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1 Constructive resolution of singularities

For the main idea of constructive resolution algorithm by Villamayor, the speaker
refers to the keynote talk by Herwig Hauser, a week before.

Experts on this: Herwig Hauser, Orlando Villamayor, Santiago Encinas.
Simultaneously with Villamayor, E. Bierstone and P. Milman invented a

similar algorithm.
All of these rely on Hironaka’s seminal paper on resolution of singularities

in characteristic 0.
Implementation in Maple and Magma by G. Bodnár and the speaker; faster

implementation jointly by A. Frühbis-Krüger and G. Pfister.
The speaker advertises a T-shirt produced by the company of Herwig Hauser,

featuring nice pictures and the text “Überabzahlbar”. Cost is ¿30.

2 Questions for today

Today: answer some questions that were left open in Hauser’s talk.

1. Why do we bother about resolution of singularities?

2. What is blowing up?

(a) What does the speaker’s definition have to do with the definition in
Hartshorne?

3. Prove the fact that the order does not increase.

4. How does one find a good hypersurface to do the induction on the dimen-
sion?

5. What is the coefficient ideal?

6. Prove that taking the coefficient ideal commutes with blowing up.

3 There we go.

Question 1. To compute birational invariants of a variety, you need a non-
singular model.

An important application is the situation where a kind of numerical eval-
uation is done on a variety (“curve tracing”, surface triangulation, etc). This
usually relies on the smoothness of the variety; for example, Newton’s method
only works if the jacobian does not vanish.
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However, resolution can be quite expensive, so in practice one might use
only a partial version of resolution.

Another application is in Diophantine equations, viz., when the equation is
reduced modulo a prime we want to lift it to characteristic 0 again using Hensel
lifting. For this, the equation over the residue field must be nonsingular. Bruin’s
algorithm (implemented in Magma) for deciding local solvability automatically
relies on blowing-up. Nils Bruin, “Some ternary Diophantine equations of signa-
ture (n, n, 2)”, to appear in Discovering Mathematics with Magma, W. Bosma,
J. Cannon (eds). (Springer).

But... the definition. Let X be a variety. A resolution of X is a map

π : X̃ → X

where X̃ is nonsingular, and π is a birational, regular, proper morphism of
varieties.

Why proper? Definition: f : X → Y is proper iff f is not the restriction
of g : U → Y to an open subset X ⊆ U . This ensures that we don’t miss any
interesting parts of X; for example, if we don’t require properness, the inclusion
of the nonsingular part of X in X would be a “resolution” as well!

Question 2. Given a ring R and an ideal I ⊆ R, how can we change R such
that I becomes principal?

Say, I =< g1, . . . , gr >R; then replace R by

R1 = R

[
g2

g1
,
g3

g1
, . . . ,

gr

g1

]
.

This is clearly asymmetric; so, instead replace R by the set of rings Ri where
gi is a generator of IRi, for i = 1, . . . , r.

This seems to claim that the blowup of a variety cannot be represented by
a single ring, but that we need several.

So what is Hartshorne’s definition of blowup?
Let X be a variety, and I a sheaf of ideals on X. Define the sheaf of algebras

S = ⊕i≥0Ii.

(We take I0 = OX .) Then the blowing-up of X along I is defined to be ProjS.
If X = Spec R, then I is just the ideal sheaf belonging to some ideal I ⊆ R,

and S comes from the graded algebra

S = ⊕i≥0I
i.

If I =< g1, . . . , gr >, then the gi get degree 1 in S. The corresponding projective
variety has one chart corresponding to each gi.

The ring Ri defined above is the ring of all fractions of degree 0 in the
localisation with respect to gi.
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We specialise to blowing up of An along a coordinate variety, i.e., its coor-
dinate ring is generated by some of the coordinate functions.

Pictures: a double point blows up to a curve intersecting twice the excep-
tional divisor. A cusp blows up to a curve touching the exceptional divisor.
After a second blowup, the total transform consists of three curves that meet
in a point. After a third blowup, only simple transversal intersection points are
left.

We need the order of an ideal at a point. For a single polynomial f ∈ K[X],
the order at a point P is the degree of the first monomial in the Taylor expansion
that does not vanish. For an ideal I, we define ordP (I) = min{ordP (f) | f ∈ I}.

Proposition. Assume that L is a coordinate variety, I is an ideal with ordP (I) ≥
m for all P ∈ L. Then the total transform of I with respect to L is a product
xm · I ′, where x is the equation of the exceptional divisor.

(The point was to make the generating ideal principal, at least locally. Now
the equation of the exceptional divisor is the remaining generator. I ′ is called
the controlled transform of I with respect to the control m. One may take m
maximal, and then I ′ is called the strict transform of I.)

Proof. Let f ∈ I, and let L = V (x1, . . . , xr). If f =
∑

ai1,...,inxi1
1 · · ·xin

n ∈ I,
then we have i1 + . . . + ir ≥ m.

Now compute the total transform of f in the first chart, the other charts
being similar. We have

fTr =
∑

ai1,...,inxi1
1 (x1y2)i2 . . . (x1yr)irx

ir+1
r+1 · · ·xin

n

= xm
1

(∑
ai1,...,inxi1+i2+...+in−m

1 · (other terms)
)

.

This proves the Proposition.

Theorem. Let I be an ideal, and L a coordinate variety. Assume that
ordP (I) = m for all P ∈ L, and ordP (I) ≤ m for all P 6∈ L. Let I ′ be the
controlled transform of I with respect to the control m. Then ordP ′(I ′) ≤ m
for all P ′ in the preimage of L.

(In other words, assume that L is contained in the top locus of the ideal I.)

Proof. We choose a coordinate system such that L = (x1, . . . , xr), and such
that P ′ = (x1, y2, . . . , yr, xr+1, . . . , xn) = (0, . . . , 0) in the first chart of the
blowup.

Let f ∈ I be such that in its Taylor expansion around the origin, all mono-
mials with nonzero coefficients have degree at least m, and equality is achieved
for at least one.

Then the total transform of f is

fTT =
∑

ai1,...,inx1i1 + . . . + ir −myi2
2 . . . yir

r x
ir+1
r+1 . . . xin

n ,

and we have i2 + i3 + . . . + ir ≤ m.
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