FINITENESS ISSUES ON DIFFERENTIAL STANDARD BASES

ALEXEY ZOBNIN

Joint research with M.V. KONDRATIEVA and D. TRUSHIN

Department of Mechanics and Mathematics Moscow State University e-mail: al_zobnin@shade.msu.ru

May 10, 2006

- An ordinary differential ring \mathcal{R} is a commutative ring with a derivative operator δ : $\delta(a+b) = \delta a + \delta b$; $\delta(ab) = \delta ab + a\delta b$.
- $\Theta := \{\delta^k : k \ge 0\}.$
- An ideal I of \mathcal{R} is differential iff $\delta I \subset I$.
- [F] denotes the differential ideal generated by F.
- \mathcal{F} is a differential *field of constants* of characteristic zero.
- $\mathcal{F}\{y\} := \mathcal{F}[y, \delta y, \delta^2 y, \ldots]$ a ring of differential polynomials.
- $y_i := \delta^i y$.
- \mathbb{M} the set of all differential monomials.
- $\lim_{\prec} f$ the *leading monomial* of a polynomial $f \notin \mathcal{F}$ w.r.t. \prec .

A differential ideal can have no finite system of differential generators. **Example.**

Let $\mathcal{F}{y}$ be the ordinary ring of differential polynomials.

Then, the sequence of differential ideals

$$[y^2] \subset [y^2, y_1^2] \subset \cdots \subset [y^2, \dots, y_i^2] \subset \cdots \subset \mathcal{F}\{y\}$$

is an infinite strictly increasing sequence.

Admissible orderings

An *admissible ordering* on the set of differential monomials M must satisfy the following axioms:

- $M \prec N \implies MP \prec NP \quad \forall M, N, P \in \mathbb{M};$
- $1 \leq P \quad \forall P \in \mathbb{M};$
- $y_i \prec y_j \iff i < j.$

These properties are sufficient to guarantee that any admissible ordering well orders \mathbb{M} (Zobnin, 2003).

 $\mathbf{Examples:} \quad \textbf{lex}, \, \textbf{deglex}, \, \textbf{wt-lex}, \, \textbf{degrevlex}, \, \textbf{wt-revlex}, \, \dots$

Any monomial ordering can be specified by an $m \times (k+1)$ monomial matrix \mathcal{M} with real entries and lexicographically positive columns such that $\operatorname{Ker}_{\mathbb{Q}} \mathcal{M} = \{0\}$:

$$\mathcal{M}\begin{pmatrix}\alpha_0\\\vdots\\\alpha_k\end{pmatrix}\prec_{\mathrm{lex}}\mathcal{M}\begin{pmatrix}\beta_0\\\vdots\\\beta_k\end{pmatrix}\iff y_0^{\alpha_0}\ldots y_k^{\alpha_k}\prec y_0^{\beta_0}\ldots y_k^{\beta_k}.$$

Definition 1. A set of monomial matrices $\{\mathcal{M}_k\}$ is called *concordant* if the matrix \mathcal{M}_{k-1} can be obtained from \mathcal{M}_k by deleting the rightmost column and then by deleting a row of zeroes, if such a row exists.

Theorem. Any admissible ordering on differential monomials can be specified by a concordant set of monomial matrices or, equivalently, by an infinite monomial matrix.

 $\overline{7}$

δ -lexicographic and β -orderings

The ordering is called δ -lexicographic if $\lim_{\prec} \delta M = \lim_{\log} \delta M$ for any monomial M.

Example. The orderings lex, deglex and wt-lex are δ -lexicographic.

If, in contrast, all summands in $\delta^k M$ are compared inverse lexicographically then we call $\prec a \beta$ -ordering.

Example. Degrevlex and **wt-degrevlex** are β -orderings.

δ -fixedness

Definition 2. An admissible ordering \prec is $\underline{\delta}$ -fixed if

$$\forall f \in \mathcal{F}\{y\} \setminus \mathcal{F} \qquad \exists M \in \mathbb{M}; \quad \exists k_0, r \in \mathbb{N}:$$

$$\lim_{\prec} \delta^k f = M y_{r+k} \quad \text{for all} \quad k \ge k_0.$$

Example. Any δ -lexicographic ordering is δ -fixed.

Concordance with quasi-linearity

Let \prec be an admissible ordering.

A polynomial $f \in \mathcal{F}\{x\} \setminus \mathcal{F}$ is $\underline{\prec}$ -quasi-linear if $\deg \lim_{\prec} f = 1$. **Example.** $f = y_1 + y_0^2$ is quasi-linear w.r.t. **lex**, but not **deglex**.

We say that \prec is <u>concordant with quasi-linearity</u> if the derivative of any \prec -quasi-linear polynomial is quasi-linear too.

Example. Lex, deglex, degrevlex are concordant with quasilinearity, as well as any δ -lexicographic ordering.

Differential standard bases

Fix an admissible ordering \prec . Consider a differential ideal I of $\mathcal{F}\{x\}$.

A set $G \subset I$ is a <u>differential standard basis</u> of I if ΘG is an algebraic Gröbner basis of I in $\mathcal{F}[y_0, y_1, y_2, \ldots]$ (possibly, infinite).

If we know finite DSB of a differential ideal I, we can algorithmically test the membership to this ideal:

Example. Any linear ideal has a **finite** differential standard basis.

Unfortunately, differential standard bases are often **infinite**: **Example.** The ideal $[y^n]$, $n \ge 2$, does not have finite DSB w.r.t. **lex**. But it has a finite DSB (consisting only of y^n) w.r.t. any β -ordering (e.g., *degrevlex*)!

Corollaries

GENERALIZATIONS OF G. CARRÀ FERRO'S THEOREMS:

Corollary. Let \prec be δ -fixed.

If the degree of each monomial in f_1, \ldots, f_n is greater than 1 then $[f_1, \ldots, f_n]$ has no finite DSB w.r.t. \prec .

Corollary. Let \prec be **strictly** δ -stable. The reduced DSB of [f] w.r.t. \prec consists of f itself $\iff f$ is \prec -quasi-linear.

Key role of **lex**:

 \Rightarrow

A DSB w.r.t. a δ -fixed ordering is finite

A lex DSB is also finite \cdot

Improved Ollivier process

Implementation in Maple: http://shade.msu.ru/~difalg/DSB.

Input:

 $F \subset \mathcal{F}\{y\}$, a finite set of polynomials;

 $\prec,$ a $\delta\text{-fixed}$ admissible ordering

that is concordant with quasi-linearity.

Output:

Reduced differential standard basis of [F] if it is finite. Otherwise the process does not stop.

Improved Ollivier process (ctd.)

```
\begin{array}{ll} G:=F; & H:=\varnothing;\\ s:=\max_{f\in F} \mathrm{ord}\,f; & k:=0;\\ \mathbf{repeat}\\ G_{old}:=\varnothing;\\ \mathbf{while}\;G\neq G_{old}\;\mathbf{do}\\ H:= \mathbf{Diff}\,\mathbf{Complete}\;(G,s+k);\\ G_{old}:=G;\\ G:=\mathbf{Reduced}\mathbf{Gr\"obner}\mathbf{Basis}\;(H,\prec);\\ \mathbf{end}\;\mathbf{do};\\ k:=k+1;\\ \mathbf{until}\;G\subset\mathcal{F}\;\mathrm{or}\;G\;\mathrm{contains}\;\mathrm{a}\;\mathrm{quasi-linear}\;\mathrm{polynomial};\\ \mathbf{return}\;\mathbf{Diff}\mathbf{Autoreduce}\;(G,\prec); \end{array}
```

Finite bases: an example

Fix the **pure lexicographic** ordering.

Consider the DSB of the ideals $[y_1^n + y], n \ge 3$:

- $y_1^n + y_0;$
- $n \mathbf{y_0} \mathbf{y_2} y_1^2;$
- $n y_1^{n-2} y_2^2 + y_2 = y_2 (n y_1^{n-2} y_2 + 1);$
- $y_3 n(n-2) y_1^{n-3} y_2^3$.

The DSB are finite, since $[y_1^n + y]$ contains a quasi-linear polynomial. By the way, one can prove that these ideals are radical.

Ideal of separants

For a differential ideal I let $S_I := \{S_h \mid h \in I, h \notin \mathcal{F}\} \cup \{0\}$. **Proposition.**

- S_I is a (non-differential) ideal in $\mathcal{F}[y, y_1, y_2, \ldots]$. It is called the ideal of separants of I.
- $S_I = 1$ iff I contains a quasi-linear polynomial.
- For any differential polynomial $f \in \mathcal{F}\{y\} \setminus \mathcal{F}$ we have

 $[f] + (S_f) \subset S_{[f]} \subset [f] : S_f^{\infty} + (S_f).$

Finite DSB and radical ideals

Let \prec be a δ -fixed and concordant with quasi-linearity ordering.

If $\operatorname{ord} f = 0$ then the following are equivalent:

- [f] has a finite DSB w.r.t. \prec ;
- [f] is radical;
- f is square-free.

Example.

For f = ay + b, where $a, b \in \mathcal{F}$, [f] has a finite lex-DSB $\{f\}$, while $[y^2]$ has not.

Let
$$f = \sum_{i=0}^{d} Q_i(y) y_1^i \in \mathcal{F}[y, y_1]$$
 be a **first order** diff. polynomial.
Let $S_f = \sum_{i=1}^{d} iQ_i(y)y_1^{i-1}$ be the separant of f .
The ideal $[f]$ has a finite DSB iff
• $[f]: S_f^{\infty} + (S_f) = 1$, and
• $Q_2 \in \sqrt{(Q_0, Q_1)}$, and
• (Q_0, Q_1^2) is square-free.
Kolchin proved (1941) that in these cases the ideal $[f]$ is radical.

We conjecture that in the contrary case [f] is not radical (we proved it in most subcases).

Example.

Let $f_{m,n} = (y_1 + 1)^m - c y^n$, $c \in \mathcal{F}$, $c \neq 0$. Then $[f_{m,n}]$ is radical and has a finite lex-DSB iff $m \nmid n$.

In this case $[f_{m,n}]$ contains a quasi-linear polynomial of order $[\frac{n}{m}] + 3$.

For higher orders and for non-principal differential ideals the theorem does not work:

Example.

Consider $f = (y_2 + 1)^2 + y$. We have ord f = 2. The ideal [f] is radical, but has no finite lex-DSB.

Example.

The ideal $[y^2, y_1]$ has a finite lex-DSB, but it is not radical.

Other orderings: a conjecture

Conjecture (M. V. Kondratieva, A. Zobnin).

A proper ideal I has a finite DSB w.r.t. a concordant with quasi-linearity β -ordering \prec iff either

- I contains a \prec -quasi-linear polynomial, or
- $I = [f^p]$, where f is \prec -quasi-linear and $p \ge 1$.

The sufficiency (\Longrightarrow) is easy to prove The necessity (\Leftarrow) is still an open problem.

Selected references

- Carrà Ferro G., Groebner Bases and Differential Algebra, Lecture Notes in Computer Science, vol. 356, 141-150, 1989.
- [2] Carrà Ferro G., Differential Gröbner Bases in One Variable and in the Partial Case, Math. Comput. Model., Pergamon Press, vol. 25, 1-10, 1997.
- [3] Gallo G., Mishra B., Ollivier F., Some Constructions in Rings of Differential Polynomials, Lecture Notes in Computer Science, vol. 539, 171–182, 1991.
- [4] E. R. Kolchin. On the exponents of differential ideals, Annals of Mathematics, 42:740-777, 1941.
- [5] Kolchin E.R., Differential Algebra and Algebraic Groups, 1973.
- [6] Kondratieva M.V., Levin A.B., Mikhalev A.V., Pankratiev E.V., Differential and Difference Dimension Polynomials, Kluwer Academic Publisher, 1999.
- [7] Ollivier F., Standard Bases of Differential Ideals, LNCS, 304-321, 508, 1990.
- [8] Ritt J.F., Differential Algebra, AMS, New York, 1950.
- [9] Rust C., Reid G.J., Rankings of Partial Derivatives, in Proceedings of ISSAC-1997, 9-16, ACM Press, New York, 1997.
- [10] Rust C., Rankings of Derivatives for Elimination Algorithms and Formal Solvability of Analytic Partial Differential Equations, Ph.D. thesis, 1998.
- [11] Weispfenning V., Differential Term-Orders, in Proceedings of ISSAC-1993, 245-253, ACM press, Kiev, 1993.
- [12] Zobnin A., Essential Properties of Admissible Orderings and Rankings, Contributions to General Algebra 14, 205-221, 2004.
- [13] Zobnin A., Admissible Orderings and Finiteness Criteria for Differential Standard Bases, in Proceedings of ISSAC-2005, pages 365-372.