A Maple Implementation of F4

Roman Pearce, Michael Monagan

CECM / Simon Fraser University supported by NSERC and MITACS NCE of Canada

March 1st, 2006

Why is Maple so Slow ?!

- whenever you modify an object, the system makes a copy
- $f \leftarrow f \mathsf{lt}(f)$ makes a copy of f
- $f \leftarrow f q G_i$ makes a copy of f
- conventional wisdom: all these copies mean you are doomed
- my experience: for the Bucberger algorithm you really are doomed

Is this necessarily true in general though ?

Reductions in the Buchberger Algorithm

Example

Divide
$$x^2y + y^3$$
 by $G = [x^2 + y, xy^2 - xy, y^3 - 1]$ (graded lex $x > y$)
 $x^2y + y^3 \rightarrow [x^2y - yG_1] + y^3 = y^3 - y^2$
 $\rightarrow [y^3 - G_3] - y^2 = -y^2 + 1$

• equivalent to a matrix triangularization

The F4 Algorithm

- put multiple syzygies into one matrix
- marginal cost of each reduction drops by an order of magnitude
- exploit strategies for sparse linear algebra
- modular method: reduce mod p, reconstruct useful rows

The F4 Algorithm

- put multiple syzygies into one matrix
- marginal cost of each reduction drops by an order of magnitude
- exploit strategies for sparse linear algebra
- modular method: reduce mod p, reconstruct useful rows
- difficult to express Gröbner basis in terms of the generators
- in Ore algebras the number of columns blows up
- parameters require evaluation/interpolation

Improved F4

Conversion to Linear System:

• row reduce mod p to determine useful columns (ie: y^2) put them on the right hand side and solve

• solution is a linear combination of rows producing a new polynomial

• ie:
$$\begin{bmatrix} S_{12} & -yG_1 & -G_3 \end{bmatrix} \cdot X \text{ gives } -y^2 + 1$$

Improved F4

Linear System Method:

- allows you to use p-adic lifting
- the solutions are syzygies: can express GB in terms of input
- parameters: evaluation/interpolation on syzygies, not the result
- you still have to reduce the full matrix mod p
- Ore algebras produce still column blowup (in initial matrix)

Overall this is still a big improvement.

Sparse Strategies for Linear Systems

Structured Gaussian Elimination:

- solve columns with one element, and remove corresponding rows
- declare some columns "heavy", and allow them to fill in
- use rows with one light element to eliminate columns
- extract dense rows (forward substitute and solve at the end)

result: big sparse system \rightarrow small dense system

• use fast dense (modular) method to solve, back substitute solutions

Normal Form Computation

Conversion to Nullspace:

- write polynomial in RHS vector, GB multiples as LHS columns
- include only monomials reducible by GB
- solution X is a syzygy which cancels all reducible terms ie: $S_{12} - (\begin{bmatrix} -yG_1 & -G_3 \end{bmatrix} \cdot X)$ gives $-y^2 + 1$
- matrix obviously much smaller
- efficiently compute normal forms of several polynomials at once

Matrix Size Improvement

Cyclic-7

Regular F4	Improved F4	Nullspace
11 × 71	11 x 11, 1 rhs	9 x 9, 1 rhs
46 x 159	46 x 46, 2 rhs	41 x 41, 3 rhs
93 x 274	93 x 93, 5 rhs	84 x 84, 7 rhs
208 x 465	208 x 208, 11 rhs	182 x 182, 18 rhs
412 x 729	412 x 412, 21 rhs	360 x 360, 41 rhs
734 x 1074	734 x 734, 41 rhs	628 x 628, 89 rhs
1165 x 1387	1165 x 1165, 52 rhs	963 x 963, 171 rhs
1238 x 1358	1238 x 1238, 62 rhs	950 x 950, 229 rhs
	etc.	

- matrices are smaller, but with more right hand side vectors
- for improved F4 we had to do work (mod p) to choose RHS
- minimal column blowup from Ore algebras

Example Matrix (338 x 338)

15 S-polynomials divided by Gröbner basis of Katsura-6

Block Structure

- systems are **block triangular** (upper and lower blocks)
- no elimination required to solve, similar cost for any field
- some blowup during back substitution (unavoidable)
- very fast for parameters and Ore algebras

Block Structure

- systems are **block triangular** (upper and lower blocks)
- no elimination required to solve, similar cost for any field
- some blowup during back substitution (unavoidable)
- very fast for parameters and Ore algebras

Observe:

- this is a sparse strategy for polynomial division
- it is efficient for reducing many polynomials at once

Question: Can we use it to speed up F4 ?

Application to F4

Procedure:

- select a set of syzygies and reduce them using this algorithm
- add result to current basis
- watch F4 grind to a halt :(

Application to F4

Problem: the normal forms are not inter-reduced

Example: reduce $\{2x^2 + x + 1, x^2 + x\}$ by $\{x^2 + 1\}$

 $\longrightarrow \{-x+1, x-1\}$

Solution:

- put normal forms into rows of a (small) matrix
- do Gaussian elimination (actually, Gauss-Jordan)
- (better) do linear system solving trick, put columns in RHS

How Much Was Gained ?

Rational Numbers:

- modular method required only for very small matrix
- extreme exploitation of sparsity

Parameters:

- evaluation required only for very small matrix
- convert to linear system \rightarrow interpolate only small syzygies

Ore Algebras:

• blowup terms only appear if they are needed for the division

Current Status of the Project

Our implementation is about 70 percent complete.

Done:

- symbolic preprocessing / construct linear system
- efficient solution of block system (all domains)

Not Done:

• efficient inter-reduce (LinearAlgebra:-Modular)

Not Good Enough:

• critical pair handling