Computation of dimensions and Ext functors

Fco. Javier Lobillo Borrero

Departamento de Álgebra
E. T. S. Ingenierías Informática y de Telecomunicación

Universidad de Granada
SSGB-D2 @ RISC, Linz, May 11th, 2006

Index

(1) PBW rings

- Generators and relations
- Covered examples
- Characterization of PBW rings
- Modules over PBW rings
(2) Ext functors
- Presentation of modules
- A free resolution
- Computation of Ext
- Consequences
(3) Gelfand-Kirillov dimension
- Definition of GK dimension
- Computation of GK dimension
- Consequences

Index

(9) PBW rings

- Generators and relations
- Covered examples
- Characterization of PBW rings
- Modules over PBW rings
(2) Ext functors
- Presentation of modules
- A free resolution
- Computation of Ext
- Consequences
(3) Gelfand--Kirillov dimension
- Definition of GK dimension
- Computation of GK dimension
- Consequences

Standard polynomials

- Let $\Lambda \subseteq R$ be a ring extension, $\mathcal{U}(\Lambda)$ the units of Λ,
- let $x_{1}, \ldots, x_{p} \in R$.
- The elements $X^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{p}^{\alpha_{p}}$ where $\alpha \in \mathbb{N}^{p}$ are called (standard) monomials,
- left \wedge-linear combinations of them are called (left) (standard) polynomials.
- If $f=\sum_{\alpha \in \mathbb{N}^{\rho}} \lambda_{\alpha} X^{\alpha}$ is a polynomial, The Newton diagram of f is $\mathcal{N}(f)=\left\{\alpha \in \mathbb{N}^{p} \mid \lambda_{\alpha} \neq 0\right\}$.
- If \preceq is an ordering on \mathbb{N}^{p} then the exponent of f is defined as $\exp (f)=\max _{\preceq} \mathcal{N}(f)$.

Quantum relations

$$
\left\{\begin{array}{l}
x_{j} x_{i}=\tau_{i j} x_{i} x_{j}+p_{i j} \\
x_{k} \lambda=\lambda^{(k)} x_{k}+p_{k, \lambda}
\end{array}\right.
$$

$1 \leq i<j \leq p, 1 \leq k \leq p$,
$\lambda, \lambda^{(k)} \in \Lambda, \tau_{i j} \in \mathcal{U}(\Lambda)$,
$p_{i j}$ and $p_{k, \lambda}$ are standard polynomials

PBW rings

A left PBW Λ-ring is a $\Lambda \subseteq R$ extension such that there exists a set of elements $x_{1}, \ldots, x_{p} \in R$ satisfying the following properties

- R is a free Λ-module with basis $\left\{X^{\alpha} \mid \alpha \in \mathbb{N}^{p}\right\}$, the standard monomials
- the elements x_{1}, \ldots, x_{p} satisfy the previous relations

- There exists an admissible ordering \preceq on \mathbb{N}^{p} such that

Details in ${ }^{1}$ and ${ }^{2}$

PBW rings

A left PBW Λ-ring is a $\Lambda \subseteq R$ extension such that there exists a set of elements $x_{1}, \ldots, x_{p} \in R$ satisfying the following properties

- R is a free Λ-module with basis $\left\{X^{\alpha} \mid \alpha \in \mathbb{N}^{p}\right\}$, the standard monomials
- the elements x_{1}, \ldots, x_{p} satisfy the previous relations

$$
\left\langle\begin{array}{l}
x_{j} x_{i}=\tau_{i j} x_{i} x_{j}+p_{i j} \\
x_{k} \lambda=\lambda^{(k)} x_{k}+p_{k, \lambda}
\end{array}\right\rangle
$$

- There exists an admissible ordering \preceq on \mathbb{N}^{p} such that

PBW rings

A left PBW Λ-ring is a $\Lambda \subseteq R$ extension such that there exists a set of elements $x_{1}, \ldots, x_{p} \in R$ satisfying the following properties

- R is a free Λ-module with basis $\left\{X^{\alpha} \mid \alpha \in \mathbb{N}^{p}\right\}$, the standard monomials
- the elements x_{1}, \ldots, x_{p} satisfy the previous relations

$$
\left\langle\begin{array}{rl}
x_{j} x_{i} & =\tau_{i j} x_{i} x_{j}+p_{i j} \\
x_{k} \lambda & =\lambda^{(k)} x_{k}+p_{k, \lambda}
\end{array}\right\rangle
$$

- There exists an admissible ordering \preceq on \mathbb{N}^{p} such that

$$
\exp \left(p_{i j}\right) \prec \epsilon_{i}+\epsilon_{j} \quad \text { and } \quad \exp \left(p_{k, \lambda}\right) \prec \epsilon_{k}
$$

Details in ${ }^{1}$ and ${ }^{2}$
1 J. L. Bueso, J. Gómez-Torrecillas and F. J. Lobillo, Homological Computations in PBW
Modules, Algebr. Represent. Theory, 4: 201-218, 2001
2J. L. Bueso, J. Gómez-Torrecillas and A. Verschoren, Algorithmic methods in
non-commutative algebra. Applications to quantum groups., Mathematical Modelling for ury Unixndidad
Applications 17. Dordrecht: Kluwer Academic Publishers, 2003

Index

(1) PBW rings

- Generators and relations
- Covered examples
- Characterization of PBW rings
- Modules over PBW rings
(2) Ext functors
- Presentation of modules
- A free resolution
- Computation of Ext
- Consequences

3 Gelfand--Kirillov dimension

- Definition of GK dimension
- Computation of GK dimension
- Consequences

Example: Quantized affine space

Λ is a commutative ring, $\Lambda_{q}\left[x_{1}, \ldots, x_{p}\right]$ is a Λ-algebra and tails are zero. So

$$
\begin{aligned}
\lambda^{(k)} & =\lambda \\
p_{k, \lambda} & =0 \\
p_{i j} & =0
\end{aligned}
$$

Hence relations are

$$
\left\langle x_{j} x_{i}=q_{i j} x_{i} x_{j}\right\rangle
$$

Example: Quantized affine space

Λ is a commutative ring, $\Lambda_{q}\left[x_{1}, \ldots, x_{p}\right]$ is a Λ-algebra and tails are zero. So

$$
\begin{aligned}
\lambda^{(k)} & =\lambda \\
p_{k, \lambda} & =0 \\
p_{i j} & =0
\end{aligned}
$$

Hence relations are

$$
\left\langle x_{j} x_{i}=q_{i j} x_{i} x_{j}\right\rangle
$$

Example: Crossed product $R=\Lambda * \mathbb{N}^{p}$

Tails are zero. The map $\tau: \mathbb{N}^{p} \times \mathbb{N}^{p} \rightarrow \mathcal{U}(\Lambda)$ defined by $\tau\left(\epsilon_{i}, \epsilon_{j}\right)=\tau_{i j}$ is a 2-cocycle. The relations are

$$
\left\langle\begin{array}{rl}
x_{j} x_{i} & =\tau_{i j} x_{i} x_{j} \\
x_{k} \lambda & =\lambda^{(k)} x_{k}
\end{array}\right\rangle
$$

Example: Crossed product $R=\Lambda * \mathbb{N}^{p}$

Tails are zero. The map $\tau: \mathbb{N}^{p} \times \mathbb{N}^{p} \rightarrow \mathcal{U}(\Lambda)$ defined by $\tau\left(\epsilon_{i}, \epsilon_{j}\right)=\tau_{i j}$ is a 2-cocycle. The PBW ring extends the crossed product

$$
\left\langle\begin{array}{l}
x_{j} x_{i}=\tau_{i j} x_{i} x_{j}+p_{i j} \\
x_{k} \lambda=\lambda^{(k)} x_{k}+p_{k, \lambda}
\end{array}\right\rangle
$$

Example: Crossed product $R=\Lambda * \mathbb{N}^{p}$

Tails are zero. The map $\tau: \mathbb{N}^{p} \times \mathbb{N}^{p} \rightarrow \mathcal{U}(\Lambda)$ defined by $\tau\left(\epsilon_{i}, \epsilon_{j}\right)=\tau_{i j}$ is a 2-cocycle.
The PBW ring extends the crossed product

$$
\left\langle\begin{array}{l}
x_{j} x_{i}=\tau_{i j} x_{i} x_{j}+p_{i j} \\
x_{k} \lambda=\lambda^{(k)} x_{k}+p_{k, \lambda}
\end{array}\right\rangle
$$

Example: PBW algebras

They have been also known as solvable polynomial rings, and G-algebras in the literature. Λ is a commutative domain and R a Λ-algebra. The relations are then

$$
\left\langle x_{j} x_{i}=\tau_{i j} x_{i} x_{j}+p_{i j}\right\rangle
$$

Example: Ore algebras

Let $\Lambda=k\left[x_{1}, \ldots, x_{n}\right]$ be a commutative polynomial ring over a field k (if $n=0$ then $\Lambda=k)$. The skew polynomial ring $R=A\left[\partial_{1} ; \sigma_{1}, \delta_{1}\right] \ldots\left[\partial_{m} ; \sigma_{m}, \delta_{m}\right]$ is called Ore algebra if the σ_{i} 's and δ_{j} 's commute for $1 \leq i, j \leq m$ and satisfy $\sigma_{i}\left(\partial_{j}\right)=\partial_{j}, \delta_{i}\left(\partial_{j}\right)=0$ for $j<i$.
If some additional conditions are satisfied by the σ_{j} 's, then we can consider k
as base ring, i.e., Ore algebras can be considered as PBW k-algebras. This is convenient for computations.

Example: Ore algebras

Let $\Lambda=k\left[x_{1}, \ldots, x_{n}\right]$ be a commutative polynomial ring over a field k (if $n=0$ then $\Lambda=k)$. The skew polynomial ring $R=A\left[\partial_{1} ; \sigma_{1}, \delta_{1}\right] \ldots\left[\partial_{m} ; \sigma_{m}, \delta_{m}\right]$ is called Ore algebra if the σ_{i} 's and δ_{j} 's commute for $1 \leq i, j \leq m$ and satisfy $\sigma_{i}\left(\partial_{j}\right)=\partial_{j}, \delta_{i}\left(\partial_{j}\right)=0$ for $j<i$.
If some additional conditions are satisfied by the σ_{i} 's, then we can consider k as base ring, i.e., Ore algebras can be considered as PBW k-algebras. This is convenient for computations.

Quantized matrix algebras

It's a special type of PBW algebra. The $n \times n$ quantized uniparametric matrix algebra $\mathcal{O}_{q}\left(M_{n}(\Lambda)\right)$ is generated by $x_{i j}, 1 \leq i, j \leq n$ with relations

$$
\left\langle x_{i j} x_{k \mid}=\left\{\begin{array}{ll}
q x_{k \mid} x_{i j} & (k<i, j=I) \\
q x_{k \mid} x_{i j} & (k=i, j<I) \\
x_{k \mid} x_{i j} & (k<i, j>I) \\
x_{k \mid} x_{i j}+\left(q+q^{-1}\right) x_{k j} x_{i l} & (k<i, I<j)
\end{array}\right\rangle\right.
$$

The quantum determinant is

Quantized matrix algebras

It's a special type of PBW algebra. The $n \times n$ quantized uniparametric matrix algebra $\mathcal{O}_{q}\left(M_{n}(\Lambda)\right)$ is generated by $x_{i j}, 1 \leq i, j \leq n$ with relations

$$
\left\langle x_{i j} x_{k \mid}=\left\{\begin{array}{ll}
q x_{k \mid} x_{i j} & (k<i, j=I) \\
q x_{k \mid} x_{i j} & (k=i, j<I) \\
x_{k \mid} x_{i j} & (k<i, j>l) \\
x_{k \mid} x_{i j}+\left(q+q^{-1}\right) x_{k j} x_{i l} & (k<i, I<j)
\end{array}\right\rangle\right.
$$

The quantum determinant is

$$
D_{q}=\sum_{\pi \in S_{n}}(-q)^{\prime(\pi)} x_{1 \pi(1)} x_{2 \pi(2)} \cdots x_{n \pi(n)}
$$

Example: Quantized enveloping algebras

The general presentation of the quantized enveloping algebra $U_{q}(C)$ associated to a Cartan matrix C can be seen in ${ }^{3}$ and ${ }^{4}$

McConnell-Pettit algebra.

[^0]
Example: Quantized enveloping algebras

The general presentation of the quantized enveloping algebra $U_{q}(C)$ associated to a Cartan matrix C can be seen in ${ }^{3}$ and ${ }^{4}$ In ${ }^{5}$ it is noted than those algebras are PBW Λ-ring where Λ is a McConnell-Pettit algebra.

[^1]
Example: Quantized enveloping algebras (Cont.)

When C is the Cartan matrix associated to $s_{3}(k)$, we have ten generators $f_{12}, f_{13}, f_{23}, k_{1}, k_{2}, l_{1}, l_{2}, e_{12}, e_{13}, e_{23}$ and the following relations:

$$
\begin{aligned}
& e_{13} e_{12}=q^{-2} e_{12} e_{13} \quad f_{13} f_{12}=q^{-2} f_{12} f_{13} \\
& e_{23} e_{12}=q^{2} e_{12} e_{23}-q e_{13} \quad f_{23} f_{12}=q^{2} f_{12} f_{23}-q f_{13} \\
& e_{23} e_{13}=q^{-2} e_{13} e_{23} \quad f_{23} f_{13}=q^{-2} f_{13} f_{23}
\end{aligned}
$$

$$
\begin{aligned}
& e_{12} f_{13}=f_{13} e_{12}+q f_{23} k_{1}^{2} \quad e_{13} k_{1}=q^{-1} k_{1} e_{13} \quad k_{1} f_{13}=q^{-1} f_{13} k_{1} \\
& e_{12} f_{23}=f_{23} e_{12} \\
& e_{13} f_{12}=f_{12} e_{13}-\left.q^{-1}\right|_{1} ^{2} e_{23} \\
& e_{13} f_{13}=f_{13} e_{13}-\frac{k_{1}^{2} k_{2}^{2}-\left.\left.\right|_{1} ^{2}\right|_{2} ^{2}}{q^{2}-q^{-2}} \\
& e_{23} k_{2}=q^{-2} k_{2} e_{23} \quad k_{2} f_{23}=q^{-2} f_{23} k_{2} \\
& e_{12} I_{1}=q^{2} I_{1} e_{12} \quad I_{1} f_{12}=q^{2} f_{12} I_{1} \\
& e_{13} f_{23}=f_{23} e_{13}+q k_{2}^{2} e_{12} \quad e_{12} l_{2}=q^{-1} l_{2} e_{12} \quad \iota_{2} f_{12}=q^{-1} f_{12} l_{2} \\
& e_{23} f_{12}=f_{12} e_{23} \\
& e_{23} f_{13}=f_{13} e_{23}-q^{-1} f_{12} l_{2}^{2} \\
& e_{23} f_{23}=f_{23} e_{23}+\frac{k_{2}^{2}-{l_{2}^{2}}_{q^{2}-q^{-2}}{ }^{2}}{} \\
& e_{13} l_{1}=q l_{1} e_{13} \quad l_{1} f_{13}=q f_{13} l_{1} \\
& e_{13} l_{2}=q l_{2} e_{13} \quad l_{2} f_{13}=q f_{13} l_{2} \\
& e_{23} l_{1}=q^{-1} \iota_{1} e_{23} \quad \iota_{1} f_{23}=q^{-1} f_{23} l_{1} \\
& e_{23} l_{2}=q^{2} l_{2} e_{23} \quad l_{2} f_{23}=q^{2} f_{23} l_{2} \\
& \begin{array}{ll}
l_{1} k_{1}=k_{1} l_{1} & l_{2} k_{1}=k_{1} l_{2} \\
l_{1} k_{2}=k_{2} l_{1} & l_{2} k_{2}=k_{2} l_{2} k_{1}=k_{1} k_{2} \\
l_{2} l_{1}=I_{1} l_{2}
\end{array}
\end{aligned}
$$

Index

(1) PBW rings

- Generators and relations
- Covered examples
- Characterization of PBW rings
- Modules over PBW rings
(2) Ext functors
- Presentation of modules
- A free resolution
- Computation of Ext
- Consequences
(3) Gelfand-Kirillov dimension
- Definition of GK dimension
- Computation of GK dimension
- Consequences

Filtrations

A (\mathbb{N}-)filtration on a ring R is a family of subgroups

$$
F=\left\{R_{i} \mid i \in \mathbb{N}\right\}
$$

such that

- $R_{i} \subseteq R_{i+1}$ for all $i \in \mathbb{N}$
- $R_{i} R_{j} \subseteq R_{i+j}$
- $R=\bigcup_{i \in \mathbb{N}} R_{i}$

The associated graded ring is

Filtrations

A (\mathbb{N}-)filtration on a ring R is a family of subgroups

$$
F=\left\{R_{i} \mid i \in \mathbb{N}\right\}
$$

such that

The associated graded ring is
 is a family of subgroups

$$
F=\left\{F_{\alpha}(R) \mid \alpha \in \mathbb{N}^{n}\right\}
$$

such that

The associated graded ring is
where $F_{\alpha}^{-}(R)=\bigcup_{\beta \prec \alpha} F_{\beta}(R)$

Filtrations

A (\mathbb{N}-)filtration on a ring R is a family of subgroups

$$
F=\left\{R_{i} \mid i \in \mathbb{N}\right\}
$$

such that

- $R_{i} \subseteq R_{i+1}$ for all $i \in \mathbb{N}$

The associated graded ring is
 is a family of subgroups

$$
F=\left\{F_{\alpha}(R) \mid \alpha \in \mathbb{N}^{n}\right\}
$$

such that

The associated graded ring is
where $F_{\alpha}^{-}(R)=\bigcup_{\beta \prec \alpha} F_{\beta}(R)$

Filtrations

A (\mathbb{N}-)filtration on a ring R is a family of subgroups

$$
F=\left\{R_{i} \mid i \in \mathbb{N}\right\}
$$

such that

- $R_{i} \subseteq R_{i+1}$ for all $i \in \mathbb{N}$

The associated graded ring is

- $F_{\alpha}(R) \subseteq F_{\beta}(R)$ for all $\alpha \preceq \beta \in \mathbb{N}^{n}$

The associated graded ring is
$F_{\alpha}(R) \subseteq F_{\beta}(R)$ for $\alpha \leq \beta \in \mathbb{N}$

A (($\left.\left.\mathbb{N}^{n}, \preceq\right)-\right)($ multi)filtration on a ring R is a family of subgroups

$$
F=\left\{F_{\alpha}(R) \mid \alpha \in \mathbb{N}^{n}\right\}
$$

such that

where $F_{\alpha}^{-}(R)=\bigcup_{\beta \prec \alpha} F_{\beta}(R)$

Filtrations

A (\mathbb{N}-)filtration on a ring R is a family of subgroups

$$
F=\left\{R_{i} \mid i \in \mathbb{N}\right\}
$$

such that

- $R_{i} \subseteq R_{i+1}$ for all $i \in \mathbb{N}$
- $R_{i} R_{j} \subseteq R_{i+j}$
- $R=\bigcup_{i \in \mathbb{N}} R_{i}$

The associated graded ring is

- $F_{\alpha}(R) \subseteq F_{\beta}(R)$ for all $\alpha \preceq \beta \in \mathbb{N}^{n}$

The associated graded ring is

- $F_{\alpha}(R) F_{\beta}(R) \subseteq F_{\alpha+\beta}(R$

A (($\left.\left.\mathbb{N}^{n}, \preceq\right)-\right)($ multi) filtration on a ring R is a family of subgroups

$$
F=\left\{F_{\alpha}(R) \mid \alpha \in \mathbb{N}^{n}\right\}
$$

such that

where $F_{\alpha}^{-}(R)=\bigcup_{\beta \prec \alpha} F_{\beta}(R)$

Filtrations

A (\mathbb{N}-)filtration on a ring R is a family of subgroups

$$
F=\left\{R_{i} \mid i \in \mathbb{N}\right\}
$$

such that

- $R_{i} \subseteq R_{i+1}$ for all $i \in \mathbb{N}$
- $R_{i} R_{j} \subseteq R_{i+j}$
- $R=\bigcup_{i \in \mathbb{N}} R_{i}$

The associated graded ring is

A (($\left.\left.\mathbb{N}^{n}, \preceq\right)-\right)($ multi)filtration on a ring R is a family of subgroups

$$
F=\left\{F_{\alpha}(R) \mid \alpha \in \mathbb{N}^{n}\right\}
$$

such that

- $F_{\alpha}(R) \subseteq F_{\beta}(R)$ for all $\alpha \preceq \beta \in \mathbb{N}^{n}$
- $F_{\alpha}(R) F_{\beta}(R) \subseteq F_{\alpha+\beta}(R)$

The associated graded ring is

where $F_{\alpha}^{-}(R)=\bigcup_{\beta \prec \alpha} F_{\beta}(R)$

Filtrations

A (\mathbb{N}-)filtration on a ring R is a family of subgroups

$$
F=\left\{R_{i} \mid i \in \mathbb{N}\right\}
$$

such that

- $R_{i} \subseteq R_{i+1}$ for all $i \in \mathbb{N}$
- $R_{i} R_{j} \subseteq R_{i+j}$
- $R=\bigcup_{i \in \mathbb{N}} R_{i}$

A (($\left.\left.\mathbb{N}^{n}, \preceq\right)-\right)($ multi) filtration on a ring R is a family of subgroups

$$
F=\left\{F_{\alpha}(R) \mid \alpha \in \mathbb{N}^{n}\right\}
$$

such that

- $F_{\alpha}(R) \subseteq F_{\beta}(R)$ for all $\alpha \preceq \beta \in \mathbb{N}^{n}$
- $F_{\alpha}(R) F_{\beta}(R) \subseteq F_{\alpha+\beta}(R)$

The associated graded ring is

where $F_{\alpha}^{-}(R)=\bigcup_{\beta \prec \alpha} F_{\beta}(R)$

Filtrations

A (\mathbb{N}-)filtration on a ring R is a family of subgroups

$$
F=\left\{R_{i} \mid i \in \mathbb{N}\right\}
$$

such that

- $R_{i} \subseteq R_{i+1}$ for all $i \in \mathbb{N}$
- $R_{i} R_{j} \subseteq R_{i+j}$
- $R=\bigcup_{i \in \mathbb{N}} R_{i}$

A (($\left.\left.\mathbb{N}^{n}, \preceq\right)-\right)($ multi) filtration on a ring R is a family of subgroups

$$
F=\left\{F_{\alpha}(R) \mid \alpha \in \mathbb{N}^{n}\right\}
$$

such that

- $F_{\alpha}(R) \subseteq F_{\beta}(R)$ for all $\alpha \preceq \beta \in \mathbb{N}^{n}$
- $F_{\alpha}(R) F_{\beta}(R) \subseteq F_{\alpha+\beta}(R)$
- $R=\bigcup_{\alpha \in \mathbb{N}^{n}} F_{\alpha}(R)$

Filtrations

A (\mathbb{N}-)filtration on a ring R is a family of subgroups

$$
F=\left\{R_{i} \mid i \in \mathbb{N}\right\}
$$

such that

- $R_{i} \subseteq R_{i+1}$ for all $i \in \mathbb{N}$
- $R_{i} R_{j} \subseteq R_{i+j}$
- $R=\bigcup_{i \in \mathbb{N}} R_{i}$

The associated graded ring is

$$
\operatorname{gr}(R)=\bigoplus_{i \in \mathbb{N}} \frac{R_{i}}{R_{i-1}}
$$

Filtrations

A (\mathbb{N}-)filtration on a ring R is a family of subgroups

$$
F=\left\{R_{i} \mid i \in \mathbb{N}\right\}
$$

such that

- $R_{i} \subseteq R_{i+1}$ for all $i \in \mathbb{N}$
- $R_{i} R_{j} \subseteq R_{i+j}$
- $R=\bigcup_{i \in \mathbb{N}} R_{i}$

The associated graded ring is

$$
\operatorname{gr}(R)=\bigoplus_{i \in \mathbb{N}} \frac{R_{i}}{R_{i-1}}
$$

A (($\left.\mathbb{N}^{n}, \preceq\right)$-)(multi) filtration on a ring R is a family of subgroups

$$
F=\left\{F_{\alpha}(R) \mid \alpha \in \mathbb{N}^{n}\right\}
$$

such that

- $F_{\alpha}(R) \subseteq F_{\beta}(R)$ for all $\alpha \preceq \beta \in \mathbb{N}^{n}$
- $F_{\alpha}(R) F_{\beta}(R) \subseteq F_{\alpha+\beta}(R)$
- $R=\bigcup_{\alpha \in \mathbb{N}^{n}} F_{\alpha}(R)$

The associated graded ring is

$$
G^{F}(R)=\bigoplus_{\alpha \in \mathbb{N}} \frac{F_{\alpha}(R)}{F_{\alpha}^{-}(R)}
$$

where $F_{\alpha}^{-}(R)=\bigcup_{\beta \prec \alpha} F_{\beta}(R)$

Characterization

Theorem

Let Λ be a left noetherian ring and $\Lambda \subseteq R$ be a ring extension. Consider a fixed crossed structure $\Lambda * \mathbb{N}^{p}$. The following statements are equivalent
(।) There is an admissible order \preceq on some \mathbb{N}^{n} and an $\left(\mathbb{N}^{n}, \preceq\right)$-filtration $F=\left\{F_{\alpha}(R) \mid \alpha \in \mathbb{N}^{n}\right\}$ on R such that $F_{0}(R)=\Lambda$, every $F_{\alpha}(R)$ is finitely generated as a left Λ-module and $G^{F}(R)=\Lambda * \mathbb{N}^{p}$
(II) There is a filtration $\left\{R_{n} \mid n \in \mathbb{N}\right\}$ on R such that $R_{0}=\Lambda$, every R_{n} is finitely generated as a left Λ-module and $\operatorname{gr}(R)=\Lambda * \mathbb{N}^{p}$ (the same structure).
(III) R is a PBW ring extending $\Lambda * \mathbb{N}^{p}$ where $\bigcup_{\lambda \in \Lambda} \mathcal{N}\left(p_{k, \lambda}\right)$ is a finite subset of \mathbb{N}^{p}.

See ${ }^{6}$ and ${ }^{7}$ for details. As a consequence, if Λ is a domain, for each PBW Λ-ring R and all $f, g \in R$

$$
\exp (f g)=\exp (f)+\exp (g)
$$

[^2]
Index

(1) PBW rings

- Generators and relations
- Covered examples
- Characterization of PBW rings
- Modules over PBW rings
(2) Ext functors
- Presentation of modules
- A free resolution
- Computation of Ext
- Consequences
(3) Gelfand--Kirillov dimension
- Definition of GK dimension
- Computation of GK dimension
- Consequences

Modules and TOP order

let R^{m} be a free left R-module with free R-basis $\left\{\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{m}\right\}$. Any element $\mathfrak{f} \in$ can written in a unique way as

$$
\mathfrak{f}=\sum_{\alpha, i} \lambda_{\alpha, i} X^{\alpha} \mathfrak{e}_{i},
$$

so R^{m} has a Λ-basis indexed in $\mathbb{N}^{p,(m)}=\mathbb{N}^{p} \times\{1, \ldots, m\}$. The order \preceq is extended to $\mathbb{N}^{p,(m)}$ as follows:

$$
(\alpha, i) \preceq(\beta, j) \Longleftrightarrow\left\{\begin{array}{l}
\alpha \prec \beta \\
\alpha=\beta, i \leq j
\end{array}\right. \text { or }
$$

This order is known as TOP order in the literature. For every non-zero $\mathfrak{f} \in R^{m}$, we can define $\mathcal{N}(\mathfrak{f})$ and $\exp (\mathfrak{f}) \in \mathbb{N}^{n,(m)}$ using TOP order.

Gröbner basis

Corollary

Let $L \subseteq R^{m}$ be a left/right/twosided R-submodule. Then

$$
\exp (M)+\mathbb{N}^{p}=\exp (M)
$$

As in the commutative case:

- Gröbner bases are defined,
- normal forms can be computed,
- S-polynomials are defined,
- a Buchberger's like algorithm to compute them can be proved, if Λ is a division ring. Again ${ }^{8}$ and ${ }^{9}$ for details.

[^3]
Gröbner basis

Corollary

Let $L \subseteq R^{m}$ be a left/right/twosided R-submodule. Then

$$
\exp (M)+\mathbb{N}^{p}=\exp (M)
$$

As in the commutative case:

- Gröbner bases are defined,
- normal forms can be computed,
- S-polynomials are defined,
- a Buchberger's like algorithm to compute them can be proved, if Λ is a division ring. Again ${ }^{8}$ and ${ }^{9}$ for details.

[^4]
Gröbner basis

Corollary

Let $L \subseteq R^{m}$ be a left/right/twosided R-submodule. Then

$$
\exp (M)+\mathbb{N}^{p}=\exp (M)
$$

As in the commutative case:

- Gröbner bases are defined,
- normal forms can be computed,
- S-polynomials are defined,
- a Buchberger's like algorithm to compute them can be proved, if Λ is a division ring. Again ${ }^{8}$ and ${ }^{9}$ for details.

[^5]
Gröbner basis

Corollary

Let $L \subseteq R^{m}$ be a left/right/twosided R-submodule. Then

$$
\exp (M)+\mathbb{N}^{p}=\exp (M)
$$

As in the commutative case:

- Gröbner bases are defined,
- normal forms can be computed,
- S-polynomials are defined,
- a Buchberger's like algorithm to compute them can be proved, if Λ is a division ring. Again ${ }^{8}$ and ${ }^{9}$ for details.

[^6]
Gröbner basis

Corollary

Let $L \subseteq R^{m}$ be a left/right/twosided R-submodule. Then

$$
\exp (M)+\mathbb{N}^{p}=\exp (M)
$$

As in the commutative case:

- Gröbner bases are defined,
- normal forms can be computed,
- S-polynomials are defined,
- a Buchberger's like algorithm to compute them can be proved, if Λ is a division ring. Again ${ }^{8}$ and ${ }^{9}$ for details.
${ }^{8}$ J. L. Bueso, J. Gómez-Torrecillas and F. J. Lobillo, Homological Computations in PBW Modules, Algebr. Represent. Theory, 4: 201-218, 2001
${ }^{9}$ J. L. Bueso, J. Gómez-Torrecillas and A. Verschoren, Algorithmic methods in non-commutative algebra. Applications to quantum groups., Mathematical Modelling Applications 17. Dordrecht: Kluwer Academic Publishers, 2003

Index

(9) PBW rings

- Generators and relations
- Covered examples
- Characterization of PBW rings
- Modules over PBW rings

(2) Ext functors

- Presentation of modules
- A free resolution
- Computation of Ext
- Consequences
(3) Gelfand-Kirillov dimension
- Definition of GK dimension
- Computation of GK dimension
- Consequences

Syzygies and kernels

Let L be a left submodule of R^{m} generated by $\left\{\mathfrak{g}_{1}, \ldots, \mathfrak{g}_{t}\right\}$. Let φ be the morphism

$$
\begin{aligned}
& \varphi: R^{s} \longrightarrow R^{m} / L \\
& \mathfrak{e}_{j} \longmapsto \mathfrak{f}_{i}+L
\end{aligned}
$$

For some $\left\{\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{s}\right\} \subseteq R^{m}$. Put

$$
H=\left\{\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{s}, \mathfrak{g}_{1}, \ldots, \mathfrak{g}_{t}\right\},
$$

Proposition

If $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r} \in R^{s+t}$ is a generating set for $\operatorname{syz}(H)$ and if $\mathfrak{h}_{i} \in R^{s}$ is the vector whose coordinates are the first s coordinates of \mathfrak{p}_{i}, with $1 \leq i \leq r$, then

$$
\operatorname{ker}(\varphi)=R \mathfrak{h}_{1}+\cdots+R \mathfrak{h}_{r} .
$$

The computation of syzygies is completely analogous to commutaMe case mersiad

Index

(9) PBW rings

- Generators and relations
- Covered examples
- Characterization of PBW rings
- Modules over PBW rings

(2) Ext functors

- Presentation of modules
- A free resolution
- Computation of Ext
- Consequences
(3) Gelfand-Kirillov dimension
- Definition of GK dimension
- Computation of GK dimension
- Consequences

Computation of a free resolution up to some degree

iterate process

Computation of a free resolution up to some degree

iterate process

Computation of a free resolution up to some degree

iterate process

Computation of a free resolution up to some degree

iterate process

Computation of a free resolution up to some degree

iterate process

Index

(9) PBW rings

- Generators and relations
- Covered examples
- Characterization of PBW rings
- Modules over PBW rings

(2) Ext functors

- Presentation of modules
- A free resolution
- Computation of Ext
- Consequences
(3) Gelfand-Kirillov dimension
- Definition of GK dimension
- Computation of GK dimension
- Consequences

$\operatorname{Ext}^{i}(M, N)$

$0 \longrightarrow \operatorname{Hom}\left(R^{s_{i-1}}, L\right) \longrightarrow \operatorname{Hom}\left(R^{s_{i-1}}, R^{m}\right) \longrightarrow \operatorname{Hom}\left(R^{s_{i-1}}, N\right) \longrightarrow 0$

$\operatorname{Ext}^{i}(M, N)$

$$
L \longrightarrow R^{m} \longrightarrow N
$$

$$
\cdots \longrightarrow R^{s_{i+1}} \xrightarrow{\partial_{i+1}} R^{s_{i}} \xrightarrow{\partial_{i}} R^{s_{i-1}} \longrightarrow \cdots \longrightarrow R^{s_{1}} \xrightarrow{\partial_{1}} R^{s_{0}} \xrightarrow{\partial_{0}} M
$$

$\operatorname{Ext}^{i}(M, N)$

$$
\begin{gathered}
\begin{array}{l}
L+ \\
\cdots
\end{array} R^{m} \longrightarrow N \\
s_{i+1} \\
\partial_{i+1} \\
R^{s_{i}} \xrightarrow{\partial_{i}} R^{s_{i-1}} \longrightarrow \cdots \longrightarrow R^{s_{1}} \xrightarrow{\partial_{1}} R^{s_{0}} \xrightarrow{\partial_{0}} M
\end{gathered}
$$

$\operatorname{Ext}^{i}(M, N)$ (Cont.)

Since $\operatorname{Hom}\left(R^{s}, R^{m}\right) \cong\left(R^{m}\right)^{s}=R^{s m}$ and $\operatorname{Hom}\left(R^{s}, L\right) \cong L^{s}$, previous diagram is

$\operatorname{Ext}^{i}(M, N)=\operatorname{ker}^{2}{ }_{i+1}^{*} / \operatorname{im} \partial_{i}^{*} \cong \operatorname{ker} \pi_{i+1} \widetilde{\partial}_{i+1} / \operatorname{im} \widetilde{\partial}_{i}+L^{s_{i}}$

The maps $\partial_{i}^{*}, \tilde{\partial}_{i}, \bar{\partial}_{i}$ are R-module morphism if L is a subbimodule of R^{m}, i.e., N is a centralizing bimodule (a.k.a. bimodule in the sense of Artin)

$\operatorname{Ext}^{i}(M, N)$ (Cont.)

Since $\operatorname{Hom}\left(R^{s}, R^{m}\right) \cong\left(R^{m}\right)^{s}=R^{s m}$ and $\operatorname{Hom}\left(R^{s}, L\right) \cong L^{s}$, previous diagram is

SO

$$
\operatorname{Ext}^{i}(M, N)=\operatorname{ker} \partial_{i+1}^{*} / \operatorname{im} \partial_{i}^{*} \cong \operatorname{ker} \pi_{i+1} \widetilde{\partial}_{i+1} / \operatorname{im} \widetilde{\partial}_{i}+L^{s_{i}}
$$

$\operatorname{Ext}^{i}(M, N)$ (Cont.)

Since $\operatorname{Hom}\left(R^{s}, R^{m}\right) \cong\left(R^{m}\right)^{s}=R^{s m}$ and $\operatorname{Hom}\left(R^{s}, L\right) \cong L^{s}$, previous diagram is

SO

$$
\operatorname{Ext}^{i}(M, N)=\operatorname{ker}^{2} \partial_{i+1}^{*} / \operatorname{im} \partial_{i}^{*} \cong \operatorname{ker} \pi_{i+1} \widetilde{\partial}_{i+1} / \operatorname{im} \widetilde{\partial}_{i}+L^{s_{i}}
$$

The maps $\partial_{i}^{*}, \widetilde{\partial}_{i}, \bar{\partial}_{i}$ are R-module morphism if L is a subbimodule of R^{m}, i.e., N is a centralizing bimodule (a.k.a. bimodule in the sense of Artin)

Index

(9) PBW rings

- Generators and relations
- Covered examples
- Characterization of PBW rings
- Modules over PBW rings

(2) Ext functors

- Presentation of modules
- A free resolution
- Computation of Ext
- Consequences
(3) Gelfand-Kirillov dimension
- Definition of GK dimension
- Computation of GK dimension
- Consequences

Degree number

The degree number of a left R-module M

$$
j(M)=\operatorname{dnf}\left\{i \mid \operatorname{Ext}^{i}(M, R) \neq 0\right\}
$$

can be computed, although probably very slowly.

Degree number

The degree number of a left R-module M

$$
j(M)=\operatorname{dnf}\left\{i \mid \operatorname{Ext}^{i}(M, R) \neq 0\right\}
$$

can be computed, although probably very slowly.

Index

(9) PBW rings

- Generators and relations
- Covered examples
- Characterization of PBW rings
- Modules over PBW rings
(2) Ext functors
- Presentation of modules
- A free resolution
- Computation of Ext
- Consequences
(3) Gelfand-Kirillov dimension
- Definition of GK dimension
- Computation of GK dimension
- Consequences

Growth of a function

Let $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$be an eventually increasing function. The growth of f is defined as

$$
\gamma(f)=\underset{n \rightarrow \infty}{\operatorname{lkmsup}} \log _{n} f(n)=\nless n f\left\{\rho \in \mathbb{R} \mid f(n) \leq n^{\rho} \text { for all } n \gg 0\right\}
$$

Let's point out just one property:

Lemma

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$be two eventually increasing functions such that $f(n) \leq g(a n+b)$ for all $n \gg 0$. Then $\gamma(f) \leq \gamma(g)$.

Gelfand-Kirillov dimension

- Λ is a field and A is a Λ-algebra.
- V is a finite dimensional generating vector space for A (we assume $1 \in V$).
- M is a left A-module.
- U is a finite dimensional vector space which generates U as A-module.

The chain

$$
U \subseteq V U \subseteq V^{2} U \subseteq \cdots \subseteq V^{n} U \subseteq \cdots
$$

is an exhaustive filtration on M. The Hilbert function of M associated to V and U is defined as

$$
\mathrm{HF}_{V, U}^{M}(n)=\operatorname{dim}_{\wedge} V^{n} U
$$

The Gelfand-Kirillov dimension of M is defined as

$$
\operatorname{GKdim}(M)=\gamma\left(\mathrm{HF}_{V, U}^{M}\right)
$$

This definition does not depend on V or U by previous Lemma.

Behavior

- It's a real number.
- For each $r \in\{0,1\} \cup\left[2, \infty\left[\right.\right.$ there exists finitely generated \wedge-algebra A_{r} such that $\operatorname{GKdim}\left(A_{r}\right)=r$.
- It was developed to prove a conjecture concerning Weyl algebras.
- More details in ${ }^{10}$
 Revised Edition"Graduated Studies in Mathematics Vol. 22 Ameriaan Mathematicad ?ociet参200Q e

Behavior

- It's a real number.
- For each $r \in\{0,1\} \cup\left[2, \infty\left[\right.\right.$ there exists finitely generated \wedge-algebra A_{r} such that $\operatorname{GKdim}\left(A_{r}\right)=r$.
- It was developed to prove a conjecture concerning Weyl algebras.
- More details in^{10}
${ }^{10}$ G. R. Krause and T. H. Lenagan, "Growth of Algebras and Gelfand-Kirillov Din tiesfor

Behavior

- It's a real number.
- For each $r \in\{0,1\} \cup\left[2, \infty\left[\right.\right.$ there exists finitely generated \wedge-algebra A_{r} such that $\operatorname{GKdim}\left(A_{r}\right)=r$.
- It was developed to prove a conjecture concerning Weyl algebras.
- More details in ${ }^{10}$

Behavior

- It's a real number.
- For each $r \in\{0,1\} \cup\left[2, \infty\left[\right.\right.$ there exists finitely generated \wedge-algebra A_{r} such that $\operatorname{GKdim}\left(A_{r}\right)=r$.
- It was developed to prove a conjecture concerning Weyl algebras.
- More details in ${ }^{10}$

[^7]
Index

(9) PBW rings

- Generators and relations
- Covered examples
- Characterization of PBW rings
- Modules over PBW rings
(2) Ext functors
- Presentation of modules
- A free resolution
- Computation of Ext
- Consequences
(3) Gelfand-Kirillov dimension
- Definition of GK dimension
- Computation of GK dimension
- Consequences

Weighted admissible orders

Let $\omega \in\left(\mathbb{R}^{+}\right)^{p}$. The order \preceq_{ω} defined by

$$
\alpha \preceq_{\omega} \beta \Longleftrightarrow\left\{\begin{array}{l}
\langle\alpha, \omega\rangle<\langle\beta, \omega\rangle \\
\langle\alpha, \omega\rangle=\langle\beta, \omega\rangle \text { and } \alpha \leq_{\text {lex }} \beta
\end{array}\right.
$$

is an admissible order.

Theorem

If R is a PBW algebra over a field \wedge with respect to an admissible order \preceq then there is an algorithm to compute $\omega \in\left(\mathbb{N}^{*}\right)^{p}$ such that R is a PBW algebra with respect to \preceq_{ω}.

The proof follows from ${ }^{11}$ and ${ }^{12}$
${ }^{11}$ J. L. Bueso, J. Gómez-Torrecillas, and F. J. Lobillo Computing the Gelfand-Kirillov I/ in Ring Theory and Algebraic Geometry", (Granja, Hermida, Verschoren eds.) Lecture Notes in Pure Appl. Math. 221, 33-57, Marcel-Dekker, 2001.
${ }^{12}$ J. L. Bueso, J. Gómez-Torrecillas, and F. J. Lobillo Re-filtering and exactness of the Gelfand-Kirillov dimension Bull. Sci. Math., 125 (2001), 689-715

Growth of Hilbert Functions again

Let $E \subseteq \mathbb{N}^{p,(m)}$ be a stable subset and let $\omega \in\left(\mathbb{R}^{+}\right)^{p}$. The Hilbert function of E with respect to ω is defined as

$$
\mathrm{HF}_{E}^{\omega}(n)=\sharp\left\{(\alpha, i) \in \mathbb{N}^{p,(m)} \backslash E \mid\langle\alpha, \omega\rangle \leq n\right\}
$$

Theorem

Let L be a left submodule of R^{m} where R is a PBW algebra over a field \wedge with respect to \preceq_{ω}. Then

$$
\operatorname{GKdim}\left(R^{m} / L\right)=\gamma\left(\mathrm{HF}_{\exp (L)}^{\omega}\right) .
$$

The proof can be seen again in ${ }^{13}$

[^8]
Effective computation

Let R be a PBW algebra over a field Λ generated by $\left\{x_{1}, \ldots, x_{p}\right\}$. Let M be a finitely presented left R-module provided as $M=R^{m} / L$ where a set of generators of L is known.

(1) Compute a Gröbner basis for L,
(2) Compute the classical Krull dimension for the S-module $M_{S}=S^{m} /\left(S X^{\exp (L)}\right)$.
(3) $\operatorname{GKdim}(M)=\gamma\left(\mathrm{HF}_{\exp (L)}^{\omega}\right)=\operatorname{dim}\left(M_{S}\right)$.

Effective computation

Let R be a PBW algebra over a field Λ generated by $\left\{x_{1}, \ldots, x_{p}\right\}$. Let M be a finitely presented left R-module provided as $M=R^{m} / L$ where a set of generators of L is known.
Let $S=\Lambda\left[x_{1}, \ldots, x_{p}\right]$. For each subset $E \subseteq \mathbb{N}^{p,(m)}$ let's denote $X^{E}=\left\{X^{\alpha} \mathfrak{e}_{i} \mid(\alpha, i) \in \mathbb{N}^{p,(m)}\right\}$. If E is stable $S X^{E}$ is generated as S-module by elements corresponding to the generators of E.

- Compute a Gröbner basis for L,
(2) Compute the classical Krull dimension for the S-module
(0) $\operatorname{GKdim}(M)=\gamma\left(H F_{\exp (L)}^{\omega}\right)=\operatorname{dim}\left(M_{S}\right)$.

Effective computation

Let R be a PBW algebra over a field Λ generated by $\left\{x_{1}, \ldots, x_{p}\right\}$. Let M be a finitely presented left R-module provided as $M=R^{m} / L$ where a set of generators of L is known.
Let $S=\Lambda\left[x_{1}, \ldots, x_{p}\right]$. For each subset $E \subseteq \mathbb{N}^{p,(m)}$ let's denote $X^{E}=\left\{X^{\alpha} \mathfrak{e}_{i} \mid(\alpha, i) \in \mathbb{N}^{p,(m)}\right\}$. If E is stable $S X^{E}$ is generated as S-module by elements corresponding to the generators of E.
(1) Compute a Gröbner basis for L,
(2) Compute the classical Krull dimension for the S-module
(3 $\operatorname{GKdim}(M)=\gamma\left(\mathrm{HF}_{\exp (L)}^{\omega}\right)=\operatorname{dim}\left(M_{S}\right)$.

Effective computation

Let R be a PBW algebra over a field Λ generated by $\left\{x_{1}, \ldots, x_{p}\right\}$. Let M be a finitely presented left R-module provided as $M=R^{m} / L$ where a set of generators of L is known.
Let $S=\Lambda\left[x_{1}, \ldots, x_{p}\right]$. For each subset $E \subseteq \mathbb{N}^{p,(m)}$ let's denote $X^{E}=\left\{X^{\alpha} \mathfrak{e}_{i} \mid(\alpha, i) \in \mathbb{N}^{p,(m)}\right\}$. If E is stable $S X^{E}$ is generated as S-module by elements corresponding to the generators of E.
(1) Compute a Gröbner basis for L,
(2) Compute the classical Krull dimension for the S-module $M_{S}=S^{m} /\left(S X^{\exp (L)}\right)$.
(0) $\operatorname{GKdim}(M)=\gamma\left(H^{\exp (L)}\right)=\operatorname{dim}\left(M_{S}\right)$.

Effective computation

Let R be a PBW algebra over a field Λ generated by $\left\{x_{1}, \ldots, x_{p}\right\}$. Let M be a finitely presented left R-module provided as $M=R^{m} / L$ where a set of generators of L is known.
Let $S=\Lambda\left[x_{1}, \ldots, x_{p}\right]$. For each subset $E \subseteq \mathbb{N}^{p,(m)}$ let's denote $X^{E}=\left\{X^{\alpha} \mathfrak{e}_{i} \mid(\alpha, i) \in \mathbb{N}^{p,(m)}\right\}$. If E is stable $S X^{E}$ is generated as S-module by elements corresponding to the generators of E.
(1) Compute a Gröbner basis for L,
(2) Compute the classical Krull dimension for the S-module $M_{S}=S^{m} /\left(S X^{\exp (L)}\right)$.
(3) $\operatorname{GKdim}(M)=\gamma\left(\mathrm{HF}_{\exp (L)}^{\omega}\right)=\operatorname{dim}\left(M_{S}\right)$.

Index

(9) PBW rings

- Generators and relations
- Covered examples
- Characterization of PBW rings
- Modules over PBW rings
(2) Ext functors
- Presentation of modules
- A free resolution
- Computation of Ext
- Consequences
(3) Gelfand-Kirillov dimension
- Definition of GK dimension
- Computation of GK dimension
- Consequences

Degree number again

A \wedge-algebra R is called Cohen-Macaulay if for each finitely presented left R-module M

$$
\operatorname{GKdim}(R)=\operatorname{GKdim}(M)+j(M)
$$

PBW rings and Quantized enveloping algebras are Cohen-Macaulay ${ }^{1415}$, hence the degree number can be computed using Gelfand-Kirillov dimension.

[^9]
Thank you for your attention!

;Gracias por no roncar demasiado fuerte!

Thank you for your attention!
 ¡Gracias por no roncar demasiado fuerte!

[^0]: ${ }^{3}$ G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447-498.
 ${ }^{4}$ C. De Concini and C. Procesi, Quantum groups, in "D-Modules, Representation Theory and Quantum groups" (G. Zampieri and A. D'Agnolo, eds.), Lecture Notes in Math., vol. 1565, Springer, 1993, pp. 31-140.

[^1]: ${ }^{3}$ G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447-498.
 ${ }^{4}$ C. De Concini and C. Procesi, Quantum groups, in "D-Modules, Representation Theory and Quantum groups" (G. Zampieri and A. D'Agnolo, eds.), Lecture Notes in Math., vol. 1565, Springer, 1993, pp. 31-140.
 ${ }^{5} \mathrm{~J}$. Gómez-Torrecillas and F J Lobillo, Auslander-regular and Cohen-Macaula groups, Algebr. Represent. Theory, 7(1): 35-42, 2004

[^2]: ${ }^{6}$ J. L. Bueso, J. Gómez-Torrecillas and F. J. Lobillo, Re-filtering and exactness of the Gelfand-Kirillov dimension. Bull. Sci. Math. 125, No.8, 689-715 (2001).
 groups, Algebr. Represent. Theory, 7(1): 35-42, 2004

[^3]: ${ }^{8}$ J. L. Bueso, J. Gómez-Torrecillas and F. J. Lobillo, Homological Computations in PBW Modules, Algebr. Represent. Theory, 4: 201-218, 2001
 ${ }^{9}$ J. L. Bueso, J. Gómez-Torrecillas and A. Verschoren, Algorithmic methods in
 non-commutative algebra. Applications to quantum groups., Mathematical Modell

 Universidad
 F. J. Lobillo (Universidad de Granada)

 Computation of dimensions and Ext functors
 SSGB-D2 @ RISC, May 11th

[^4]: ${ }^{8}$ J. L. Bueso, J. Gómez-Torrecillas and F. J. Lobillo, Homological Computations in PBW Modules, Algebr. Represent. Theory, 4: 201-218, 2001
 ${ }^{9}$ J. L. Bueso, J. Gómez-Torrecillas and A. Verschoren, Algorithmic methods in non-commutative algebra. Applications to quantum groups., Mathematical Modellines hor

[^5]: ${ }^{8}$ J. L. Bueso, J. Gómez-Torrecillas and F. J. Lobillo, Homological Computations in PBW Modules, Algebr. Represent. Theory, 4: 201-218, 2001
 ${ }^{9}$ J. L. Bueso, J. Gómez-Torrecillas and A. Verschoren, Algorithmic methods in non-commutative algebra. Applications to quantum groups., Mathematical Modelli Hespr her
 Applications 17. Dordrecht: Kuwer Academic Publishers, 2003

[^6]: ${ }^{8}$ J. L. Bueso, J. Gómez-Torrecillas and F. J. Lobillo, Homological Computations in PBW Modules, Algebr. Represent. Theory, 4: 201-218, 2001
 ${ }^{9}$ J. L. Bueso, J. Gómez-Torrecillas and A. Verschoren, Algorithmic methods in non-commutative algebra. Applications to quantum groups., Mathematical Modelli He

 Universidad

[^7]: ${ }^{10}$ G. R. Krause and T. H. Lenagan, "Growth of Algebras and Gelfand-Kirillov Dimernision. Une Revised Edition"Graduated Studies in Mathematics Vol. 22 American Mathematical Society, 2000

[^8]: ${ }^{13} \mathrm{~J}$. L. Bueso, J. Gómez-Torrecillas, and F. J. Lobillo Computing the Gelfand-Kirilntlin Ring Theory and Algebraic Geometry", (Granja, Hermida, Verschoren eds.) Lecture Notés th Purred dreranda Appl. Math. 221, 33-57, Marcel-Dekker, 2001.

[^9]: ${ }^{14}$ J. L. Bueso, J. Gómez-Torrecillas and F. J. Lobillo, Re-filtering and exactness of the Gelfand-Kirillov dimension. Bull. Sci. Math. 125, No.8, 689-715 (2001).
 ${ }^{15} \mathrm{~J}$. Gómez-Torrecillas and F. J. Lobillo, Auslander-regular and Cohen-Macaulay qutanturm groups, Algebr. Represent. Theory, 7(1): 35-42, 2004

