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An ordinary differential ring ‘R is a commutative ring with
a derivative operator §:  d(a + b) = da + 6b; d(ab) = dab + adb.

O = {6*: k> 0}.

An ideal I of R is differential ift 01 C I.

|[F| denotes the differential ideal generated by F.

F is a differential field of constants of characteristic zero.
Fly} .= Fly,dy, 6%y, ...] — a ring of differential polynomials.
yi = 0'y.

M — the set of all differential monomials.

Im f — the leading monomial of a polynomial f ¢ F w.r.t. <.




A differential ideal can have no finite system of differential generators.

Example.
Let F{y} be the ordinary ring of diferential polynomials.

Then, the sequence of differential ideals

vl clytyilc---Cly’,....y]]l - C Fly}

is an infinite strictly increasing sequence.




Admissible orderings

An admissible ordering on the set of differential monomials Ml must

satisfy the following axioms:

o M<N — MP<NP VM N,PeM;
e 1<XP VPeM;

o Yy <XYy; < 1<].

These properties are sufficient to guarantee that any admissible
ordering well orders M (Zobnin, 2003).

Examples: lex, deglex, wt-lex, degrevlex, wt-revlex, . ...




Any monomial ordering can be specified by an m x (k 4+ 1) monomial

matriz M with real entries and lexicographically positive columns
such that Kerg M = {0}:

Qo Bo
M<§><lexj\/l : <= y30...y,jk<y00...y,fk.
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B

Definition 1. A set of monomial matrices { M} is called
concordant if the matrix My_; can be obtained from M, by deleting
the rightmost column and then by deleting a row of zeroes, if such a

row exists.

Theorem. Any admissible ordering on differential monomials can be
specified by a concordant set of monomial matrices or, equivalently,

by an infinite monomial matrix.
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0-lexicographic and (3-orderings

The ordering is called d-lexicographic if Im~ 0 M = Imyex 0 M for any

monomial M.

Example. The orderings lex, deglex and wt-lex are d-lexicographic.

If, in contrast, all summands in 6*M are compared inverse

lexicographically then we call < a 3-ordering.

Example. Degrevlex and wt-degrevlex are (3-orderings.




0-fixedness

Definition 2. An admissible ordering < is J-fized if

Ve F{y}\F IM e M; Fkg,r € N:

Im_ 6" f = My,y, forall k> k.

Example. Any J-lexicographic ordering is d-fixed.




Concordance with quasi-linearity

Let < be an admissible ordering.

A polynomial f € F{x} \ F is <-quasi-linear if deglm. f = 1.

Example. f = y; + 33 is quasi-linear w.r.t. lex, but not deglex.

We say that < is concordant with quasi-linearity if the derivative

of any <-quasi-linear polynomial is quasi-linear too.

Example. Lex, deglex, degrevlex are concordant with quasi-

linearity, as well as any o-lexicographic ordering.
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Differential standard bases

Fix an admissible ordering <. Consider a differential ideal I of F{x}.

A set G C I is a differential standard basis of I if ©G is an algebraic
Grobner basis of I in Flyg, y1, Yo, - - .| (possibly, infinite).

If we know finite DSB of a differential ideal I, we can algorithmically
test the membership to this ideal:

Example. Any linear ideal has a finite differential standard basis.

Unfortunately, differential standard bases are often infinite:

Example. The ideal [y"]|, n > 2, does not have finite DSB w.r.t. lex.

But it has a finite DSB (consisting only of y™) w.r.t. any [-ordering

(e.g., degrevlex)!
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Finiteness criterion

Let I be a proper differential ideal of F{y}.

Necessary condition. For a d-fixed ordering <

I contains
I has a finite DSB w.r.t. < —

a <-quasi-linear polynomial |

Sufficient condition.

For a concordant with quasi-linearity ordering <

I contains
I has a finite DSB w.r.t. < <=

a <-quasi-linear polynomial |

Corollary. For d-lexicographic orderings the condition is necessary
and sufficient.
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Corollaries

GENERALIZATIONS OF G. CARRA FERRO’S THEOREMS:

Corollary. Let < be d-fixed.
If the degree of each monomial in fi,..., f,, is greater than 1
then [f1,..., fn] has no finite DSB w.r.t. <.

Corollary. Let < be strictly d-stable. The reduced DSB of [f]
w.r.t. < consists of f itself <—= f is <-quasi-linear.

KEY ROLE OF lex:

A DSB w.r.t. a 0-fixed

ordering is finite

= A lex DSB is also finite | -
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Improved Ollivier process

Implementation in Maple: http://shade.msu.ru/"difalg/DSB.

Input:
F C F{y}, a finite set of polynomials;
<, a o-fixed admissible ordering

that is concordant with quasi-linearity.

Output:
Reduced differential standard basis of [F] if it is finite.
Otherwise the process does not stop.
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Improved Ollivier process (ctd.)

G:=F; H:=a;
s:=maxscpord f; k:=0;
repeat
Gog = 9;
while G ;é Gold do
H := Diff Complete (G, s + k);
Goa := G;
G := ReducedGroébnerBasis (H, <);
end do;
k:=k+1;
until G C F or GG contains a quasi-linear polynomial;
return DiffAutoreduce (G, <);
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Finite bases: an example

Fix the pure lexicographic ordering.
Consider the DSB of the ideals [y + y|, n > 3:
Y1 + Yo;
nYo Y2 — Yi;
Nyl T Ys+ e =12 (nyl Py +1);
ys —n(n —2)y7 " 45,

The DSB are finite, since [y + y] contains a quasi-linear polynomial.

By the way, one can prove that these ideals are radical.
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Ideal of separants

For a differential ideal I let Sy :={Sy, | he I,h ¢ F} U{0}.

Proposition.

e S5 is a (non-differential) ideal in Fly, y1,yo,...]. It is called the
ideal of separants of I.

e S; =1 iff I contains a quasi-linear polynomial.

e For any differential polynomial f € F{y} \ F we have

1+ (Sy) TS C L] S+ (5p).
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Finite DSB and radical ideals

Let < be a ¢-fixed and concordant with quasi-linearity ordering.

If ord f = 0 then the following are equivalient:
e |f] has a finite DSB w.r.t. <;
e |f] is radical;

e f is square-free.

Example.
For f = ay + b, where a,b € F, [f] has a finite lex-DSB {f},

while [y?] has not.
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d .
Let f= > Q:(y)yt € Fly,y1] be a first order diff. polynomial.
i=0

d :
Let Sy = Y. iQ;(y)y.~ " be the separant of f.
i=1

The ideal |f] has a finite DSB iff
o [f]:57+(5¢)=1, and
¢ Q2 S \/(QO)Ql)) and

o (Qo, Q%) is square-free.

Kolchin proved (1941) that in these cases the ideal |f] is radical.
We conjecture that in the contrary case |f] is not radical

(we proved it in most subcases).
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Example.
Let foon=(+1)" —cy”, ceF, c#0.
Then |f,, ] is radical and has a finite lex-DSB iff m 1 n.

In this case |f, ] contains a quasi-linear polynomial of order [] + 3.

For higher orders and for non-principal differential ideals the theorem
does not work:

Example.
Consider f = (y2 + 1)? +y. We have ord f = 2. The ideal [f] is
radical, but has no finite lex-DSB.

Example.
The ideal [y?, y1] has a finite lex-DSB, but it is not radical.
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Other orderings: a conjecture

Conjecture (M. V. Kondratieva, A. Zobnin).
A proper ideal I has a finite DSB w.r.t.

a concordant with quasi-linearity (G-ordering < iff either
e [ contains a <-quasi-linear polynomial, or

e [ = |[fP|, where f is <-quasi-linear and p > 1.

The sufficiency (=) is easy to prove

The necessity (<=) is still an open problem.
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