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X: a compact C* manifold with boundary Y.
The canonical projections: nx : T*X — X and y : T*Y — Y.
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X: a compact C* manifold with boundary Y.
The canonical projections: nx : T*X — X and y : T*Y — Y.

Boundary

Problems  Consider a differential operator

A: C®(X,V) — C>®(X,V)
in the space of C™ sections of V, V' & Vect(X).
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Elliptic
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Quasicomplexes

Elliptic

Quasicomplexe

X: a compact C* manifold with boundary Y.

The canonical projections: nx : T*X — X and y : T*Y — Y.

Consider a differential operator
A: C®(X,V) - C™(X,V)
in the space of C*° sections of V,V € Vect(X).

A can be written in a coordinate system in the following
general form

Au = Z a,(x)DFu = f.

p|<m
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X: a compact C* manifold with boundary Y.
~ The canonical projections: nx : 7*X — X and ny : T*Y — Y.

Boundary

Problems Consider a differential operator

A: O®(X,V) — C>®(X,V)
in the space of C*° sections of V,V € Vect(X).

* Overdetermined

Operators ] _ _ _ _
A can be written in a coordinate system in the following
Quasicomplexes general form
Au = a, (xr)DFu =
Elliptic Z '“ f

Quasicomplexes || <m

Definition. The principal symbol of A is

oy (A)(x,8) = > au(x)E".

|u|=m




A boundary value problem for A is classically regarded as an
operator

B | CX(X.7)
C>(Y,W)

where W € Vect(Y), T : C°(X,V) — C>°(Y, W) is a trace
operator that defines boundary conditions in the problem
Quasicomplexes Au = f’ Tu = g.
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A boundary value problem for A is classically regarded as an
operator

B | CX(X.7)
(Y, W)

where W € Vect(Y), T : C°(X,V) — C>°(Y, W) is a trace
operator that defines boundary conditions in the problem
Quasicomplexes Au = f’ Tu = g.

Elliptic ~ The principal interior symbol of A: 0,,(A) = o, (A).

Quasicomple Z
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A boundary value problem for A is classically regarded as an
- operator

Boundary
Problems

y C®(X,V)
A= <T> : C°(X,V) — fas
C>(Y,W)
where W € Vect(Y), T : C°(X,V) — C>°(Y, W) is a trace
operator that defines boundary conditions in the problem
Quasicomplexes Au = f’ Tu = g.

~ The principal interior symbol of A: o, (A) = o4 (A).

Elliptic
Quasicomplexes

Locally near Y: (z = (2/,2,) € Q x R})
I
e the homogeneous principal boundary symbol of A:

oo(A)(a',€') = 0a(A)(2",0,¢', Dy,) : S(R4)@CF — S(Ry)®C'

S(R_.) is the Schwartz space.

Elliptic PDE systems



Globally on Y':

0o(A) : 1y SRy) @ V' — 13 S(Ry) @ V',

Vi=Vl]y, V' =V]y.
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Globally on Y':

0o(A) : 1y S(Ry) @ V' = 13 S[Ry) @ V7,
V' =Vi|y, V' =Vl]y.

T is a column of operators T; = rTj, j = 1,..., v, where
ru = u|y is the restriction operator.
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Globally on Y':
0o(A) : Ty SRy) @ V' — 15 SRy) @V,

Vi=Vl]y, V' =V]y.

T is a column of operators T; = rTj, j = 1,..., v, where
ru = u|y is the restriction operator.

| Quasicomplexes Ua(Tj) : W;S(E_F) R vV W;S(@_F) R Wj

Elliptic
Quasicompl




Symbol

Globally on Y':
0o(A) 1 Ty SRy @V — 1 SRy) @ V.
V' =Vi|y, V' =Vl]y.

T is a column of operators T; = rTj, j = 1,..., v, where
ru = u|y IS the restriction operator.

Quasicomplexes oL (Tj) : W;S(E+) V' — W;S(@—l—) ® W;

Elliptic
Quasicomp

O'a(T) — (TJ@(TJ')) 1

e v SRy @V — 7p W.

g




Globally on Y':

0o(A) : 1y S(Ry) @ V' = 13 S[Ry) @ V7,
V' =Vi|y, V' =Vl]y.

T is a column of operators T; = rTj, j = 1,..., v, where
ru = u|y IS the restriction operator.

Quasicomplexes oL (Tj) : W;S(E+) V' — W;S(@—l—) ® W;

Elliptic
Quasicomple

.....

The principal boundary symbol of A:

o5(A) = SRy OV
oa(A) = <Oa(T)> 1y S(Ry) @V — 7y s>
7%

lliptic PDE systems




Definition. The boundary problem A is elliptic if
1. Ais elliptic, i.e. o, (A) : 7*V — 7*V is an isomorphism away
from the zero section of T* X

2. the boundary conditions are elliptic, i.e. the boundary symbol
cg5(A) is an isomorphism away from the zero section of T*Y'.

Ellipticity

- Overdetermined
~ Operators
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ytic Boundary Problems

y

Definition. The boundary problem A is elliptic if
1. Ais elliptic, i.e. o, (A) : 7*V — 7*V is an isomorphism away
from the zero section of T* X

2. the boundary conditions are elliptic, i.e. the boundary symbol
cg5(A) is an isomorphism away from the zero section of T*Y'.

Ellipticity

.

- Overdetermined

Operators

(2) is called the Shapiro-Lopatinskij condition.

Quasicomplexes

Elliptic
Quasicomplexes
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Definition. The boundary problem A is elliptic if
1. Ais elliptic, i.e. o, (A) : 7*V — 7*V is an isomorphism away
from the zero section of T* X

2. the boundary conditions are elliptic, i.e. the boundary symbol
cg5(A) is an isomorphism away from the zero section of T*Y'.

* Overdetermined
Operators

(2) is called the Shapiro-Lopatinskij condition.

A induces a continuous map
Quasicomplexes

Hs—m(X, ‘7)

Ellipti . s

Qulgsfcomplexes A H (X y V) — D
Hs—r=12(y, W)

where H*~+=12(Y, W) = @'_, H#~Y2(Y,W;), p; = ord Tj.
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" Elliptic Boundary Problems

Definition. The boundary problem A is elliptic if
1. Ais elliptic, i.e. o, (A) : 7*V — 7*V is an isomorphism away
from the zero section of T* X

2. the boundary conditions are elliptic, i.e. the boundary symbol
cg5(A) is an isomorphism away from the zero section of T*Y'.

r dary Symbol
Ellipticity

Overdetermined (2) is called the Shapiro-Lopatinskij condition.
Operators

A induces a continuous map
Quasicomplexes

HS—’I’I’L(X) ‘7)

Ellipti . S

Qulgs:?complexes A:H (Xa V) — D
HS—,LL—]./2(Y7 W)

Euler 4
Characteristic

where H*—+=Y2(Y, W) = @%_, H**~Y2(Y,W;), p; = ord T}.

Theorem. A is elliptic if and only if it is Fredholm (for sufficiently
large s).

And finall
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mined Operators

Let A be an overdetermined operator on X.
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mined Operators

Let A be an overdetermined operator on X.

—> we need to consider a compatibility complex for A.
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Let A be an overdetermined operator on X.

- — we need to consider a compatibility complex for A.
Example.

Overdetermined 6[1317 8332’ 85133
Operators

is overdetermined, since V x (Vy) = 0.
’“””Example
BVP Complex 0fs3 dfy 0f1 dfs Ofs 0 f1
lised curl : V x : — : —
i VS PSR PR Pl

Elliptic Complexes i ] ]
Parametrix ~is overdetermined, since V - (V x f) = 0.

Boutet de MOnvel /

Operators . N N
divergence: V-h=(—

¥ (3:131 " O0x2 + 5’x3)

gradient: Vy = (

Compatibility complex for V-

O (QR) —L= 0(Q, R?) —2> 0%(Q, R3) —> C®(Q,R) — (

ysis of Elliptic PDE systems
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: S(X,R*) — S(X,R*) with constant coefficients.

Normalised BVP
Construction
Elliptic Complexes
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on of Compatibili;

Ag : S(X,RF0) — S(X,R*) with constant coefficients.
The full symbol of Ay:

AOZ Z auf“

|| <m

2 P Complex
Normalised BVP
Construction
Elliptic Complexes

Parametrix
Boutet de M
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lon of Compatlbll'

Ag S(X R*o) — S(X,R*) with constant coefficients.

The full symbol of Ay:

AOZ Z auf“

|| <m
al,... aF: the rows of A,.

Normalised BVP
Construction
Elliptic Complexes

Parametrix
Boutet de Mon

Operato
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ruction of Compatibilhi;

Ag : S(X,RFo) — S(X,RF1) with constant coefficients.
The full symbol of Ay:

AOZ Z Cl,lug’u

| <m
Costrction 1 kq- the rows of A
ample a 9 e e ey a . O-

VP Complex . 1 T\ .
e BVP Construct a free resolution of the module My = (a*,...,a"):
Construction
Elliptic Complexes Ag’ AT A(’—)F
Parametrix 0— Akr —— AF2 ——> AF1 ———> pAko —— Ako /MO — 0

Boutet de Monve
Operato
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Ag : S(X,RF0) — S(X,R*) with constant coefficients.
The full symbol of Ay:

/5\0: Z auﬁ“

ln|<m

Operators

f Construction [ ky . ~
Example a,...,a": the rows of Ay.

BVP Complex i B 1 .
Normalised BVP Construct a free resolution of the module My = (a",...,a"):

Construction
Elliptic Complexes AT AT A

: k 2 s Ake — s Ak — 25 pko — s AR /DN ——
Parametrix 0——=AFr. .. Ar2 At Ao / 0 0
Boutet de Monvel
Operators

A;: ad.o. corresponding to the syzygy matrix A;.

Theorem. A complex of differential operators with constant coeffi-
cients is a compatibility complex for A, if and only if the operators
A; are associated to the syzygy matrices of the free resolution of
A-module M,.

/
& Hé//lysis of Elliptic PDE systems




Example. Ay = (V x y,V - y).

- Letd',...,b" be rows of the principal symbol of A
( 0 =& & \
O _
O'¢ (A) = 51 , MO <b1, y b4>
—& & 0
/gonstructlon
¥ Example \ &1 &9 &3 )

BVP Complex
Normalised BVP Computing the syzygy of module M, we get

Construction

Elliptic Complexes S = (£,6,8,0), M;=(S) — the 1-stsyzygy module.

Parametrix
Boutet de Monvel /
Operators

Computing the syzygy of M;, we get M> = 0. Hence we have
the following free resolution for My:

The compatibility complex is

0 — > C(X,R%) — A 0o (x,RY) Y% 0o (X, R) — >0 .

ysis of Elliptic PDE systems




Let A be an overdetermined operator on X. Consider a
boundary problem operator A = (A, T).

VP Complex
- Normalised BVP
Construction
Elliptic Complexe

Parametrix
Boutet de

Operato




bility Complex for BVF

Let A be an overdetermined operator on X. Consider a
boundary problem operator A = (A, T).

— we need to consider a compatibility complex for A and
study whether the cohomology of the complex is finite
dimensional (Fredholm complex).

BVP Complex
Normalised BVP
Construction
Elliptic Complexes

Parametrix
Boutet de Mo

Operators
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Let A be an overdetermined operator on X ConS|der a
- boundary problem operator A = (A,T).

—> we need to consider a compatibility complex for A and
study whether the cohomology of the complex is finite

// . =
determined dimensional (Fredholm complex).
erators
 Construction Fix sufficiently large sy;. Then the compatibility complex for A is

- Example

given by

Normalised BVP

Construction Hs1 (X Vl) HSN (X VN)
Elliptic Complexes 40 ’ AN ’
Parametrix 0—— H?° (X, VO) — P ., ——— D — ()

Boutet de Monvel 4
Operators

Hu (Y, W) HiN (Y, W)

Al = A.(i, i=1,...,N,
T! d

where A* and d* are differential operators on X and on Y,
respectively, T* are trace operators.

//,,,*ZSIS of Elliptic PDE systems



VP Complex
Construction
Elliptic Complexes

Parametrix
Boutet de Mo \
Operators

ed BVP

1. Construct a compatibility complex for a normalised
BVP-operator.

2. Using it to construct a compatibility complex for the original
BVP- operator.




verdetermined
- Operators
Construction
Example
BVP Complex
Construction
Elliptic Complexes

Parametrix
Boutet de Monvel

Operators

Quasicomplexes

///

/,’f//ff y

lormalised BVP

p

1. Construct a compatibility complex for a normalised
BVP-operator.

2. Using it to construct a compatibility complex for the original
BVP- operator.

Definition. A differential operator A : S(X,V) — S(X,V) is
called normalised if
1. Ais a first order operator;

2. A s involutive;

3. there are no (explicit or implicit) algebraic (i.e.,
non-differential) relations between dependent variables in the
system.




&
- ‘«'Normalised BVP

1. Construct a compatibility complex for a normalised
BVP-operator.

2. Using it to construct a compatibility complex for the original
BVP- operator.

Overdetermined Definition. A differential operator A : S(X,V) — S(X,V) is

L

g’ﬁfi‘:";on called normalised if

Structi o .

e 1. Ais a first order operator;

e plex 2. Ais involutive;

Construction 3. there are no (explicit or implicit) algebraic (i.e.,

Eg':::ﬁefr?;“p'e"es non-differential) relations between dependent variables in the
Boutet de Monvel system.

Operators

Definition. A BVP-operator A = (A, T) is normalised if A is nor-
malised and T contains only differentiation in directions tangent
to the boundary.

S in Analysis of Elliptic PDE systems Katya‘

Quasicomplexes




ormalised BVP

Construction
Elliptic Complexe

Parametrix
Boutet de Mor
Operators

tidility Operator fQ

1. Compute a compatibility operator A, for A.

Elliptic PDE systems




|I|ty Operator for N/q

1. Compute a compatibility operator A; for A.

2. Compute the tangent part A™ of A. This is a Grobner bases
computations with a suitable module ordering.

0 ), X ={z € R3: 23> 0}.

9
Example. A =V = e aw»axg
).

(3
Then A7y = (52, 52

1’ 2

Normalised BVP

Construction
Elliptic Complexes
Parametrix
Boutet de Mo

Operato
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1. Compute a compatibility operator A1 for A.

- 2. Compute the tangent part A™ of A. This is a Grobner bases
computations with a suitable module ordering.

o o
raors Example. A =V = (5 8:,/,2,8563) X ={z eR3: 25 >0}
T 0 8
VP Complex
BVP 3. Compute a compatibility operator A7 for A™. This is syzygy

Elliptic Complexes ~ computations, since A™ is defined on Y.

Parametrix
Boutet de Monv

Operators

Elliptic PDE systems



erdetermined
Operators
~ Construction
Example
BVP Complex
Construction
Elliptic Complexes

Parametrix
Boutet de Monvel

Operators

1. Compute a compatibility operator A; for A

2. Compute the tangent part A™ of A. This is a Grobner bases
computations with a suitable module ordering.

0 ), X ={z € R3: 23> 0}.

&
Example. A =V = R 8x278x3
).

(3
Then A7y = (3%, 7

3. Compute a compatibility operator A7 for A™. This is syzygy
computations, since A” is defined on Y.

4. Set @7 (y) = (A7y,Ty) and compute a compatibility operator

o7 for ®7. This is also syzygy computations. &7 may always
be written in the form ®7(f’,g) = (A7f’,Y7(f’,g)) where Y~
does not contain relations only between the components of f’.

IyS|s of Elliptic PDE systems



1. Compute a compatibility operator A, for A

2. Compute the tangent part A™ of A. This is a Grobner bases
computations with a suitable module ordering.

/,perators Example. A =V = ( 2 822’ 8x3) X = {:23 c R3: T3 > O}
~ Construction
_ (_ O o
Example Then AT'y — (8—:1:1 8—)
BVP Complex

B clion 3. Compute a compatibility operator A7 for A™. This is syzygy

Elliptic Complexes ~ computations, since A™ is defined on Y.

Parametrix
Boutet de Monvel

Operators

- 4. Set 97 (y) = (A"y, Ty) and compute a compatibility operator
- @7 for 7. This is also syzygy computations. ®7 may always
be written in the form ®7(f’,g) = (A7f’,Y7(f’,g)) where Y~
does not contain relations only between the components of f’.

5.®:(f,9) = (A1 f,Y7(f7, g)) is a compatibility operator for A.

él&/sis of Elliptic PDE systems



1. Compute a compatibility operator A, for A

2. Compute the tangent part A™ of A. This is a Grobner bases
computations with a suitable module ordering.

/,perators Example. A =V = ( 2 822’ 8x3) X = {:23 c R3: T3 > O}
~ Construction
_ (_ O o
Example Then AT'y — (8—:1:1 8—)
BVP Complex

B clion 3. Compute a compatibility operator A7 for A™. This is syzygy

Elliptic Complexes ~ computations, since A™ is defined on Y.

Parametrix
Boutet de Monvel

Operators

- 4. Set 97 (y) = (A"y, Ty) and compute a compatibility operator
- @7 for 7. This is also syzygy computations. ®7 may always
be written in the form ®7(f’,g) = (A7f’,Y7(f’,g)) where Y~
does not contain relations only between the components of f’.

5.®:(f,9) = (A1 f,Y7(f7, g)) is a compatibility operator for A.
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on of Compatlbll'

To construct a compatibility operator for a BVP-operator
A= (A, T) we should

BVP Complex
Normalised BVP

Elliptic Complexe

Parametrix
Boutet de

Operato




tion of Compatibili

To construct a compatibility operator for a BVP-operator
A= (A, T) we should

1. Construct the involutive form of A.

VP Complex
Normalised BVP

Elliptic Complexes

Parametrix
Boutet de Mo '
Operators




To construct a compatibility operator for a BVP-operator
A= (A, T) we should

1. Construct the involutive form of A.

2. Prolong the system (if necessary) until the order of the
system is higher than the the order of normal derivatives in the

 BVP Complex boundary operator.
Normalised BVP

Elliptic Complexes

Parametrix
Boutet de Mon

Operators

Elliptic PDE systems



////// ction of Compatibilit

p ,/::55555555555;;/
To construct a compatibility operator for a BVP-operator
A = (A, T) we should

1. Construct the involutive form of A.

e 2. Prolong the system (if necessary) until the order of the

g"TC“O” system is higher than the the order of normal derivatives in the
,, mple
BEE Complex boundary operator.

Normalised BVP
3. Construct an equivalent first order system.
Elliptic Complexes

Parametrix
Boutet de Monv

Operators

 of Elliptic PDE systems



To construct a compatibility operator for a BVP -operator
- A= (A,T) we should

1. Construct the involutive form of A.

2. Prolong the system (if necessary) until the order of the
- Construction system is higher than the the order of normal derivatives in the

 Example
BVP Complex boundary operator.

Normalised BVP

3. Construct an equivalent first order system.

Elliptic Complexes

Parametrix
Boutet de Monvel

Operators

- 4. Eliminate (if necessary) the extra variables using the
algebraic relations in the system.

/sis of Elliptic PDE systems



To construct a compatibility operator for a BVP-operator
A= (A, T) we should

1. Construct the involutive form of A.

determined

Dperators 2. Prolong the system (if necessary) until the order of the
Construction

— system is higher than the the order of normal derivatives in the
xample
BVP Complex boundary operator.

Normalised BVP
3. Construct an equivalent first order system.
Elliptic Complexes

Parametrix
Boutet de Monvel

Operators

4. Eliminate (if necessary) the extra variables using the
algebraic relations in the system.

5. Construct the compatibility operator for the normalised BVP.

alysis of Elliptic PDE systems



nstruction of Compatibility Opera

To construct a compatibility operator for a BVP-operator
- A= (A,T) we should

1. Construct the involutive form of A.

6é{érmined _ _
Operators 2. Prolong the system (if necessary) until the order of the

//"//'/'(E?O”S"‘IJC“O“ system is higher than the the order of normal derivatives in the
xample
BVP Complex boundary operator.

Normalised BVP
3. Construct an equivalent first order system.

Elliptic Complexes
Parametrix

SouetdeMonvel 4. Eliminate (if necessary) the extra variables using the
~ algebraic relations in the system.

5. Construct the compatibility operator for the normalised BVP.

6. Construct the compatibility operator for the original
BVP-operator.

IyS|s of Elliptic PDE systems



plexes

s

Consider a compatibility complex for A = (A, T).

ormalised BVP
Construction

Boutet de Mo
Oper



mplexes
Consider a compatibility complex for A = (A, T).

The interior symbol sequence o, (A):

oy (A?)

0 —— i V! —= 715V —— oA AT

7ﬁ§¥/A7————>-0

Normalised BVP
Construction
Elliptic Complexe

Parametrix
Boutet de Mon




Consider a compatibility complex for A = (A, T).

The interior symbol sequence o, (A):

oy (A° o (Al o (AN
0 W}‘(VO o (A )val W ( ) 3 W ( ) 7TXVN 0

The boundary symbol sequence o5 (2():
VP Complex

Normalised BVP = 0/ = N/
Construction S(R+) ®V oo (A%) S(R—i-) ®V

Elliptic Complexes || ja———— 71'; s — ... 7'(';} fan ——
Parametrix 0 N

Boutet de %% |44

Operators

f Elliptic PDE systems



tic Complexes
Consider a compatibility complex for A = (A, T).

~ The interior symbol sequence o, (21):

oy (A?) oy (Al ) oy (AN
0—— 75V —— 7tV —= ... VN ——= 0
étructlon
| The boundary symbol sequence o5 (2():
BVP Complex
Normalised BVP ™ o/ ™ N/
Construction S(R+) ® 4 Ja(.AO) S(R+) ® 4
0—> 7} & i & —0
Parametrix 0 N
Boutet de Monvel W W

Operators

Definition. A compatibility complex for A is called elliptic if symbol
sequences o, () and o5 () are exact.

is of Elliptic PDE systems



=lliptic Complexes

| Consider a compatibility complex for A = (A, T)).

The interior symbol sequence o, (A):

oy (A?)

0 — 5Vl —— 3 VI —= o) AT

W}VN —()

/"Operators
Construction
B Dl The boundary symbol sequence o5 (2():

BVP Complex
Normallse_d BVP S(E) 2 VO/ S(E) 2 VN/

Construction 08( .AO)

Elliptic Complexes )—— 71'3"/ b — ... W; D — ()
Parametrix 0 N

Boutet de Monvel W W

Operators

Definition. A compatibility complex for A is called elliptic if symbol
sequences o, (2() and o5 () are exact.

Theorem. (K.K, N.Tarkhanov, J.Tuomela, 2006) An elliptic com-
patibility complex for an overdetermined boundary problem is
Fredholm for any sufficiently large sy.




P is a parametrix for A if

AP -7 and PA-Z7

are compact

BVP Complex
Normalised BVP
Construction

Elliptic Complexes

r
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P is a parametrix for A if

AP -7 and PA-Z7

are compact

BVP Complex ) ) . .

Normalised BVP For differential operators on manifold without boundary,
Construction parametrices are pseudodifferential operators.

Elliptic Complexes

Parametrix
Boutet de Monv

Operators

lliptic PDE systems



P is a parametrix for A if

AP -7 and PA-Z7

determined

) |

nstruction

are compact

Example

BVP Complex ) ) . .

Normalised BVP For differential operators on manifold without boundary,
Construction parametrices are pseudodifferential operators.

Elliptic Complexes

Parametrix
Boutet de Monvel
Operators '

For boundary problem operators, parametrices are Boutet de
Monvel operators.

ysis of Elliptic PDE systems



e Monvel Operatorsg

P+G K
A=
/ T S
- BVP Complex P Is a pseudo-differential operator on X satisfying the

N lised BVP . . )
- transmission property with respectto Y and T, K, G are trace,

Eliiptic Complexes ~ Poisson and singular Green operators, respectively, and S is a
Parametrix 4 i '

T —— pseudo-differential operator on Y.

Operators

EIIiptic PDE systems



BVP Complex
Normalised BVP
Construction
Elliptic Complexes

Parametrix
Boutet de Monvel

Operators

de Monvel Operators

P+G K
A =
T S

P Is a pseudo-differential operator on X satisfying the
transmission property with respectto Y and 7', K, G are trace,
Poisson and singular Green operators, respectively, and S is a
pseudo-differential operator on Y.

— under which condition a complex of Boutet de Monvel
operators is Fredholm?

Elliptic PDE systems



Quasicomplexes

Elliptic
Quasicomplexes

PDE systems



asicomplexes

Elliptic

Quasicomplexes

Euler

Characterist

plexes of Hilbert

Let us consider a sequence

d’ d' N-1
g: O%EO%E1%'°.%EN_1%EN_>O

E* are Hilbert spaces and d* are continuous linear maps.




asicomplexes

Elliptic

Quasicomplexes

Euler

Characterist

plexes of Hilbert

Let us consider a sequence

d’ d' N-1
g: O%EO%E1%'°.%EN_1%EN_>O

E* are Hilbert spaces and d* are continuous linear maps.
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Let us consider a sequence

d’ d' N-1

E* are Hilbert spaces and d* are continuous linear maps.

didi—l — 0
Instead of complexes it is natural to consider a sequence &£
Elliptic with the property that the composition d*d*~! is “small” in some
Ruasicompi e - sense. By “small” operators one usually means compact

operators.
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Let us consider a sequence

d’ d' N-1

E* are Hilbert spaces and d* are continuous linear maps.

ermlned
didi-1 =0
Quasicomplexes
Instead of complexes it is natural to consider a sequence &£
Elliptic with the property that the composition d*d*~! is “small” in some
Ruasicompi e sense. By “small’ operators one usually means compact

il operators.

Characteristic

Let us denote by L(F, E) a space of continuous linear maps

and by K(E, E) the subspace of £L(E, F) consisting of compact
operators.
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Let us consider a sequence

d’ d' N-1

e E* are Hilbert spaces and d* are continuous linear maps.

Dperators
dz di—l —0
Quasicomplexes o ]
Instead of complexes it is natural to consider a sequence &£
Elliptic with the property that the composition d*d*~! is “small” in some
Ruasicompi e sense. By “small’ operators one usually means compact
- . operators.
Characteristic

Let us denote by L(F, E) a space of continuous linear maps
and by KC(E, E) the subspace of £L(E, F) consisting of compact
operators.

Definition. (£, d) is a quasicomplex if d'd*~! € K(E*~1, E*T1).
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Let us consider a sequence

d’ d' N-1

e E* are Hilbert spaces and d* are continuous linear maps.

Dperators
dz di—l —0
Quasicomplexes o ]
Instead of complexes it is natural to consider a sequence &£
Elliptic with the property that the composition d*d*~! is “small” in some
Ruasicompi e sense. By “small’ operators one usually means compact
- . operators.
Characteristic

Let us denote by L(F, E) a space of continuous linear maps

and by KC(E, E) the subspace of £L(E, F) consisting of compact
operators.

Definition. (£, d) is a quasicomplex if d'd*~! € K(E*~1, E*T1).

imd'—! ¢ kerd'.
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An operator d € L(E, E) is Fredholm if and only if its image in
the Calkin algebra £(E, E)/K(E, E) is invertible.
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An operator d € £(E, E) is Fredholm if and only if its image in
the Calkin algebra £(E, E)/K(E, E) is invertible.

. The idea of Fredholm guasicomplexes is to pass in a given
guasicomplex to quotients modulo spaces of compact
operators and require exactness.
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An operator d € £(E, E) is Fredholm if and only if its image in
the Calkin algebra £(E, E)/K(E, E) is invertible.

" The idea of Fredholm guasicomplexes Is to pass in a given
guasicomplex to quotients modulo spaces of compact
operators and require exactness.

Any compact perturbation of a Fredholm quasicomplex is a
Fredholm quasicomplex.

8 Quasicomplexes
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Quasicomplexes of Hilbert Spaces‘

An operator d € £(E, E) is Fredholm if and only if its image in
the Calkin algebra £(E, E)/K(E, E) is invertible.

The idea of Fredholm quasicomplexes is to pass in a given
guasicomplex to quotients modulo spaces of compact

Overdetermined operators and require exactness.

Operators

Any compact perturbation of a Fredholm quasicomplex is a
Fredholm quasicomplex.

Quasicomplexes

Elliptic
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Definition. The sequence

1 2 N

p p p
Euler O0<=— [V<~—pl=~— .- < N1« PN <

Characteristic

with p* € L(E*, E*~1) is called a parametrix of the quasicomplex
(€,d), if

And finally...

d1pt £ ptl@ = I —C%, i=0,... N,

Ka‘

where C" € K(E*, E").

in Analysis of Elliptic PDE systems
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Theorem. The quasicomplex (£, d) is Fredholm if and only if it
possesses a parametrix.
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SIS SIS

Choose si € N sufficiently large.

H*(X, V) H™(X,VY) HW(X,VV)
0— o 2= 9 A5 @ @ —=0
Hto(y, W9) Hb(y, W) Hiv (Y, W)

He =1 (X, Vitl) o (X, Vi)
A'A T e K & : o
Hb= (Y, Wi=l) Hb (Y, With)




HO(XV0)  ES(XVY HS (X V)
0o—s o 2= g A B )

Hto(y, W9) Hb(y, W) Hiv (Y, W)

He =1 (X, Vitl) o (X, Vi)
AA™L e o , o
Hb-1 (Y, W=ty Hbs (Y, W)

oy (Al oy (AN 1
—>7T§(V1L>)~' v : VN —— 0
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The boundary symbol sequence 03(91)

SRy) @ VY
(R+) o (A9)

0 ——my & — ... Ty B —> 0

WO WN




SEDOV . [(SE)eVY
0 —— Ty D i LTy s — =
WO W

)uasicomplexes

Definition. A quasicomplex (2, .4) is called elliptic if symbol se-

Elliptic quences o,,(2) and o5(2) are exact.
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Euler
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Euler
Characteristic

Iptic Quasicomplexes

The boundary symbol sequence o4 (2):

S[Ry) @ VY
(R+) o (A9)

OHT‘-;’ — ...

WO

Definition. A quasicomplex (2, .A) is called elliptic if symbol se-
quences o,,(2) and o5(2) are exact.

Theorem. (K.K, N.Tarkhanov, J.Tuomela, 2006) Let (2, .4) be an
elliptic quasicomplex with Boutet de Monvel operators. Then it is
Fredholm for a sufficiently large sy.
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Quasicomplexes

Elliptic
Quasicomplexes

Euler
Characteristic :

r Characteristic of EIIlptlC

Theorem. (K.K, N.Tarkhanov, J.Tuomela, 2006) Given any two
exact sequences of symbols {o7,};' " and {o}};1;" there is a
complex of operators D* such that the principal interior symbols
oy(D') = o, and boundary symbols o5(D") = o for all i =
0,....N —1.

i R o Z 7
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r Characteristic of Elliptic Q

Theorem. (K.K, N.Tarkhanov, J.Tuomela, 2006) Given any two
exact sequences of symbols {o7,};' " and {o}};1;" there is a

complex of operators D' such that the principal interior symbols
oy(D*) = oy, and boundary symbols o5(D*) = o3, for all i =

ﬂetermlned O, e N — 1.
)perators

Let us now consider an elliptic quasicomplex:
Quasicomplexes

Elliptic H?e (Xv VO) H* (Xa Vl) H?®N (Xv VN)
Quasicomplexes & A° o Al S

0 —— — = ..

Euler Hbo(y, WY) Hi (Y, W1 Hi~N (Y, W)

Characteristic )
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Theorem. (K.K, N.Tarkhanov, J.Tuomela, 2006) Given any two
exact sequences of symbols {o7,};' " and {o}};1;" there is a

complex of operators D' such that the principal interior symbols
oy(D*) = oy, and boundary symbols o5(D*) = o3, for all i =

B T nined _
/ O, L) N 1 .
‘Operators

Let us now consider an elliptic quasicomplex:
Quasicomplexes

Elliptic H*(X,V?) H* (X, V1) Hev (X, V)

. A° Al
Quasicomplexes 0 ——> D P - %

Ho(Y,W®)  H4(Y, W) H (Y, W)

Characteristic

HO

There is a complex of operators D’ such that o, (D?) = o (A")
and o5(D") = 05(A") foralli =0,...,N.
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Theorem. (K.K, N.Tarkhanov, J.Tuomela, 2006) Given any two

exact sequences of symbols {o7,};' " and {o}};1;" there is a

complex of operators D* such that the principal interior symbols
oy(D*) = oy, and boundary symbols o5(D*) = o3, for all i =
0,...,N —1.

Dverdetermined
- Operators

Let us now consider an elliptic quasicomplex:

Quasicomplexes

Elliptic H*(X,V") Ho (X, V1) H*N (X, V)
Quasicomplexes D AY D Al o D

)——

HO(Y, W0 HO(Y, W) 1 (Y, W)

There is a complex of operators D’ such that o, (D?) = o (A")
and o5(D") = 05(A") foralli =0,...,N.

HO

And finally...

Thus, the complex of operators D¢ is elliptic and hence
Fredholm.
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For the Fredholm complex of D?, the Euler characteristic is
defined by

N

X(D) =) (-1)"dim H".

1=0
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- For the Fredholm complex of D?, the Euler characteristic is
defined by

N
X(D) =) (-1)"dim H".
1=0
Elliptic Definition. The Euler characteristic of the elliptic quasicomplex of
asicompRg | A" is called the Euler characteristic of the Fredholm complex of
Euler | D' ie. x(A) = x(D).

Characteristic
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Quasicomplexes

Elliptic

For the Fredholm complex of D?, the Euler characteristic is
defined by

N

X(D) =) (-1)"dim H".

1=0

Quasicomplexes

Euler
Characteristic

Definition. The Euler characteristic of the elliptic quasicomplex of
Af Is called the Euler characteristic of the Fredholm complex of
D' i.e. x(A) = x(D).

Theorem. (K.K, N.Tarkhanov, J.Tuomela, 2006) The Euler char-
acteristic is well-defined, i.e. independent of the particular choice
of complex.

IyS|s of Elliptic PDE systems



And finally...

 Elliptic
Quasicomplexes

And finally...

liptic PDE systems



o

Thank you for
your attention!
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