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Sum of roots with positive real part in system and control
theory

Hirokazu Anai
Fujitsu Laboratories Ltd / CREST, Japan Science & Technology Agency

anai@jp.fujitsu.com

In this talk, we explain the relationship between the sum of roots with positive real part
(SORPRP) of an even polynomial and several important control problems such as polynomial
spectral factorization and stability analysis. We obtain SORPRP without computing each
root of the polynomial by using Groebner bases theory. Therefore, this approach provides
a promising direction for realizing guaranteed accuracy computation and also parametric
approach in control system design. The developed result is demonstrated on some optimal
control problems.

Two Decades (1985-2005) of Grébner Bases in
Multidimensional Systems
N.K. Bose

HRB - Systems Professor, Pennsylvania State University, University Park, PA, USA
nkb@ee.psu.edu

From about 1975 - 1985, there was considerable use of resultants-subresultants (Sylvester,
inners, bigradients) and Bezoutiants to implement old and newly developed tests for multidi-
mensional system stability, multivariate polynomial positivity and tests for relative primeness
and greatest common divisor extraction of multivariate polynomials. The software available
to implement the algorithms requiring symbolic as well as numerical manipulations included
REDUCE, SAC, MACSYMA, etc.

With the introduction of Grébner - Buchberger bases and algorithmic algebra, probably
the first use of Grobner bases in system theory was by J. P. Guiver and N. K. Bose in 1985
for stabilization of 2-D control systems, characterized by bivariate rational matrices, with
compensators, also similarly characterized, either stable (strong stabilizability) or unstable.
With the development of software like SINGULAR, COCOA, MACUALAY 2, QEPCAD,
the implementation of algorithms based on theory of Grobner bases was considerably expe-
dited and diversified into many domains of application of multidimensional systems theory.
This included tests for multivariate matrix polynomial left/right comprimeness, and, where
possible, multivariate polynomial matrix left/right greatest common divisor extraction in



multidimensional filter bank design. The topic has recently expanded to Linear Matrix In-
equality (LMI) and Semidefinite Programming (SDP) problems where positive polynomials
and sum of squares (SOS) representation (SOSTOOLS, SeDuMi) can be used to formulate
and solve a host of problems in robust control and signal processing, nonlinear control and
convex optimization.

Following the descriptions of the post 1985 developments in the deployment of Grébner
bases in multidimensional systems and signal processing problems, this talk focuses on bi-
hermitian forms, linear maps and “sum of squares” representation. This provides a unified
approach to the relationships existing between positive maps, completely positive maps and
their finite sum of congruences representation.

Normal form methods in statistical signal processing
Jerome Lebrun

CNRS

lebrun@i3s.unice.fr

We will present in this talk an algebraic approach based on normal forms to some problems
arising in statistical signal processing and communications that can be described as systems of
multivariate quadratic polynomial equations. This approach achieves a full description of the
solution space and thus avoids the local minima issue of adaptive algorithms. Furthermore,
the computational cost is kept low by a split of the problem into two stages. First, a symbolic
pre-computation is done off line once for all, to get a more convenient parametric trace-matrix
representation of the problem using normal forms. The solutions of the problem are then
easily obtained from this representation by solving a single univariate polynomial equation.
This approach is quite general and can be applied to a wide variety of problems: SISO channel
identification of PSK modulations, filter design and also MIMO blind source separation by
deflation.

Genericity of Parameters in Control Theory
Viktor Levandovskyy

RISC, Linz

levandov@risc.uni-linz.ac.at

In systems, containing parameters, it often happens, that some structural properties (like
the controllability) hold only for the generic case (i.e. for almost all values of parameters).

It means, that there might exist some parameter constellations, such that a generically
controllable system, specialized at these constellations becomes non—controllable. We pro-
vide an algorithmic way to detect such and similar phenomena, which we call ”genericity
violation”, not restricting ourselves to the generically controllable systems.



Let K be field. By introducing parameters p1, . . ., p,, we define its extension, K(p1, ..., pp).
This field extension is transcendental, if and only if {p;} are algebraically independent; oth-
erwise the extension is algebraic.

Let R be a ring, which is Noetherian integral domain over K(py,...,p,) and M be a
finitely presented (left) R—module. The fact that a Grébner basis of M as well as many
other objects, derived from Grobner basis (like e.g. syzygies), is generic, means the following.
We assume during the computations, that {p;} are algebraically independent, and hence, we
allowe any operations with the elements of K(p1,...,p,), in particular we allow divisions by
any polynomial involving p;.

There exist several variations of Comprehensive Grébner bases (going back to V. Weispfen-
nig). The result of a typical C. G. B is a tree, which consists of different Grébner bases
together with the constraints on parameters, which imply the particular form of the attached
Grobner basis. Algorithmically, this approach is complicated, complex, and aimed at para-
metric Grobner bases in their full generality. In addition, a reasonable implementation of
this method is hardly available.

We propose an approach, which works in the situation, where we expect that there are
several parameter constellations, leading to the bases, different from the generic Grébner
basis. On the other side, it seems reasonable to require, that a sequence of substitutions of
parameters (chosen randomly) leads us to results with the same leading submodule.

We propose to assume the algebraic independence of parameters, and compute the Grobner
basis, say G of a left module, generated by F. It is known, that essentially with the same
Grobner basis algorithm we can obtain the so—called Grobner trinity, namely the Grobner
basis GG, the first syzygy module and the transformation matrix 7" between the original set
of generators F' and (G. The last algorithm is often referred as LIFT. Requiring from G to
have all leading coefficients 1, we compute the matrix 7', extract all the denominators of its
non—zero entries, factorize them and remove redundant polynomials from the total list of
factors.

We end up with a set, say {f1,...,fm} C K[p1,...,pn]. Then, we have to solve 2" — 1
systems of equations and inequalities of the form

{f1:07afk:()akarl?éOa?fm?éO}

In the case of generically controllable system, each system, having nontrivial solutions,
leads to the special case, where an annihilator of the torsion submodule can be computed.
We present the implementation of the ideas above as the function genericity of the library
CONTROL.LIB, written for the Computer Algebra System SINGULAR ([2]).

In [3], Quadrat et. al. showed, how to detect parameter constellations in the flat case,
i.e. when a system module admits a generalized inverse. We show the approach, which is not
limited to the flat situation and, moreover, can be applied not only to Grébner bases, but to
almost all applications, involving Grébner bases, e.g. for syzygy modules.

We also demonstrate the impact of genericity on some interesting examples, e. g. on the
”two pendula” example from the book of Poldermann—Willems, and comment on the other
examples.

We discuss the general algorithm and investigate its separate algebraic components from
the computational point of view.
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Canonical State Representations and Hilbert Functions of
Multidimensional Systems
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A basic and substantial theorem of one-dimensional systems theory, due to R. Kalman,
says that an arbitrary input/output behavior with proper transfer matrix admits an observ-
able state representation which, in particular, is a realization of the transfer matrix. The
state equations have the characteristic property that any local, better temporal, state at
time zero and any input give rise to a unique global state or trajectory of the system or, in
other terms, that the global state is the unique solution of a suitable Cauchy problem. With
an adaption of this state property to the multidimensional situation or rather its algebraic
counter-part we prove that any behavior governed by a linear system of partial differential
or difference equations with constant coefficients is isomorphic to a canonical state behavior
which is constructed by means of Grobner bases. In contrast to the one-dimensional situation
and to J.C. Willems’ multidimensional state space models the canonical state behavior is not
necessarily a first order system. Further Kalman representations and first order models are
due to J.-F- Pommaret and E. Zerz. As a by-product of the state space construction we
derive a new algorithm for the computation of the Hilbert function of any finitely generated
polynomial module or behavior. J. Wood, P. Rocha et al. recognized the systems theoretic
significance of this Hilbert function in context with complexity and structure indices. The
theorems are constructive and have been implemented in MAPLE in the two-dimensional case
and demonstrated in a simple, but instructive example. For the standard one-dimensional
systems the present algorithms compare well with those from the literature.
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Grobner bases and algebraic analysis : new perspectives in
control theory
Jean-Francois Pommaret
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pommaret@cermics.enpc.fr

We start recalling and illustrating the difference existing between Grobner bases and
involutive bases. In fact, while Grobner bases highly depend on the coordinate system, the
huge advantage of involutive bases, especially for applications, is that they are intrinsic, that
is to say do not depend on the coordinate system.

Accordingly, they fit much better with the formal theory of systems of partial differential
equations and ” Algebraic analysis”, that is the intrinsic module theoretic study of systems
of partial differential equations independently of their presentation.

We then provide a few techniques from algebraic analysis and illustrate them on specific
control problems, in particulat controllability and observability, in order to show out their
usefulness.

This elementary talk can be considered as a summary of the mini-course (12 hours) given
the week before.
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A control system is called flat if there exists an injective parametrization of its solutions
[7]. Such a class of control systems plays an important role in the motion planning and the
tracking problems [7]. This concept was first developed for non-linear systems of ordinary
differential equations [7] but it has been extended to multidimensional linear systems (e.g.,
ordinary differential time-delay systems [13], under-determined systems of partial differential
equations [16], under-detemined functional systems [3]). It was proved that a linear mu-
tidimensional control system is flat if and only if the cokernel module defined by the system
matrix is free [3, 7, 13, 16]. Therefore, the problem to recognize whether or not a multidimen-
sional linear system is flat is equivalent to check whether or not a certain finitely presented
module over a (non-commutative) ring of functional operators is free. Moreover, the compu-
tation of the bases of this module is equivalent to compute the so-called flat outputs of the
system, from which we can solve the motion planning problem [2, 7, 13] or do some dynamic
placement or optimal control [19].

Based on algebraic analysis, constructive algorithms were obtained in [3, 16, 18] in order
to classify finitely presented modules over some Ore algebras in terms of their structural
properties (e.g., torsion, with torsion, torsion-free, reflexive, projective, stably free modules).
Moreover, in [3, 17], some heuristics were given in order to check whether or not a finitely
presented module over some Ore algebras is free. The main purpose of this talk is to ex-
plain the recent progress in this direction obtained in [5, 6, 22, 23] and, specially, to give a
constructive algorithm for the computation of bases of free modules over the Weyl algebras
D = A, (k) or By(k), where k is a field of characteristic 0 (i.e., rings of differential operators
with polynomial or rational coefficients). A well-known result due to Stafford asserts that a
stably free left module M over the Weyl algebras D = A, (k) or B, (k), where k is a field of



characteristic 0, with rankp(M) > 2 is free [25]. We shall present a new constructive proof
of this result as well as an effective algorithm for the computation of the bases of M. This
algorithm, based on the new constructive proofs [8, 9] of Stafford’s result on the number of
generators of left ideals over D [25], performs Gaussian eliminations on the columns of the
formal adjoint of a “minimal presentation matrix” of M [22, 23]. In order to compute such a
minimal presentation matrix (full row rank matrix), we give an algorithm which computes the
left projective dimension of a general left module defined by means of a finite free resolution.
In particular, it allows us to check whether or not a left D-module is stably free [23]. We
illustrate the previous results on explicit examples computed by means of the new package
STAFFORD of the library OREMODULES [2].

We then give some applications of flat multidimensional systems. We first recall that the
computation of the flat outputs of a flat shift-invariant multidimensional linear system can
be done by applying a constructive version of the Quillen-Suslin theorem [11, 24, 26] over a
commutative polynomial ring with coefficients in a field k. An implementation of the Quillen-
Suslin theorem has recently been done by A. Fabianiska (Aachen University) which allows us
to handle these difficult computations. We explain the general idea of the Quillen-Suslin
theorem by showing that a flat shift-invariant multidimensional linear system is algebraically
equivalent to a controllable 1-D linear system obtained by setting all but one functional
operators to a given value in the system matrix [5]. We illustrate this result on examples
of flat ordinary differential time-delay systems which are then proved to be equivalent to
controllable ordinary differential systems obtained by setting all the delay amplitudes to 0,
i.e., they are equivalent to the corresponding systems without delays. This result is shown
to be sometimes useful for the computation of stabilizing controllers. Finally, we explain
how the extension of these results can be done for linear systems over Laurent polynomial
rings using the Park transformation developed in [14] and we explain how to use it for the
computation of flat outputs of m-free shift-invariant multidimensional linear systems [3, 5, 13].

Based on Pommaret’s proof [15] of Lin-Bose’s conjecture [10], which generalizes Serre’s
conjecture, we give a general algorithm which constructively solves this problem. Moreover,
using results obtained in [20], we give a constructive algorithm which computes (weakly)
doubly coprime factorizations of multivariate rational transfer matrices over the commutative
polynomial ring. These algorithms have been implemented in Maple. For more details, see
[6].

Moreover, we show how to use the previous results on the Stafford theorem in order to
give a constructive answer to Datta’s question [4] on the possibility to generalize the results
of [12] for multi-input multi-output linear systems. Indeed, we prove that every controllable
ordinary differential linear system with polynomial coefficients and at least two inputs is flat
[21]. The extension of this result to the case of coefficients belonging to the ring of locally
convergent series seems to be likely [1]. But, we personally do not know if the corresponding
ring D of differential operators is very simple, namely, if for every a1, as, ag € D, there exist
Aand p € D such that Daj+Das+Dag = D (a1 +Mas)+ D (aa+pas). If so, our algorithm
directly applies to this case.

Finally, we conclude our talk by giving some open questions concerning the extension of
the previous results to flat multidimensional nonlinear systems.

This work has been done in separated collaborations with Anna Fabiariska and Daniel
Robertz from Aachen University (Germany).
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Parametrizing orthonormal wavelets by moments
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Over the last two decades wavelets have become a fundamental tool in many areas of
applied mathematics and engineering ranging from signal and image processing to numerical
analysis, see for example [8]. In this talk, we discuss parametrizations of filter coefficients
of scaling functions and compactly supported orthonormal wavelets with several vanishing
moments. We introduce the first discrete moments of the filter coefficients as parameters and
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use symbolic computation and in particular Grébner bases to solve the resulting parametrized
polynomial equations.

We first outline Daubechies [3] construction of orthonormal wavelets based on scaling
functions and the related multiresolution analysis. A scaling function satisfies a dilation
equation

N
d(x) =Y hid(2x — k)
k=0

given by a linear combination of (real) filter coefficients hj, and dilated and translated versions
of the scaling function.

Conditions on the scaling functions imply, using the dilation equation, constraints on the
filter coefficients. Orthonormality of the integer translates of the scaling function implies that
the number of filter coeflicients is even and gives quadratic equations for the filter coefficients
and vanishing moments of the associated wavelet linear constraints. If the filter coefficients
satisfy the equations for orthonormality and the normalization ) hy = 2, then there exists a
unique normalized solution of the dilation equation. For almost all such scaling functions

N

U(x) =Y (~1)*hn_kp (22 — k)

k=0

is an orthonormal wavelet.

Vanishing moments of the associated wavelet, that is, f x™(x) = 0, are related to several
properties of the scaling function and wavelet, for example to the approximation order and
smoothness. Daubechies wavelets [3] have the maximal number of vanishing moments for a
fixed number of filter coefficients and so there are only finitely many solutions.

Parametrizing all possible filter coefficients that correspond to compactly supported or-
thonormal wavelets has been studied by several authors. In all parametrizations the filter
coefficients are expressed in terms of trigonometric functions and there is no natural inter-
pretation of the angular parameters for the resulting scaling function. Furthermore, one has
to solve transcendental constraints to find wavelets with more than one vanishing moment.

In the proposed parametrization we omit one vanishing moment condition and introduce
the first discrete moments, m,, = > hipk", of the filter coefficients as parameters. The discrete
moments can be expressed in terms of the (continuous) moments of the scaling function,
M, = [2"¢(z), and thus have a natural interpretation. Moreover, we can use the fact that
even moments are determined by odd up to the number of vanishing moments [7].

We solve the resulting parametrized polynomial equations for the filter coefficients us-
ing symbolic computation and for the more involved equations in particular Grobner bases.
Grobner bases were introduced by Buchberger in [1]. Applications of Grobner bases to the
design of wavelets and filter coefficients are for example discussed in [2, 4, 5].

After computing and illustrating several examples we outline some applications. Finally,
we demonstrate a MATLAB package to compute with parametrized wavelets and discuss
possible extensions of our approach. For further details and references we refer to [6].
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Grobner Computations in the Ring of Multivariate Proper
Stable Rational Functions
Martin Scheicher
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The ring of multivariate proper stable rational functions plays an important role in the
proper stabilization of discrete or continuous multidimensional input /output systems by feed-
back. In this talk we prove, that this ring is a noetherian factorial domain, to which the
Grobner bases theory, suitably adapted, can be applied. This, in turn, is an important
tool to check the proper stabilizability of an input/output system and to construct proper
stabilizing compensators.

The approach to these problems, and the mathematics behind solving them, have been
strongly influenced by and worked out in collaboration with U. Oberst, the author’s Ph.D.-
advisor.



Applications of Grobner Bases in Synthesis of
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Stabilization, asymptotic tracking and disturbance rejection or regulation are basic and
important requirements for feedback control system synthesis. The purpose of this presenta-
tion is to show the possibility on applications of Grobner bases in synthesis of multidimen-
sional feedback control systems.

Multidimensional behaviors: polynomial-exponential
trajectories and linear exact modelling
Eva Zerz
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We study linear systems of partial differential equations with complex coeflicients. First,
we investigate the space of polynomial-exponential solutions belonging to a fixed frequency.
In particular, the finite-dimensionality of this vector space is characterized, and, in the case
of finite dimension, a basis is constructed. In the case where the dimension is infinite,
the asymptotic growth of the dimensions with respect to a degree bound is shown to be
polynomial; the connection with the Hilbert-Samuel function is discussed.

In the second part of the talk, the problem of linear exact modeling is studied. In other
words, given a finite number of polynomial-exponential signals, one seeks the smallest system
admitting these solutions. We present both a direct and a recursive method for constructing
this "most powerful unfalsified model”, and we address minimality issues.

The algorithmic side of these questions involves the manipulation of polynomial modules,
such as the calculation of quotients, saturations, companion matrices, dimensions, and local-
izations (all of which can be performed using Groebner bases), and the combination of these
methods with tools from computational linear algebra.



