-F+\underset{\text { Witt cancellation }}{1-A B F} \\
& \begin{array}{rr}
B^{2} F+A B^{2}+B=-A B-F+1 & B^{2}=1 \\
F+A+B=-A B-F+1 & +F-A-B-1
\end{array} \\
& 2 F-1+A-A+B-B=-A B-A-B+F-F+1-1 \\
& 2 F-1=-A B-A-B \\
& \langle 1,-f,-f\rangle \cong\langle a, b, a b\rangle
\end{aligned}
$$

References

[Lam05] Lam, T. Y., Introduction to quadratic forms over fields, American Mathematical Society, 2005
[Sch00] Schicho, J., Proper parametrization of real tubular surfaces, J. Symbolic Comput., 2000, 30, 583-593

