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Abstract

The following Gröbner basis problems trivially arise from the question

of whether a particular tensor has a decomposition into at most some

number T of simple tensors. Of primary interest is to decide whether the

ideal is trivial, but secondarily one also wants to find some point in the

corresponding variety.

Two typical features of these problems which make them difficult is

that they have quite a lot of variables and large symmetry groups. On

the other hand, the degrees are about as low as they can get without the

system becoming linear.

1 The examples

For the hurried reader, here are the benchmark examples. I will in general write
[n] for the set {1, . . . , n}, with in particular [1] = {1} and [0] = ∅.

Example 1 (identity matrix rank). This family of examples have two para-
meters n and T . There are 2nT variables called xik and yik respectively for
i ∈ [n] and k ∈ [T ]. There are n2 equations, namely

T
∑

k=1

xikyjk =

{

1 if i = j,

0 if i 6= j,
for all i, j ∈ [n]. (1)

Regardless of the base field, this system has no solutions for T < n and plenty
of solutions whenever T > n.

Example 1 was constructed mainly to be the classical “minimal example”:
a simplified problem still exhibiting all the nastiness of the problem one really
wants to solve. My real problem is that of Example 2.

Example 2 (matrix multiplication tensor rank). This family of examples
have four parameters l, m, n, and T , but the roles of the first three are inter-
changeable. There are (lm+ ln+mn)T variables xijk, yjrk, and zirk for i ∈ [l],
j ∈ [m], r ∈ [n], and k ∈ [T ]. The system of equations they have to satisfy is

T
∑

k=1

xijkyrskzuvk =

{

1 if i = u, j = r, and s = v,

0 otherwise,

for all i, u ∈ [l], j, r ∈ [m], and s, v ∈ [n]; (2)
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in total (lmn)2 different equations.
As in the previous example there is for all l,m, n ∈ Z>0 a threshold value

R(l,m, n) for T such that solutions exist for all T > R(l,m, n) (solutions for
larger T can be manufactured by padding with zeroes) but not for any T <
R(l,m, n). Some known facts are:

1. R(l,m, n) 6 lmn.

2. R(2, 2, 2) = 7 [Str69, HK71].

3. R(2, 2, 3) = 11 [HK71].

4. R(2, 3, 3) = 15 [HK71].

5. 19 6 R(3, 3, 3) 6 23 [Blä03, Lad76].

It is believed by some that R depends on the characteristic of the underlying
field, but as far as I can tell noone has produced an example of this. On the
other hand, R is exactly known only for very few values of (l,m, n).

2 Matrix rank

Now what is actually going on here? Example 1 is all about decomposing the
n× n identity matrix as a sum

x1y
T

1
+ · · ·+ xTy

T

T (3)

where each xk and yk is a (column) n-vector (and the transpose thus turns yk
into row vectors, so that each term is an n× 1 by 1× n matrix product). This
succeeds if and only if T > n, because the property of a matrix A to possess a
decomposition of the form (3) is equivalent to the claim that the rank of A is
6 T ; the threshold for having such a decomposition is in fact the coordinate-free
definition of matrix rank.
[Fill in: Describe the symmetries of the system.]

3 3-tensor rank

For a vector space U , denote by U∗ the linear dual of U .
A matrix or linear transformation U −→ V can be viewed as a 2-tensor, i.e.,

an element in a tensor product U∗⊗V of two (finite dimensional) vector spaces.
In the same way, a bilinear map U×V −→W can be viewed as an element of the
tensor triple product U∗⊗V ∗⊗W , or for short as a 3-tensor. As an example of
this, consider complex multiplication as an operation over R. The vector space
C has the standard basis {1, i}, whereas its dual C∗ has the standard basis
{Re, Im}. From the definition (a+ ib)(c+ id) = (ac− bd) + i(ad+ bc), one can
read off that the complex multiplication tensor is

Re⊗ Re⊗ 1− Im⊗ Im⊗ 1 + Re⊗ Im⊗ i+ Im⊗ Re⊗ i (4)

which in a more array-like manner can be written as for example
(

(

1 0
0 −1

) (

0 1
1 0

)

)

.
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Since this three index tensor has two full rank matrices as components no matter
how the indices are arranged, one may think that the decomposition (4) uses
the minimal number of terms, but in fact it does not. There is a three term
decomposition

(Re + Im)⊗ (Re + Im)⊗ i+Re⊗ Re⊗ (1− i)− Im⊗ Im⊗ (1 + i) (5)

of this tensor which demonstrates that the rank is at most 3, and in fact the
rank is exactly three.
[Write lots of more things.]
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