A Maple Implementation of F4

Roman Pearce, Michael Monagan

CECM / Simon Fraser University
supported by NSERC and MITACS NCE of Canada

March 1st, 2006

Why is Maple so Slow ?!

- whenever you modify an object, the system makes a copy
- $f \leftarrow f-\operatorname{lt}(f)$ makes a copy of f
- $f \leftarrow f-q G_{i}$ makes a copy of f
- conventional wisdom: all these copies mean you are doomed
- my experience: for the Bucberger algorithm you really are doomed

Is this necessarily true in general though ?

Reductions in the Buchberger Algorithm

Example

Divide $x^{2} y+y^{3}$ by $G=\left[x^{2}+y, x y^{2}-x y, y^{3}-1\right]$ (graded lex $\left.x>y\right)$

$$
\begin{aligned}
x^{2} y+y^{3} & \rightarrow x^{2} y-y G_{1}+y^{3} \\
& =y^{3}-y^{2} \\
& \rightarrow y^{3}-G_{3}-y^{2}
\end{aligned}=-y^{2}+1
$$

- equivalent to a matrix triangularization

	$x^{2} y$	y^{3}	y^{2}	1
S_{12}	1	1	0	0
$-y G_{1}$	1	0	1	0
$-G_{3}$	0	1	0	-1

$x^{2} y$	y^{3}	y^{2}	1
1	1	0	0
0	1	-1	0
0	0	1	-1

The F4 Algorithm

- put multiple syzygies into one matrix
- marginal cost of each reduction drops by an order of magnitude
- exploit strategies for sparse linear algebra
- modular method: reduce mod p , reconstruct useful rows

The F4 Algorithm

- put multiple syzygies into one matrix
- marginal cost of each reduction drops by an order of magnitude
- exploit strategies for sparse linear algebra
- modular method: reduce mod p , reconstruct useful rows
- difficult to express Gröbner basis in terms of the generators
- in Ore algebras the number of columns blows up
- parameters require evaluation/interpolation

Improved F4

Conversion to Linear System:

	$x^{2} y$	y^{3}	y^{2}	1
S_{12}	1	1	0	0
$-y G_{1}$	1	0	1	0
$-G_{3}$	0	1	0	-1

| $x^{2} y$ | y^{3} | y^{2} | 1 |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | 0 | 0 |
| 0 | 1 | -1 | 0 |
| 0 | 0 | 1 | -1 |

- row reduce mod p to determine useful columns (ie: y^{2}) put them on the right hand side and solve

$$
\begin{array}{l|rrr|rl}
& x^{2} y & y^{3} & 1 & y^{2} \\
\hline S_{12} & 1 & 1 & 0 & 0 \\
-y G_{1} & 1 & 0 & 0 & 1 \\
-G_{3} & 0 & 1 & -1 & 0
\end{array} \quad \longrightarrow \quad X=\left[\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right]
$$

- solution is a linear combination of rows producing a new polynomial
- ie: $\left[\begin{array}{lll}S_{12} & -y G_{1} & -G_{3}\end{array}\right] \cdot X$ gives $-y^{2}+1$

Improved F4

Linear System Method:

- allows you to use p-adic lifting
- the solutions are syzygies: can express $G B$ in terms of input
- parameters: evaluation/interpolation on syzygies, not the result
- you still have to reduce the full matrix mod p
- Ore algebras produce still column blowup (in initial matrix)

Overall this is still a big improvement.

Sparse Strategies for Linear Systems

Structured Gaussian Elimination:

- solve columns with one element, and remove corresponding rows
- declare some columns "heavy", and allow them to fill in
- use rows with one light element to eliminate columns
- extract dense rows (forward substitute and solve at the end)
result: big sparse system \rightarrow small dense system
- use fast dense (modular) method to solve, back substitute solutions

Normal Form Computation

Conversion to Nullspace:

	$x^{2} y$	y^{3}	y^{2}	1
S_{12}	1	1	0	0
$-y G_{1}$	1	0	1	0
$-G_{3}$	0	1	0	-1

$\longrightarrow \quad$| | $-y G_{1}$ | $-G_{3}$ | S_{12} |
| :--- | ---: | ---: | ---: |
| $x^{2} y$ | 1 | 0 | 1 |
| y^{3} | 0 | 1 | 1 |

- write polynomial in RHS vector, GB multiples as LHS columns
- include only monomials reducible by GB
- solution X is a syzygy which cancels all reducible terms
ie: $S_{12}-\left(\left[\begin{array}{ll}-y G_{1} & -G_{3}\end{array}\right] \cdot X\right)$ gives $-y^{2}+1$
- matrix obviously much smaller
- efficiently compute normal forms of several polynomials at once

Matrix Size Improvement

Cyclic-7

Regular F4	Improved F4	Nullspace
11×71	$11 \times 11,1$ rhs	$9 \times 9,1$ rhs
46×159	$46 \times 46,2 \mathrm{rhs}$	$41 \times 41,3 \mathrm{rhs}$
93×274	$93 \times 93,5 \mathrm{rhs}$	$84 \times 84,7 \mathrm{rhs}$
208×465	$208 \times 208,11 \mathrm{rhs}$	$182 \times 182,18$ rhs
412×729	$412 \times 412,21 \mathrm{rhs}$	$360 \times 360,41 \mathrm{rhs}$
734×1074	$734 \times 734,41 \mathrm{rhs}$	$628 \times 628,89 \mathrm{rhs}$
1165×1387	$1165 \times 1165,52$ rhs	$963 \times 963,171$ rhs
1238×1358	$\begin{gathered} 1238 \times 1238,62 \text { rhs } \\ \text { etc. } \end{gathered}$	$950 \times 950,229 \mathrm{rhs}$

- matrices are smaller, but with more right hand side vectors
- for improved F4 we had to do work $(\bmod p)$ to choose RHS
- minimal column blowup from Ore algebras

Example Matrix (338 x 338)

15 S-polynomials divided by Gröbner basis of Katsura-6

Block Structure

- systems are block triangular (upper and lower blocks)
- no elimination required to solve, similar cost for any field
- some blowup during back substitution (unavoidable)
- very fast for parameters and Ore algebras

Block Structure

- systems are block triangular (upper and lower blocks)
- no elimination required to solve, similar cost for any field
- some blowup during back substitution (unavoidable)
- very fast for parameters and Ore algebras

Observe:

- this is a sparse strategy for polynomial division
- it is efficient for reducing many polynomials at once

Question: Can we use it to speed up F4 ?

Application to F4

Procedure:

- select a set of syzygies and reduce them using this algorithm
- add result to current basis
- watch F4 grind to a halt :(

Application to F4

Problem: the normal forms are not inter-reduced
Example: reduce $\left\{2 x^{2}+x+1, x^{2}+x\right\}$ by $\left\{x^{2}+1\right\}$

$$
\longrightarrow\{-x+1, x-1\}
$$

Solution:

- put normal forms into rows of a (small) matrix
- do Gaussian elimination (actually, Gauss-Jordan)
- (better) do linear system solving trick, put columns in RHS

How Much Was Gained ?

Rational Numbers:

- modular method required only for very small matrix
- extreme exploitation of sparsity

Parameters:

- evaluation required only for very small matrix
- convert to linear system \rightarrow interpolate only small syzygies

Ore Algebras:

- blowup terms only appear if they are needed for the division

Current Status of the Project

Our implementation is about 70 percent complete.

Done:

- symbolic preprocessing / construct linear system
- efficient solution of block system (all domains)

Not Done:

- efficient inter-reduce (LinearAlgebra:-Modular)

Not Good Enough:

- critical pair handling

