
A Maple Implementation of F4

Roman Pearce, Michael Monagan

CECM / Simon Fraser University

supported by NSERC and MITACS NCE of Canada

March 1st, 2006



Why is Maple so Slow ?!

• whenever you modify an object, the system makes a copy

• f ← f − lt(f) makes a copy of f

• f ← f − q Gi makes a copy of f

• conventional wisdom: all these copies mean you are doomed

• my experience: for the Bucberger algorithm you really are doomed

Is this necessarily true in general though ?



Reductions in the Buchberger Algorithm

Example

Divide x2y + y3 by G = [x2 + y, xy2 − xy, y3 − 1] (graded lex x > y)

x2y + y3 → x2y − y G1 + y3 = y3 − y2

→ y3 −G3 − y2 = −y2 + 1

• equivalent to a matrix triangularization

x2y y3 y2 1
S12 1 1 0 0
−yG1 1 0 1 0
−G3 0 1 0 -1

−→

x2y y3 y2 1
1 1 0 0
0 1 -1 0
0 0 1 -1



The F4 Algorithm

• put multiple syzygies into one matrix

• marginal cost of each reduction drops by an order of magnitude

• exploit strategies for sparse linear algebra

• modular method: reduce mod p, reconstruct useful rows



The F4 Algorithm

• put multiple syzygies into one matrix

• marginal cost of each reduction drops by an order of magnitude

• exploit strategies for sparse linear algebra

• modular method: reduce mod p, reconstruct useful rows

• difficult to express Gröbner basis in terms of the generators

• in Ore algebras the number of columns blows up

• parameters require evaluation/interpolation



Improved F4

Conversion to Linear System:

x2y y3 y2 1
S12 1 1 0 0
−yG1 1 0 1 0
−G3 0 1 0 -1

−→

x2y y3 y2 1
1 1 0 0
0 1 -1 0
0 0 1 -1

• row reduce mod p to determine useful columns (ie: y2)

put them on the right hand side and solve

x2y y3 1 y2

S12 1 1 0 0
−yG1 1 0 0 1
−G3 0 1 -1 0

−→ X =

 1
−1
−1



• solution is a linear combination of rows producing a new polynomial

• ie:
[

S12 −yG1 −G3

]
·X gives −y2 + 1



Improved F4

Linear System Method:

• allows you to use p-adic lifting

• the solutions are syzygies: can express GB in terms of input

• parameters: evaluation/interpolation on syzygies, not the result

• you still have to reduce the full matrix mod p

• Ore algebras produce still column blowup (in initial matrix)

Overall this is still a big improvement.



Sparse Strategies for Linear Systems

Structured Gaussian Elimination:

• solve columns with one element, and remove corresponding rows

• declare some columns ”heavy”, and allow them to fill in

• use rows with one light element to eliminate columns

• extract dense rows (forward substitute and solve at the end)

result: big sparse system → small dense system

• use fast dense (modular) method to solve, back substitute solutions



Normal Form Computation

Conversion to Nullspace:

x2y y3 y2 1
S12 1 1 0 0
−yG1 1 0 1 0
−G3 0 1 0 -1

−→
−yG1 −G3 S12

x2y 1 0 1
y3 0 1 1

• write polynomial in RHS vector, GB multiples as LHS columns

• include only monomials reducible by GB

• solution X is a syzygy which cancels all reducible terms

ie: S12 − (
[
−yG1 −G3

]
·X) gives −y2 + 1

• matrix obviously much smaller

• efficiently compute normal forms of several polynomials at once



Matrix Size Improvement

Cyclic-7

Regular F4 Improved F4 Nullspace
11 x 71 11 x 11, 1 rhs 9 x 9, 1 rhs
46 x 159 46 x 46, 2 rhs 41 x 41, 3 rhs
93 x 274 93 x 93, 5 rhs 84 x 84, 7 rhs
208 x 465 208 x 208, 11 rhs 182 x 182, 18 rhs
412 x 729 412 x 412, 21 rhs 360 x 360, 41 rhs
734 x 1074 734 x 734, 41 rhs 628 x 628, 89 rhs
1165 x 1387 1165 x 1165, 52 rhs 963 x 963, 171 rhs
1238 x 1358 1238 x 1238, 62 rhs 950 x 950, 229 rhs

etc.

• matrices are smaller, but with more right hand side vectors

• for improved F4 we had to do work (mod p) to choose RHS

• minimal column blowup from Ore algebras



Example Matrix (338 x 338)

15 S-polynomials divided by Gröbner basis of Katsura-6



Block Structure

• systems are block triangular (upper and lower blocks)

• no elimination required to solve, similar cost for any field

• some blowup during back substitution (unavoidable)

• very fast for parameters and Ore algebras



Block Structure

• systems are block triangular (upper and lower blocks)

• no elimination required to solve, similar cost for any field

• some blowup during back substitution (unavoidable)

• very fast for parameters and Ore algebras

Observe:

• this is a sparse strategy for polynomial division

• it is efficient for reducing many polynomials at once

Question: Can we use it to speed up F4 ?



Application to F4

Procedure:

• select a set of syzygies and reduce them using this algorithm

• add result to current basis

• watch F4 grind to a halt :(



Application to F4

Problem: the normal forms are not inter-reduced

Example: reduce {2x2 + x + 1, x2 + x} by {x2 + 1}

−→ {−x + 1, x− 1}

Solution:

• put normal forms into rows of a (small) matrix

• do Gaussian elimination (actually, Gauss-Jordan)

• (better) do linear system solving trick, put columns in RHS



How Much Was Gained ?

Rational Numbers:

• modular method required only for very small matrix

• extreme exploitation of sparsity

Parameters:

• evaluation required only for very small matrix

• convert to linear system → interpolate only small syzygies

Ore Algebras:

• blowup terms only appear if they are needed for the division



Current Status of the Project

Our implementation is about 70 percent complete.

Done:

• symbolic preprocessing / construct linear system

• efficient solution of block system (all domains)

Not Done:

• efficient inter-reduce (LinearAlgebra:-Modular)

Not Good Enough:

• critical pair handling


