A Maple Implementation of F4

Roman Pearce, Michael Monagan

CECM / Simon Fraser University

supported by NSERC and MITACS NCE of Canada

March 1st, 2006

Why is Maple so Slow 7!

e Whenever you modify an object, the system makes a copy

o f«— f—1t(f) makes a copy of f

o f«— f—qG; makes a copy of f

e conventional wisdom: all these copies mean you are doomed

e My experience: for the Bucberger algorithm you really are doomed

Is this necessarily true in general though 7

Reductions in the Buchberger Algorithim

Example

Divide 2%y +y> by G = [¢® + y,zy” —zy,y> — 1] (graded lex z > y)

2 2
2y+y> — |22y —yGil+yS =y -

— |y —G3|—y° = —y*+1

e equivalent to a matrix triangularization

%y y3 y? 1 %y y> y? 1
S1o 1 1 O O . 1 1 O O
—yG1| 1 0 1 o0 0 1 -1 0
_Gs 0 1 0 -1 o 0 1 -1

The F4 Algorithm

put multiple syzygies into one matrix

marginal cost of each reduction drops by an order of magnitude

exploit strategies for sparse linear algebra

modular method: reduce mod p, reconstruct useful rows

The F4 Algorithm

put multiple syzygies into one matrix

marginal cost of each reduction drops by an order of magnitude

exploit strategies for sparse linear algebra

modular method: reduce mod p, reconstruct useful rows

difficult to express Grobner basis in terms of the generators

iIn Ore algebras the number of columns blows up

parameters require evaluation/interpolation

Improved F4

Conversion to Linear System.:

2y y> y? 1 ?y y> y® 1
S1o 1 1 0 O . 1 1 0 O
—yG1 1 0 1 o0 0 1 -1 0
(s 0 1 0 -1 0 0 [1] -1
e row reduce mod p to determine useful columns (ie: y2)
put them on the right hand side and solve
22y 3 1|42 -
S1o 1 1 O] O
X =] -
—yG1| 1 0 0] 1 7 _1
—G3 O 1 -1| O - -

e solution is a linear combination of rows producing a new polynomial

° ic: [S1o —yG1 —G3] . X gives —y2 + 1

Improved F4

Linear System Method.:

e allows you to use p-adic lifting

e the solutions are syzygies: can express GB in terms of input

e parameters: evaluation/interpolation on syzygies, not the result

e you still have to reduce the full matrix mod p

e Ore algebras produce still column blowup (in initial matrix)

Overall this is still a big improvement.

Sparse Strategies for Linear Systems
Structured Gaussian Elimination:

e solve columns with one element, and remove corresponding rows

e declare some columns " heavy”, and allow them to fill in

e use rows with one light element to eliminate columns

e extract dense rows (forward substitute and solve at the end)

result: big sparse system — small dense system

e use fast dense (modular) method to solve, back substitute solutions

Normal Form Computation

Conversion to Nullspace:

2

3 2 1
vY ¥ 1Y —yG1 —G3 | S12
S1o 1 1, 0O O 2 1 0 1
> Yy
—yG1| 1 0] 1 O 3] ol
—G3 0 1| 0 -1 Y

e write polynomial in RHS vector, GB multiples as LHS columns
e include only monomials reducible by GB

e solution X is a syzygy which cancels all reducible terms

ie: Sio — ([—yG1 —G3] . X) gives —y2 +1

e Mmatrix obviously much smaller

e efficiently compute normal forms of several polynomials at once

Matrix Size Improvement

Cyclic-7
Regular F4 Improved F4 Nullspace
11 x 71 11 x 11, 1 rhs Ox9, 1rhs
46 X 159 46 X 46, 2 rhs 41 x 41, 3 rhs
03 x 274 93 X 93, 5 rhs 84 x 84, 7 rhs

208 x 465 208 x 208, 11 rhs 182 x 182, 18 rhs

412 x 729 412 x 412, 21 rhs 360 x 360, 41 rhs

734 x 1074 734 x 734, 41 rhs 628 X 628, 89 rhs

1165 x 1387 1165 x 1165, 52 rhs 963 x 963, 171 rhs

1238 x 1358 1238 x 1238, 62 rhs 950 x 950, 229 rhs
etc.

e Mmatrices are smaller, but with more right hand side vectors

e for improved F4 we had to do work (mod p) to choose RHS

e Mminimal column blowup from Ore algebras

Example Matrix (338 x 338)

15 S-polynomials divided by Grobner basis of Katsura-6

Block Structure

systems are block triangular (upper and lower blocks)

no elimination required to solve, similar cost for any field

some blowup during back substitution (unavoidable)

very fast for parameters and Ore algebras

Block Structure

e systems are block triangular (upper and lower blocks)

e NO elimination required to solve, similar cost for any field

e some blowup during back substitution (unavoidable)

e very fast for parameters and Ore algebras

Observe:

e this is a sparse strategy for polynomial division

e it is efficient for reducing many polynomials at once

Question: Can we use it to speed up F4 7

Application to F4

Procedure:

e Select a set of syzygies and reduce them using this algorithm

e add result to current basis

e watch F4 grind to a halt :(

Application to F4

Problem: the normal forms are not inter-reduced
Example: reduce {222 +z 4+ 1,22+ z} by {2 + 1}
— {—x+ 1,z -1}

Solution:

e put normal forms into rows of a (small) matrix
e do Gaussian elimination (actually, Gauss-Jordan)

e (better) do linear system solving trick, put columns in RHS

How Much Was Gained ?

Rational Numbers:

e modular method required only for very small matrix

e extreme exploitation of sparsity

Parameters:

e evaluation required only for very small matrix

e convert to linear system — interpolate only small syzygies

Ore Algebras:

e blowup terms only appear if they are needed for the division

Current Status of the Project

Our implementation is about 70 percent complete.

Done:

e symbolic preprocessing / construct linear system

e efficient solution of block system (all domains)

Not Done:

e cfficient inter-reduce (LinearAlgebra:-Modular)

Not Good Enough:

e Critical pair handling

