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Resolution of singularities, part II.

Main structure of the proof is an induction on the dimension of the ambient
space: it proceeds by order reduction for I ⊆ OW , where W is the (smooth)
ambient space, having dimension n.

Reduce this to order reduction for ideals in I ⊆ OZ , where dim Z = n− 1.
But there is an intermediate step: order reduction for marked ideals where

dim Z = n− 1.

We want an algorithm that tells us how to choose the centres for the blow-
ups.

In the course of the algorithm for the choice of the centres, we associate to
each point of the variety V (I) a list of invariants

(ord, NE ; ord, NE ; . . .)

which are the order of I at this point and a count of certain exceptional divisors
from the various blowups. The “;” marks the descent in dimension. More on
this below. The set of points where this invariant has maximal value is then
used as the centre for the upcoming blow-up.

The important point in reduction of the ambient dimension is the choice of
a hypersurface of maximal contact, and the construction of the coefficient ideal.
(Already touched on by Hauser in his keynote talk.)

Contents:

1. How to compute the order of an ideal

2. How to choose the special hypersurface

3. How to construct the coefficient ideal

4. A simple example: resolving V (< z2 − x2y2 >) ⊆ A3

5. Exercises
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DMV-Mitteilungen 13-2/2005, 98–105. For a general audience. Note:
figure 12 left is the wrong picture! It should show the three hyperplanes
meeting along a line.
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1 Order of an ideal at a point, and the locus of
maximal order

Situation: W an ambient space, equidimensional and nonsingular, I an ideal, b
is a “marker” for marked ideals, E is a chronologically ordered list of exceptional
divisors. If b is not defined otherwise, it is set to the maximal order of I, as
defined below.

Definition. The order of an ideal at w is defined as

ordw(I) = max{m ∈ N | I ⊆ mm
W,w}.

The “higher singular loci” for integers m are defined as

Singm(I) = {w ∈ W | ordw(I) ≥ m}.

We may assume, without loss of generality, that W is embedded in A` for
some `, as W is covered by affine charts. In practice, this is especially true,
as we consider one chart at a time, encoding all data by means of ideals in a
polynomial ring.

Now given a closed point w ∈ W , and a regular system of parameters
x1, . . . , xd at w, and a set of generators g1, . . . , gs for I at w, then

∆(Iw) =def< g1, . . . , gs,
∂gi

∂xj
| 1 ≤ i ≤ s, 1 ≤ j ≤ d > .

(This ideal is implicit in the proof of the Proposition in Schicho’s talk.)
Notation: ∆i(I) =def ∆(∆i−1(I)), for i ≥ 1.
Now: ordw(I) = max{m ∈ N | 1 6∈ ∆m−1(Iw)}.

Problem. Use of a (local) regular system of parameters (i.e., algebra genera-
tors of the coordinate ring) at each point. These do not exist generally for the
whole chart, and it is of course infeasible to compute them for all points locally.
Therefore, we look for an open covering U1, . . . , Ur of W such that on each Ui,
there exists a (global) system x1, . . . , xd giving rise to a local regular system of
parameters for all w ∈ Ui.

Actually, we already assume W = V (f1, . . . , fr) ⊆ A`. Write I =< g1, . . . , gs >.

Case 1: W = A`: done, as the coordinates x1, . . . , xn give local parameters
everywhere.

Case 2: W ( A`: we assume that W is nonsingular, so at each point w ∈ W
at least one (`−dim W )× (`−dim W )-minor Mk of the Jacobian matrix of the
fi does not vanish. On the open set Mk 6= 0, we can use

{xi | the column index i does not appear in Mk}
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as a regular system of parameters.
Determine square matrix A such that A ·Mk = det Mk · En−dim W .
Now define

∆̃(I, Mk) = I + < det Mk · ∂gi

∂xj
−

∑

l row of M
m column of M

∂fm

∂xj
Aml

∂gi

∂xl
| 1≤i≤s

j not a row of Mk
> .

We want to drop all contributions inside V (det Mk) which might have appeared.
These cannot be trusted, as we computed on W\V (det Mk). Thus, we set

∆(I, Mk) =
(
∆̃(I,Mk) : (det Mk)∞

)
,

and we will have
∆(I) = ∩k∆(I, Mk),

where we form the union of all contributions on the different Ui.
Remark by F.-O. Schreyer: this could be explained much easier by using

power series. This exposition is chosen because it shows computability.

2 Descent in dimension, maximal contact and
the coefficient ideal

Having obtained the locus of maximal order, we now want to pass to an ambient
space Z that has one less dimension, but that retains all information on the locus
of maximal order. We construct the centre of blowup on this smaller ambient
space, using the induction hypothesis to the effect that we know how to find a
suitable centre on such a smaller space.

How do we choose Z? Conditions on the lower-dimensional ambient space
Z:

� Singmax ord of I(I) ⊆ Z, and this should still hold after a finite sequence of
blow-ups at centres inside the maximal order locus

� Z is normal crossing with exceptional divisors from a subset1 E(1) ⊆ E

� {Z ∩ Ei | Ei 6∈ E(1)} is normal crossing

The latter two conditions are easy to verify once an explicit hypersurface
has been chosen.

By definition, we know that ∆max ord of I contains 1 at each point w ∈ W .
So locally at a point w ∈ Singmax ord(I), there exists f ∈ ∆max ord −1(I) such
that ordw(f) = 1.

1E(1) is the subset of the set E of exceptional divisors consisting of all elements being
present before the order of I attained the current value. These are being counted as NE in
the invariant tuple right at the beginning.
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Same problem as before. So to construct f , we pass to an open cover-
ing U1, . . . , Ur such that on each Ui, we can use the same Z for all points in
Singmax ord(I) ∩ Ui.

Suppose that ∆m contains 1, with m minimal. Then because ∆m−1 has an
element of order 1, we know that the singular loci of its generators do not have
common points. So, choose generators h1, . . . , ht for ∆max ord of I−1(I); we will
have ∩t

i=1 Sing(hi) = ∅.
Then, choose Ui to be in the complement2 of Sing(hi) and put Z = V (hi).

Problem: how to recombine the data from the different Ui. It turns out that
we cannot directly recombine, because the spaces Z on the different Ui are truly
different. We can only combine the contributions to the centres right before the
upcoming blow-up, discarding those charts where the invariants do not have
maximal value.

And: we cannot simply take the intersection of our variety X = V (I) with
Z; see a counterexample later on. Instead, we define the coefficient ideal

I ′ =def CoeffZ(I) =
max ord (I)−1∑

i=0

(
∆i(I) · OZ

) max ord(I)!
max ord (I)−i ,

where we mark the ideal I ′ by

b′ = max ord (I)!,

obtaining a “marked ideal”, and obtain a new set of exceptional divisors

E′ = {Ej |Z | Ej 6∈ E(1)}.
Example: if I is generated by

zk + zk−2a2(x, y) + . . . + ak(x, y)

of order k, this implies in particular that the order of ai(x, y) is at least i. Now
choosing Z = V (z), we only achieve order reduction in the (x, y)-chart if the
order of one of ai(x, y) drops under i after a blowup. Here ak does not play a
special role, we must consider all ai. This shows that we cannot only use the
term with ∆0 in the above formula for I ′.

The new ideal is marked b′, which is the “order reduction goal” for this
ideal. If b′ is less than the actual maximal order of I ′, we resort to the reduction
procedure for marked ideals outlined below.

3 Order reduction for marked ideals, and reduc-
tion to the monomial case

I ′ is transformed under blow-ups by using the controlled transform with respect
to the marking b′. We split the transform J in a monomial and a non-monomial

2In practice, this may be a complement of a suitably chosen hypersurface containing
Sing(hi).
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part:
J = M(J) ·N(J)

where M(J) factors as
t∏

i=1

I(Ei)αi

and no I(Ei) is a factor of N(J).

Case 1: max ord (N(J)) ≥ b′ along Singb′(J):
Use induction hypothesis to obtain order reduction for the (now non-marked)
N(J), iterating this process until we arrive in Case 2 or 3.

Case 2: 1 ≤ max ord (N(J)) ≤ b′ − 1 along Singb′(J):
The idea is to separate V (N(J)) from Singb′(J) by using induction hypothesis
for

M(J)max ord (N(J)) + N(J)b′

and push order down until max ord < b′ ·max ord (N(J)), iterating this process
until we arrive in Case 3.

Case 3: max ord (N(J)) = 0 along Singb′(J).
So, there is only a contribution to the order of J from the monomial part.

Simple example illustrating the special problem here:

W = A2,

I =< x3y3 >,

b = 2,

E = {V (x), V (y)}.
So locus of maximal order of I is V (x, y). Blow up with centre V (x, y).
Chart 1: E3 = V (x), Ictrl = x4 · y3; chart 2: E3 = V (y), Ictrl = x3 · y4.

So we made the situation worse!

Use different invariant (−c, ρ, J). We put

c =def min{k | there exists J ⊆ {1, . . . , t} with |J | = k and
∑

j∈J

αj ≥ b},

ρ =def max{
∑

j∈J

αj | J ⊆ {1, . . . , t}, |J | = c};

now let J ∈ {1, . . . , t} have c elements and attain the maximum ρ. Then the
ideal sum of ideals I(Ei) corresponding to J gives the next centre. If there are
more possibilities for J , decide lexicographically.

Back to example: c = 1, ρ = 3 and both J = (0, 1) and (1, 0) attain the
maximum. Now, blow up at E1 = V (x); get

Ictrl = x · y3.
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4 Example

We resolve the following surface in affine 3-space:

W = A3, I =< z2 − x2y2 > .

We start afresh, so there are no exceptional divisors arising from earlier blowups
that we must take care of: E = ∅. Pictures for this example are taken from the
speaker’s home page,
http://www.mathematik.uni-kl.de/~anne/Aufl-Bilder/DMV.html.
Higher resolution ones can be downloaded from the workshop web page,
http://www.ricam.oeaw.ac.at/srs/groeb/schedule_A.html.

To find the locus of maximal order, we compute

∆(I) =< z2 − x2y2, z, xy2, x2y >=< z, xy2, x2y > .

From this, it is obvious that ∆2(I) will contain 1, and hence the maximal order
of I is 2.

The locus is given by the radical of ∆(I). It is

V (< z, xy2, x2y >) = V (< z, xy >)

(the red lines in the picture on the left below).

The initial singularity With hyperplane of maximal contact

If, as here, there are no exceptional divisors to take care of, any generator of
order 1 of ∆(I) will generate a suitable hypersurface. So here, our hypersurface
of maximal contact will be

H = V (z), and OH = K[x, y, z]/I(H) = K[x, y].

The coefficient ideal I ′ is now

I ′ = (I · OH)
2!

2−0 + (∆(I) · OH)
2!

2−1 .
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It evaluates to just < x2y2 > as all other generators turn out to be zero modulo
the first. The ideal I ′ is marked with b′ = 2! = 2. The splitting into a monomial
and a non-monomial part is trivial as E is trivial. Thus, we have

I ′ = N(I ′)

of order 4, whereas the order reduction goal b′ is 2. We are thus in Case 1 of
the order reduction for marked ideals.

Compute the maximal order of N(I ′): we see that

∆3(N(I ′)) =< x, y > .

It follows at once that the maximal order is 4. Also, the ideal just computed
describes just one point, so we don’t need to descend any further. We can now
decide that the centre of blowup must be V (< x, y, z >), i.e., the origin.

Let’s do the blow-up. We get a new ambient space

W1 ⊆ A3 × P2

defined by equations uz−wx, uy−vx, vz−wy, where (x, y, z) are the coordinates
of A3 and (u : v : w) those of P2.

The coefficient ideal I ′ After blowup: the first chart, with the
exceptional divisor (brown)

First chart: u 6= 0. Here we have

z =
w

u
x, y =

v

u
x,

and we introduce new variables z1 = w/u and y1 = v/u. Now we are back in
A3 with coordinates x, y1, z1. The total transform of the ideal I is

Itotal =< z2
1x2 − y2

1x4 >,
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and factoring this, we find the strict transform

Istr =< z2
1 − y2

1x2 >

and the exceptional divisor E = V (x).
The strict transform still defines a singular variety; in fact, the ideal has not

changed at all! So we continue the process. The only difference with the initial
situation is that now we have an exceptional divisor that we carry with us. Of
the two lines that were on the hypersurface H, one of them is now contained in
the exceptional divisor, while the other is not: this fact allows us to distinguish
between the two3.

Here is the new coefficient ideal: notice the different colours of the lines! (I
promise you: the “horizontal” line is now brown, because it is in the exceptional
divisor. OK, it’s not really visible...)

The strict transform of H is

Hstr = V (z1),

and by some theorem, this is at the same time our new hypersurface of maximal
contact. The coefficient ideal with respect to the new H is

I ′ctrl =< y2
1x2 >,

which splits in a monomial and a non-monomial part as

M ·N, M(I ′str) = x2, N(I ′str) = y2
1 .

We are thus in Case 1, with the marked ideal

(N(I ′str), b
′) = (< y2

1 >, 2).

The order has dropped to 2, which is equal to the marking b′!
We now take the centre V (y1, z1) on this chart.

3Here our calculation does not strictly follow the original algorithm of O. Villamayor, but
uses a computational improvement on the use of the exceptional divisors due to G. Bodnár.
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Second chart: v 6= 0. This is analogous to u 6= 0.

Third chart: w 6= 0. Here we have

x =
u

w
z, y =

v

w
z.

The strict transform of I is

Istr =< 1− x2
1y

2
1z2 >,

which is nonsingular! Also, it does not meet the exceptional divisor E1 = V (z),
so in particular all crossings with it are normal.

Second blow-up. We continue with the chart u 6= 0 above, taking it as
ambient A3. This time, we blow up in a one-dimensional centre, so we get a
new ambient

W2 ⊆ A3 × P1

defined by uz1 − vy1.

First chart. For v 6= 0, we find a similar behaviour to w 6= 0 in the previous
step.

After the second blowup: After the third blowup
the second chart

Second chart. For u 6= 0, we get

z1 =
v

u
y1,

and we introduce the new variable z2 = v/u. The new exceptional divisor is

E2 = V (y1)
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whereas the strict transform of the old one is

E1,str = V (x).

Now abusing notation (we leave one “str” out), we write

Istr =< z2
2 − x2 > .

It follows that ∆(Istr) =< z2, x >. Here z2 is a generator of order 1, so still
< z2 >, which is equal to the strict transform of H, is a hypersurface of maximal
contact.

We have
I ′ctrl =< x2 >,

so
N(I ′ctrl) =< 1 >, M(I ′ctrl) =< x2 > .

Now we have three hyperplanes meeting along < x, z2 >; this is reduced to a
normal crossing situation by finally blowing up once more along < x, z2 >.

5 Exercises

Exercise 1. Choice of hypersurface of maximal contact.
Consider I =< z2 − y3 − x6 >⊆ K[x, y, z]. Decide whether the following

hypersurfaces can be chosen as Z:

� V (z)

� V (z − x2)

If not, why not?

Exercise 2. The coefficient ideal.
Given I =< xy − z5 >, compute ∆i(I), choose a hypersurface of maximal

contact Z and compute CoeffZ(I).

Exercise 3.
Compute a resolution of V (z2 + y2 − x4) ⊆ A3 by Villamayor’s algorithm.

How many different exceptional divisors do you see?
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