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What is a multidimensional behavior?

To specify a dynamical system, we need to know [Willems]:
what Kind of signals?

e how many?

e how are they related?

Formally:
e a signal set A

e a signal number g
e aset BC A4

In this talk: B ... smooth solution space of a linear, constant-
coefficient system of PDE



A = C*®°(R",K) and
B={we A?| Rw = 0}
where R € DI*4 for D = K[0q,...,On]



A = C®(R™, K) and

B={we A? | Rw = 0}
where R € D9*4 for D = K|[0q, ..., 0On]

B autonomous < there are no free variables in B < no component
of w is unconstrained by the system law Rw = 0 < rank(R) = g
[Oberst]

Algebraic characterization [Pommaret & Quadrat]:
the module M = D1*4/DIXIR is torsion
Here (constant coeff.) also equivalent: ann(M) #= O



Characterization of autonomy works due to the
property of A as a D-module which yields a
duality between B and M
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Characterization of autonomy works due to the
property of A as a D-module which yields a
duality between B and M

This fails in other situations, e.g. D = K[{] [%]:

B={we®RK)|t3%w+w=0}=0
is analytic fact, but M =D/D(3% 4+ 1) #0

There exists a smooth function u such that [Frohler & Oberst]
(1 —2)25 = 2¢(3 — 2t2)y +u

has no solution y € ®'(R, K)
Thus both v and y are constrained by the system law,
although the module M is not torsion

Possible fixes: rational coeff, hyperfct / a.e. smooth fct



Poles

Let B={w e A? | Rw = 0} be autonomous, i.e.,

rank(R) = ¢

A € C" is called a pole of B [Wood, Oberst et al.] <
B contains an i.e.,

A0 #FceCl: w=cexp,€hB
where
expy(t) = exp(Ait1 + ... + Antn)

for all t € R™
(this is for K = C, appropriate modification for K = R)



Since g;expy = \;exp, =

Rcexpy = R(A\)cexp(A)
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Since 0;expy = \;expy =

Rcexpy = R(A\)cexp()

Thus cexpy € B< R(AM)c=0
Conclude: )\ is pole of B < rank(R()\)) < g
Algebraically speaking: A € V = V(Fyg(M)) = V(ann(M)) Cc C"

Fo ... O-th (generated by ¢ x ¢ minors of R)
V ... the pole variety of B

Recall: by assumption, B autonomous, i.e., V #= C"



Known from the 1d case: not sufficient to consider only
exponential solutions, one has to admit polynomial-exponential

solutions
w=peXp)\, pEC[tlaatn]q

and their sums (here again K = C)

B has only polynomial-exponential trajectories <
B is as a K-vector space



Known from the 1d case: not sufficient to consider only
exponential solutions, one has to admit polynomial-exponential
solutions

w=pexpy, pc C[t1, ce ,tn]q

and their sums (here again K= C)

B has only polynomial-exponential trajectories <
B is as a K-vector space

For 1d systems: finite-dimensional < autonomous
In nd: finite-dimensional = autonomous

but <4, e.g. B= {w € C*(R?,K) | d;w = 0}
iIs autonomous, but not finite-dimensional



Finite-dimensional systems

B finite-dimensional
Jv e N, A, €e KV*V, C € K?%¥ such that

weB <« drelC®R"KY):«

Moreover, A;A; = A;A; for all 4,5

([ O1x

&ﬂ:

Anx
Cx
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Finite-dimensional systems

B finite-dimensional <
Jdv e N, A, €e KV*V, C € K?%¥ such that

([ O1x = Az
xO n 1% . :
weB <& dxrel (R’K)'<8nw=An:c
| w = C«x
Moreover, A;A; = A;A; for all 4,
Construction: of zero-dim. module M

Then w € B < for some xg € K”:

w(t) = Cexp(Ait1 + ...+ Antn)zg for all t € R™

If v = dimg B, this yields a basis of B
Equivalent: (,cnn ker CA# = 0 (observability)



Algebraic characterization of finite-dimensional systems:

e module M has Krull dimension zero
e ideals Fo(M) and ann(M) are zero-dimensional
e pole variety is finite



Algebraic characterization of finite-dimensional systems:

e module M has Krull dimension zero
e ideals Fo(M) and ann(M) are zero-dimensional
e pole variety is finite

Caution: D =K[%,0,07], o ... shift operator
A = C®(R,K)

B={weA| % =0}
is finite-dimensional, but M = D/(%> has Krull dim. 1
Reason: (o — 1)w = 0 is analytic consequence of the

system law, but not an algebraic consequence
"true’ system module D/(%,a— 1) has Krull dim. O



Polynomial-exponential trajectories of B w.r.t. a fixed pole
. local properties of B at A\

Decide whether total degree of polynomial part is bounded
(in 1d: always true, but not in nd)
multiplicity of a pole u(A\) € NU{oc} ... K-dim of poly part



Polynomial-exponential trajectories of B w.r.t. a fixed pole
. local properties of B at A\

Decide whether total degree of polynomial part is bounded
(in 1d: always true, but not in nd)
multiplicity of a pole u(A) € NU {oco} ... K-dim of poly part

Geometrically: the multiplicity of A is finite
A IS an isolated point in the pole variety V <

AE VAL

Computationally: (K= C)

Compute S with (D1X9R : m$°) = Dixhg
Test whether S(\) has full column rank
If yes, then pu(A) < oo [Sturmfels, ¢ = 1]

In fact: u()\) = dimg M, (localization)



Consider
Byqg={w | Rw=0,(0 — \)"w = 0Vu € N" ! |u| = d}

. polynomial-exponential trajectories with frequency \ and
total degree of polynomial part <d-—1

By= U Bra
d>0

. all polynomial-exponential trajectories with frequency A



Consider
B)\7d={w | Rw =0,(0 — M)#w = 0Vu € N : |u| = d}

. polynomial-exponential trajectories with frequency \ and
total degree of polynomial part <d -1

By= U Bra
d>0

. all polynomial-exponential trajectories with frequency A
If u(A\) < oco: IAd*: By = B/\)d*

Thus, we can compute a basis of B,

p(A) = dimg By



If un(\) = oo:

determine the growth of dimg BBy 4 as d — oo

Result: for large d, dimg B) 4 is polynomial of degree dim(M,)

(whose first difference equals the
in the homogeneous case)



Example: Cauchy-Riemann equations

B = {w € C®(R? R?) | d1w1 = Howo, djws = —dow1 }

_ | 01 —0>
R=|5 ]

B is autonomous
AeC?pole & AT+ 2A35=0
e.g. A = (0,0) has multiplicity oo

and dimR 8(070)@ = 2d



Poles of hon-autonomous systems

Given B, let B, be its controllable part
. the largest controllable subsystem of B

Consider the poles of B/B. (which is autonomous)
of B [Wood, Oberst et al.]

Algebraically: B/B. ... torsion submodule of M
[Pommaret & Quadrat]

Compare: Kalman decomposition of a state space system



So far: Autonomous system ~» investigate the poly-exp solutions

Now: Inverse problem

Given poly-exp functions, find a system that may have generated
them

. modeling from data / system identification



Model class: Systems given by linear PDE with complex coeff.

B={weA?!| Rw=0}, ReDI*Y D=C[d,...,0n]
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Model class: Systems given by linear PDE with complex coeff.

B={weA?!| Rw=0}, ReDI*Y D=C[d,...,0n]

Modeling problem:
Given functions wi,...,wy, that is,

w;(t) = p;(t) expy (t) for all t € R”
for some p; € C[t1,...,tp]? and \; € C®
find a model B* in the model class that

° the data, that is, B* > w;V4
®iS that is,

B>w¥i = BDB*

B* ... most powerful unfalsified model (MPUM)
[Antoulas & Willems, n = 1]



Remark: there is no loss of generality in assuming that

w(t) = p(t) expy(t)
instead of
w(t) = Y pi(t)expy (1)
finite
since finite-dimensional systems satisfy

B= P By

AEV
and the MPUM is finite-dimensional, because it equals the span
of the given functions and their derivatives



Construction of the MPUM

N =1: w(t) = p(t) exp,(t) for all t € R™
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Construction of the MPUM
N =1: w(t) = p(t) exp,(t) for all t € R™
Let d be the total degree of p, my = (01 — A1,...,0n — Ap) and

Cly,...,0n]/miTt = C?

Let A1,...,An € C9%9 pe pairwise commuting matrices such that
multiplication by 0; corresponds to multiplication by A;
(companion matrices) spec(A;) = {\;}, 3240 Ajz = Nz Vi



Construction of the MPUM
N = 1: w(t) = p(t) expy(t) for all t € R™
Let d be the of p, my = (01 — A1,...,0n — A\p) and

Cly,...,0n]/miTt = o

Let A1,..., Ay € CO%9 be matrices such that
multiplication by 0; corresponds to multiplication by A;
(companion matrices)

Then:

n
v € spanc{dHw | p € N} < Jzg € C° : v(t) = Cexp( Y Aity)zo
1=1

where C € C2%9 is obtained from the coeff. of p by book-keeping



Example: w(tl,tz) =2+4+t1—to,n=2,q=1, A=0,d=1



Example: w(tl,tg) =2+4+t1—to,n=2,q=1, A=0,d=1

C[01,02]/(01,02)2 = C3 : [1] < e1, [01] < e, [02] < e3

O 0O O 0O
Ai=|100|, A,=|000]|, Cc=[21,-1]
00 0| 10 0|
(1 0 0|
CeXp(A1t1+A2t2):[2717_1] i1 10 :[w781w782w]
to 0 1




Example: ’w(tl,tQ) =2+4+t1—to,n=2,q=1, A=0,d=1

C[01,02]/(01,02)2 = C3 : [1] < e1, [01] < e, [02] < e3

0 00 0
Aj=[100|, A4A=10
000 1

Cexp(Arty + Astr) = [2,1, -1]

Thus

Y

= O O

C=1[21,-1]

= [w, 01w, Orw]

v € spanc{w, 0iw, drw} < v(t) = Cexp(Ait1+Asts)xg for some zg



So far:

n
ve W :=spanc{otw | p e N"} & Jzg € CO : v(t) = Cexp( Z Aiti)xo
i=1

But 1V must be contained in any model of w in the model class



So far:

mn
ve W :=spanc{otw | p e N"} & Jxg € CO: v(t) = Cexp( > Aiti)zo
1=1

But VW must be contained in any model of w in the model class

To show that VW = B*, we need to find R* such that

(92':13

v

AZ'ZCfOrléiSn

Rv=0 <& 9ovelw <« EI:U:{
Cx

This is possible due to the fundamental principle [Ehrenpreis,
Malgrange, Palamodov] reflecting the injectivity of the D-module A



If [X1,...,Xn,Y] is a D-matrix whose rows generate the
left kernel of
011 — Aq

Onl — An
C

then R* ;=Y does it



If [X1,...,Xn,Y] is a D-matrix whose rows generate the
left kernel of

011 — A7 ]
H=15.1— a,
- C -
then R* :=Y does it
Example:
01 0 0 ] yields
-1 01 O
0 0 & R*:[al;(??]
H=| 0, 0 O 2
02 5 0 . MPUM of w(t) =2 4+t — t5
~1 0 &5 vector space dimension 2,
2 1 -1 but model of size 3




We have constructed the MPUM of a single data trajectory

0;x

v

Ajx for 1 <i:<n
Cx

It takes the form dx : {



We have constructed the MPUM of a single data trajectory

0;x

v

Ajx for 1 <i:<n
Cx

It takes the form dx : {

From this, it is easy to construct the MPUM of several data
trajectories wq,...,wpn Via

C (D) ] - A
A= c=[cW, . o)
2N A

r =

since the resulting model is equivalent to

vEWL 4+ ...+ Wy =spanc{otw; | pe N1 <i< N}

which must be contained in any model for wi,...,wy in the
model class



Recursive update

Suppose that the MPUM representation R* for wq,...,wyn has
already been constructed

Given wy41(t) = p(t) exp)(t), how should one adapt the model?



Recursive update

Suppose that the MPUM representation R* for wq,...,wyn has
already been constructed

Given wy41(t) = p(t) exp)(t), how should one adapt the model?
Step 1: Define e := R*wN+1

Step 2: Let ' be the MPUM of e
Step 3: Then Rjoyw := R* does it



Refinement: By successively adding (9#p) -expy(t) to the model,

Step 2 can be reduced to the case where e is exponential
o
e(t) = egexpy(t), eg constant, wlog eyg= O
| 510 A

Then the MPUM of e is

O ~
@)
o O

01 — A1

On — An




Example:

w1:[1—]7w2:!g_)]€t17w3:[$]€t27w4:



R* =

Additional data trajectory: wsg = [

*
Rnew

—05 4 0o
O
_9 + 1

02

0
95 — 0o
o> —1
o1

Y

dimc(MPUM) = 4

t1 + 1o
]

dim@(MPUMnew) = 6

|



Minimality issues

{v | v(t) = Cexp(Ait1 + ...+ Antn)zg fOr some zg € (C5}

A; € C9%9 pajrwise commuting, C € C2%9
0 - of the (Ala"'aAn,C)

representation & A representation of smaller size &

(ker(CAfL .- Alny = {0}
7

(observability)

Direct method (linear algebra) to reduce any given
representation to minimality (Kalman decomposition)



Alternative characterization of minimality:

(A1,...,An,C) minimal <
A1l — Aq |
ker Ml — A, | = {0}

C -

for all A € spec(Aq,...,An) ;= {A € C" | 3z % 0 : A;z = \;2Vi}
(Hautus test)

spec(Aq,...,Ap) is known

Iterative method (linear algebra) reduces any given
representation to minimality



Example:

O 0O O 0O
Aij=1|1 00|, A>=|0O0O0]|, C=][2,1,-1]
|0 0 O | 1 0 0|
(0 0O O]
1 0 O
[ Aq | O 0 O
A1 =X=0, rank| Ao |=rank| 0O O O | =2<3
C O 0 O
. 10 O
|2 1 -1 |

in accordance with dimg(MPUM) =2
Minimal representation:

O O O O
A1=[1 O]’ A2=[_1 O]’ C=[2,1]
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What has all this to do with Grobner bases?

Thanks to the injective cogenerator property, all addressed ques-
tions can be reduced to the

e explicit isomorphism M = K for zero-dimensional module M
(companion matrices)
realization of finite-dim. systems, MPUM

e saturations, localizations, dimensions (Krull-dim & dimg)
multiplicities of poles

e Syzygy computation
fundamental principle: realization — kernel representation

e combination of computer algebra & linear algebra
model reduction



