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What is a multidimensional behavior?

To specify a dynamical system, we need to know [Willems]:
• what kind of signals?
• how many?
• how are they related?

Formally:
• a signal set A
• a signal number q
• a set B ⊆ Aq

In this talk: B . . . smooth solution space of a linear, constant-

coefficient system of PDE



A = C∞(Rn,K) and

B = {w ∈ Aq | Rw = 0}

where R ∈ Dg×q for D = K[∂1, . . . , ∂n]



A = C∞(Rn,K) and

B = {w ∈ Aq | Rw = 0}

where R ∈ Dg×q for D = K[∂1, . . . , ∂n]

B autonomous⇔ there are no free variables in B ⇔ no component

of w is unconstrained by the system law Rw = 0 ⇔ rank(R) = q

[Oberst]

Algebraic characterization [Pommaret & Quadrat]:

the module M = D1×q/D1×gR is torsion

Here (constant coeff.) also equivalent: ann(M) 6= 0



Characterization of autonomy works due to the injective

cogenerator property of A as a D-module which yields a

duality between B and M
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This fails in other situations, e.g. D = K[t][ ddt]:

B = {w ∈ D′(R,K) | t3ẇ + w = 0} = 0

is analytic fact, but M = D/D(t3 ddt + 1) 6= 0



Characterization of autonomy works due to the injective
cogenerator property of A as a D-module which yields a
duality between B and M

This fails in other situations, e.g. D = K[t][ ddt]:

B = {w ∈ D′(R,K) | t3ẇ + w = 0} = 0

is analytic fact, but M = D/D(t3 ddt + 1) 6= 0

There exists a smooth function u such that [Fröhler & Oberst]

(1− t2)2ẏ = 2t(3− 2t2)y + u

has no solution y ∈ D′(R,K)
Thus both u and y are constrained by the system law,
although the module M is not torsion

Possible fixes: rational coeff, hyperfct / a.e. smooth fct



Poles

Let B = {w ∈ Aq | Rw = 0} be autonomous, i.e.,

rank(R) = q

λ ∈ Cn is called a pole of B [Wood, Oberst et al.] ⇔
B contains an exponential trajectory of frequency λ, i.e.,

∃0 6= c ∈ Cq : w = c expλ ∈ B

where

expλ(t) = exp(λ1t1 + . . .+ λntn)

for all t ∈ Rn

(this is for K = C, appropriate modification for K = R)



Since ∂i expλ = λi expλ ⇒

Rc expλ = R(λ)c exp(λ)
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Conclude: λ is pole of B ⇔ rank(R(λ)) < q

Algebraically speaking: λ ∈ V = V(F0(M)) = V(ann(M)) ⊂ Cn

F0 . . . 0-th Fitting ideal (generated by q × q minors of R)

V . . . the pole variety of B



Since ∂i expλ = λi expλ ⇒

Rc expλ = R(λ)c exp(λ)

Thus c expλ ∈ B ⇔ R(λ)c = 0

Conclude: λ is pole of B ⇔ rank(R(λ)) < q

Algebraically speaking: λ ∈ V = V(F0(M)) = V(ann(M)) ⊂ Cn

F0 . . . 0-th Fitting ideal (generated by q × q minors of R)

V . . . the pole variety of B

Recall: by assumption, B autonomous, i.e., V 6= C
n



Known from the 1d case: not sufficient to consider only

exponential solutions, one has to admit polynomial-exponential

solutions

w = p expλ, p ∈ C[t1, . . . , tn]q

and their sums (here again K = C)

B has only polynomial-exponential trajectories ⇔
B is finite-dimensional as a K-vector space



Known from the 1d case: not sufficient to consider only
exponential solutions, one has to admit polynomial-exponential
solutions

w = p expλ, p ∈ C[t1, . . . , tn]q

and their sums (here again K = C)

B has only polynomial-exponential trajectories ⇔
B is finite-dimensional as a K-vector space

For 1d systems: finite-dimensional ⇔ autonomous

In nd: finite-dimensional ⇒ autonomous

but 6⇐, e.g. B = {w ∈ C∞(R2,K) | ∂1w = 0}
is autonomous, but not finite-dimensional



Finite-dimensional systems

B finite-dimensional ⇔
∃ν ∈ N, Ai ∈ Kν×ν, C ∈ Kq×ν such that

w ∈ B ⇔ ∃x ∈ C∞(Rn,Kν) :


∂1x = A1x

... ...
∂nx = Anx
w = Cx

Moreover, AiAj = AjAi for all i, j
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Finite-dimensional systems

B finite-dimensional ⇔
∃ν ∈ N, Ai ∈ Kν×ν, C ∈ Kq×ν such that

w ∈ B ⇔ ∃x ∈ C∞(Rn,Kν) :


∂1x = A1x

... ...
∂nx = Anx
w = Cx

Moreover, AiAj = AjAi for all i, j

Construction: companion matrices of zero-dim. module M

Then w ∈ B ⇔ for some x0 ∈ Kν:

w(t) = C exp(A1t1 + . . .+Antn)x0 for all t ∈ Rn

If ν = dim
K
B, this yields a basis of B

Equivalent:
⋂
µ∈Nn kerCAµ = 0 (observability)



Algebraic characterization of finite-dimensional systems:

• module M has Krull dimension zero

• ideals F0(M) and ann(M) are zero-dimensional

• pole variety is finite



Algebraic characterization of finite-dimensional systems:

• module M has Krull dimension zero

• ideals F0(M) and ann(M) are zero-dimensional

• pole variety is finite

Caution: D = K[ ddt, σ, σ
−1], σ . . . shift operator

A = C∞(R,K)

B = {w ∈ A | dwdt = 0}

is finite-dimensional, but M = D/〈 ddt〉 has Krull dim. 1

Reason: (σ − 1)w = 0 is analytic consequence of the

system law, but not an algebraic consequence

”true” system module D/〈 ddt, σ − 1〉 has Krull dim. 0



Polynomial-exponential trajectories of B w.r.t. a fixed pole

. . . local properties of B at λ

Decide whether total degree of polynomial part is bounded

(in 1d: always true, but not in nd)

multiplicity of a pole µ(λ) ∈ N ∪ {∞} . . . K-dim of poly part



Polynomial-exponential trajectories of B w.r.t. a fixed pole
. . . local properties of B at λ

Decide whether total degree of polynomial part is bounded
(in 1d: always true, but not in nd)
multiplicity of a pole µ(λ) ∈ N ∪ {∞} . . . K-dim of poly part

Geometrically: the multiplicity of λ is finite ⇔
λ is an isolated point in the pole variety V ⇔
λ /∈ V \ {λ}

Computationally: (K = C)
Compute S with (D1×gR : m∞λ ) = D1×hS
Test whether S(λ) has full column rank
If yes, then µ(λ) <∞ [Sturmfels, q = 1]

In fact: µ(λ) = dim
K
Mλ (localization)



Consider

Bλ,d = {w | Rw = 0, (∂ − λ)µw = 0∀µ ∈ Nn : |µ| = d}

. . . polynomial-exponential trajectories with frequency λ and

total degree of polynomial part ≤ d− 1

Bλ =
⋃
d≥0

Bλ,d

. . . all polynomial-exponential trajectories with frequency λ



Consider

Bλ,d = {w | Rw = 0, (∂ − λ)µw = 0∀µ ∈ Nn : |µ| = d}

. . . polynomial-exponential trajectories with frequency λ and

total degree of polynomial part ≤ d− 1

Bλ =
⋃
d≥0

Bλ,d

. . . all polynomial-exponential trajectories with frequency λ

If µ(λ) <∞: ∃d∗: Bλ = Bλ,d∗

Thus, we can compute a basis of Bλ

µ(λ) = dim
K
Bλ



If µ(λ) =∞:

determine the growth of dim
K
Bλ,d as d→∞

Result: for large d, dim
K
Bλ,d is polynomial of degree dim(Mλ)

(whose first difference equals the Hilbert polynomial

in the homogeneous case)



Example: Cauchy-Riemann equations

B = {w ∈ C∞(R2,R2) | ∂1w1 = ∂2w2, ∂1w2 = −∂2w1}

R =

[
∂1 −∂2
∂2 ∂1

]
B is autonomous

λ ∈ C2 pole ⇔ λ2
1 + λ2

2 = 0

e.g. λ = (0,0) has multiplicity ∞

and dim
R
B(0,0),d = 2d



Poles of non-autonomous systems

Given B, let Bc be its controllable part

. . . the largest controllable subsystem of B

Consider the poles of B/Bc (which is autonomous)

. . . uncontrollable poles of B [Wood, Oberst et al.]

Algebraically: B/Bc . . . torsion submodule of M
[Pommaret & Quadrat]

Compare: Kalman decomposition of a state space system



So far: Autonomous system investigate the poly-exp solutions

Now: Inverse problem

Given poly-exp functions, find a system that may have generated

them

. . . modeling from data / system identification



Model class: Systems given by linear PDE with complex coeff.

B = {w ∈ Aq | Rw = 0}, R ∈ Dg×q, D = C[∂1, . . . , ∂n]
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Model class: Systems given by linear PDE with complex coeff.

B = {w ∈ Aq | Rw = 0}, R ∈ Dg×q, D = C[∂1, . . . , ∂n]

Modeling problem:
Given polynomial-exponential functions w1, . . . , wN , that is,

wi(t) = pi(t) expλi(t) for all t ∈ Rn

for some pi ∈ C[t1, . . . , tn]q and λi ∈ Cn

find a model B? in the model class that
• explains the data, that is, B? 3 wi∀i
• is as small as possible, that is,

B 3 wi∀i ⇒ B ⊇ B?

B? . . . most powerful unfalsified model (MPUM)
[Antoulas & Willems, n = 1]



Remark: there is no loss of generality in assuming that

w(t) = p(t) expλ(t)

instead of

w(t) =
∑

finite

pi(t) expλi(t)

since finite-dimensional systems satisfy

B =
⊕
λ∈V
Bλ

and the MPUM is finite-dimensional, because it equals the span

of the given functions and their derivatives



Construction of the MPUM

N = 1: w(t) = p(t) expλ(t) for all t ∈ Rn
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C[∂1, . . . , ∂n]/md+1
λ

∼= C
δ

Let A1, . . . , An ∈ Cδ×δ be pairwise commuting matrices such that

multiplication by ∂i corresponds to multiplication by Ai
(companion matrices) spec(Ai) = {λi}, ∃z 6= 0 : Aiz = λiz ∀i



Construction of the MPUM

N = 1: w(t) = p(t) expλ(t) for all t ∈ Rn

Let d be the total degree of p, mλ = 〈∂1 − λ1, . . . , ∂n − λn〉 and

C[∂1, . . . , ∂n]/md+1
λ

∼= C
δ

Let A1, . . . , An ∈ Cδ×δ be pairwise commuting matrices such that
multiplication by ∂i corresponds to multiplication by Ai
(companion matrices) spec(Ai) = {λi}, ∃z 6= 0 : Aiz = λiz ∀i

Then:

v ∈ span
C
{∂µw | µ ∈ Nn} ⇔ ∃x0 ∈ Cδ : v(t) = C exp(

n∑
i=1

Aiti)x0

where C ∈ Cq×δ is obtained from the coeff. of p by book-keeping



Example: w(t1, t2) = 2 + t1 − t2, n = 2, q = 1, λ = 0, d = 1



Example: w(t1, t2) = 2 + t1 − t2, n = 2, q = 1, λ = 0, d = 1

C[∂1, ∂2]/〈∂1, ∂2〉2 ∼= C
3 : [1]↔ e1, [∂1]↔ e2, [∂2]↔ e3

A1 =

 0 0 0
1 0 0
0 0 0

 , A2 =

 0 0 0
0 0 0
1 0 0

 , C = [2,1,−1]

C exp(A1t1 +A2t2) = [2,1,−1]

 1 0 0
t1 1 0
t2 0 1

 = [w, ∂1w, ∂2w]



Example: w(t1, t2) = 2 + t1 − t2, n = 2, q = 1, λ = 0, d = 1

C[∂1, ∂2]/〈∂1, ∂2〉2 ∼= C
3 : [1]↔ e1, [∂1]↔ e2, [∂2]↔ e3

A1 =

 0 0 0
1 0 0
0 0 0

 , A2 =

 0 0 0
0 0 0
1 0 0

 , C = [2,1,−1]

C exp(A1t1 +A2t2) = [2,1,−1]

 1 0 0
t1 1 0
t2 0 1

 = [w, ∂1w, ∂2w]

Thus

v ∈ span
C
{w, ∂1w, ∂2w} ⇔ v(t) = C exp(A1t1+A2t2)x0 for some x0



So far:

v ∈ W := span
C
{∂µw | µ ∈ Nn} ⇔ ∃x0 ∈ Cδ : v(t) = C exp(

n∑
i=1

Aiti)x0

But W must be contained in any model of w in the model class



So far:

v ∈ W := span
C
{∂µw | µ ∈ Nn} ⇔ ∃x0 ∈ Cδ : v(t) = C exp(

n∑
i=1

Aiti)x0

But W must be contained in any model of w in the model class

To show that W = B?, we need to find R? such that

R?v = 0 ⇔ v ∈ W ⇔ ∃x :

{
∂ix = Aix for 1 ≤ i ≤ n
v = Cx

This is possible due to the fundamental principle [Ehrenpreis,

Malgrange, Palamodov] reflecting the injectivity of the D-module A



If [X1, . . . , Xn, Y ] is a D-matrix whose rows generate the

left kernel of

H =


∂1I −A1

...
∂nI −An

C


then R? := Y does it



If [X1, . . . , Xn, Y ] is a D-matrix whose rows generate the
left kernel of

H =


∂1I −A1

...
∂nI −An

C


then R? := Y does it

Example:

H =



∂1 0 0
−1 ∂1 0
0 0 ∂1
∂2 0 0
0 ∂2 0
−1 0 ∂2
2 1 −1



yields

R? =

[
∂1 + ∂2
∂2

2

]
. . . MPUM of w(t) = 2 + t1 − t2
Note: vector space dimension 2,
but model of size 3



We have constructed the MPUM of a single data trajectory

It takes the form ∃x :

{
∂ix = Aix for 1 ≤ i ≤ n
v = Cx



We have constructed the MPUM of a single data trajectory

It takes the form ∃x :

{
∂ix = Aix for 1 ≤ i ≤ n
v = Cx

From this, it is easy to construct the MPUM of several data

trajectories w1, . . . , wN via

x =

 x(1)

...

x(N)

 Ai =

 A
(1)
i . . .

A
(N)
i

 C = [C(1), . . . , C(N)]

since the resulting model is equivalent to

v ∈ W1 + . . .+WN = span
C
{∂µwi | µ ∈ Nn,1 ≤ i ≤ N}

which must be contained in any model for w1, . . . , wN in the

model class



Recursive update

Suppose that the MPUM representation R? for w1, . . . , wN has

already been constructed

Given wN+1(t) = p(t) expλ(t), how should one adapt the model?



Recursive update

Suppose that the MPUM representation R? for w1, . . . , wN has

already been constructed

Given wN+1(t) = p(t) expλ(t), how should one adapt the model?

Step 1: Define e := R?wN+1

Step 2: Let Γ be the MPUM of e

Step 3: Then R?new := ΓR? does it



Refinement: By successively adding (∂µp) ·expλ(t) to the model,

Step 2 can be reduced to the case where e is purely exponential

e(t) = e0 expλ(t), e0 constant, wlog e0 =


0
...
0
1
ẽ0


Then the MPUM of e is

Γ =


I 0 0
0 ∂1 − λ1 0
... ... ...
0 ∂n − λn 0
0 −ẽ0 I





Example:

w1 =

[
1
1

]
, w2 =

[
1
0

]
et1, w3 =

[
0
1

]
et2, w4 =

[
1
−1

]
et1+t2

A1 = diag(0,1,0,1), A2 = diag(0,0,1,1), C =

[
1 1 0 1
1 0 1 −1

]



R? =


−∂2

2 + ∂2 0
0 ∂2

2 − ∂2
−∂1 + 1 ∂2 − 1

∂2 ∂1

 , dim
C

(MPUM) = 4

Additional data trajectory: w5 =

[
t1 + t2
t1

]

R?new =



∂1
∂2

1
1

−1 1
−2 1




1

1
∂1
∂2

1

R
?

dim
C

(MPUMnew) = 6



Minimality issues

{v | v(t) = C exp(A1t1 + . . .+Antn)x0 for some x0 ∈ Cδ}

Ai ∈ Cδ×δ pairwise commuting, C ∈ Cq×δ

δ . . . size of the representation (A1, . . . , An, C)

representation minimal ⇔ 6∃ representation of smaller size ⇔⋂
µ

ker(CAµ1
1 · · ·A

µn
n ) = {0}

(observability)

Direct method (linear algebra) to reduce any given

representation to minimality (Kalman decomposition)



Alternative characterization of minimality:

(A1, . . . , An, C) minimal ⇔

ker


λ1I −A1

...
λnI −An

C

 = {0}

for all λ ∈ spec(A1, . . . , An) := {λ ∈ Cn | ∃z 6= 0 : Aiz = λiz∀i}
(Hautus test)

Advantage here: spec(A1, . . . , An) is known

Iterative method (linear algebra) reduces any given

representation to minimality



Example:

A1 =

 0 0 0
1 0 0
0 0 0

 , A2 =

 0 0 0
0 0 0
1 0 0

 , C = [2,1,−1]

λ1 = λ2 = 0, rank

 A1
A2
C

 = rank



0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
1 0 0
2 1 −1


= 2 < 3

in accordance with dim
C

(MPUM) = 2
Minimal representation:

A1 =

[
0 0
1 0

]
, A2 =

[
0 0
−1 0

]
, C = [2,1]
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What has all this to do with Gröbner bases?

Thanks to the injective cogenerator property, all addressed ques-
tions can be reduced to the manipulation of polynomial modules

• explicit isomorphism M ∼= K
δ for zero-dimensional module M

(companion matrices)
realization of finite-dim. systems, MPUM

• saturations, localizations, dimensions (Krull-dim & dim
K

)
multiplicities of poles

• syzygy computation
fundamental principle: realization → kernel representation

• combination of computer algebra & linear algebra
model reduction


