Multidimensional behaviors:

polynomial-exponential trajectories and linear exact modeling

Eva Zerz
RWTH Aachen
Linz, May 2006

What is a multidimensional behavior?

To specify a dynamical system, we need to know [Willems]:

- what kind of signals?
- how many?
- how are they related?

What is a multidimensional behavior?

To specify a dynamical system, we need to know [Willems]:

- what kind of signals?
- how many?
- how are they related?

Formally:

- a signal set \mathcal{A}
- a signal number q
- a set $\mathcal{B} \subseteq \mathcal{A}^{q}$

In this talk: $\mathcal{B} \ldots$ smooth solution space of a linear, constantcoefficient system of PDE
$\mathcal{A}=\mathcal{C}^{\infty}\left(\mathbb{R}^{n}, \mathbb{K}\right)$ and

$$
\mathcal{B}=\left\{w \in \mathcal{A}^{q} \mid R w=0\right\}
$$

where $R \in \mathcal{D}^{g \times q}$ for $\mathcal{D}=\mathbb{K}\left[\partial_{1}, \ldots, \partial_{n}\right]$
$\mathcal{A}=\mathcal{C}^{\infty}\left(\mathbb{R}^{n}, \mathbb{K}\right)$ and

$$
\mathcal{B}=\left\{w \in \mathcal{A}^{q} \mid R w=0\right\}
$$

where $R \in \mathcal{D}^{g \times q}$ for $\mathcal{D}=\mathbb{K}\left[\partial_{1}, \ldots, \partial_{n}\right]$
\mathcal{B} autonomous \Leftrightarrow there are no free variables in $\mathcal{B} \Leftrightarrow$ no component of w is unconstrained by the system law $R w=0 \Leftrightarrow \operatorname{rank}(R)=q$ [Oberst]

Algebraic characterization [Pommaret \& Quadrat]: the module $\mathcal{M}=\mathcal{D}^{1 \times q} / \mathcal{D}^{1 \times g} R$ is torsion Here (constant coeff.) also equivalent: ann $(\mathcal{M}) \neq 0$

Characterization of autonomy works due to the injective cogenerator property of \mathcal{A} as a \mathcal{D}-module which yields a duality between \mathcal{B} and \mathcal{M}

Characterization of autonomy works due to the injective cogenerator property of \mathcal{A} as a \mathcal{D}-module which yields a duality between \mathcal{B} and \mathcal{M}

This fails in other situations, e.g. $\mathcal{D}=\mathbb{K}[t]\left[\frac{d}{d t}\right]$:

$$
\mathcal{B}=\left\{w \in \mathfrak{D}^{\prime}(\mathbb{R}, \mathbb{K}) \mid t^{3} \dot{w}+w=0\right\}=0
$$

is analytic fact, but $\mathcal{M}=\mathcal{D} / \mathcal{D}\left(t^{3} \frac{d}{d t}+1\right) \neq 0$

Characterization of autonomy works due to the injective cogenerator property of \mathcal{A} as a \mathcal{D}-module which yields a duality between \mathcal{B} and \mathcal{M}

This fails in other situations, e.g. $\mathcal{D}=\mathbb{K}[t]\left[\frac{d}{d t}\right]$:

$$
\mathcal{B}=\left\{w \in \mathfrak{D}^{\prime}(\mathbb{R}, \mathbb{K}) \mid t^{3} \dot{w}+w=0\right\}=0
$$

is analytic fact, but $\mathcal{M}=\mathcal{D} / \mathcal{D}\left(t^{3} \frac{d}{d t}+1\right) \neq 0$
There exists a smooth function u such that [Fröhler \& Oberst]

$$
\left(1-t^{2}\right)^{2} \dot{y}=2 t\left(3-2 t^{2}\right) y+u
$$

has no solution $y \in \mathfrak{D}^{\prime}(\mathbb{R}, \mathbb{K})$
Thus both u and y are constrained by the system law, although the module \mathcal{M} is not torsion

Possible fixes: rational coeff, hyperfct / a.e. smooth fct

Poles

Let $\mathcal{B}=\left\{w \in \mathcal{A}^{q} \mid R w=0\right\}$ be autonomous, i.e.,

$$
\operatorname{rank}(R)=q
$$

$\lambda \in \mathbb{C}^{n}$ is called a pole of \mathcal{B} [Wood, Oberst et al.] \Leftrightarrow \mathcal{B} contains an exponential trajectory of frequency λ, i.e.,

$$
\exists 0 \neq c \in \mathbb{C}^{q}: \quad w=c \exp _{\lambda} \in \mathcal{B}
$$

where

$$
\exp _{\lambda}(t)=\exp \left(\lambda_{1} t_{1}+\ldots+\lambda_{n} t_{n}\right)
$$

for all $t \in \mathbb{R}^{n}$
(this is for $\mathbb{K}=\mathbb{C}$, appropriate modification for $\mathbb{K}=\mathbb{R}$)

Since $\partial_{i} \exp _{\lambda}=\lambda_{i} \exp _{\lambda} \Rightarrow$

$$
R c \exp _{\lambda}=R(\lambda) c \exp (\lambda)
$$

Since $\partial_{i} \exp _{\lambda}=\lambda_{i} \exp _{\lambda} \Rightarrow$

$$
R c \exp _{\lambda}=R(\lambda) c \exp (\lambda)
$$

Thus $c \exp _{\lambda} \in \mathcal{B} \Leftrightarrow R(\lambda) c=0$
Conclude: λ is pole of $\mathcal{B} \Leftrightarrow \operatorname{rank}(R(\lambda))<q$

Since $\partial_{i} \exp _{\lambda}=\lambda_{i} \exp _{\lambda} \Rightarrow$

$$
R c \exp _{\lambda}=R(\lambda) c \exp (\lambda)
$$

Thus $c \exp _{\lambda} \in \mathcal{B} \Leftrightarrow R(\lambda) c=0$
Conclude: λ is pole of $\mathcal{B} \Leftrightarrow \operatorname{rank}(R(\lambda))<q$
Algebraically speaking: $\lambda \in V=\mathcal{V}\left(\mathcal{F}_{0}(\mathcal{M})\right)=\mathcal{V}(\operatorname{ann}(\mathcal{M})) \subset \mathbb{C}^{n}$
$\mathcal{F}_{0} \ldots$ 0-th Fitting ideal (generated by $q \times q$ minors of R) $V \ldots$ the pole variety of \mathcal{B}

Since $\partial_{i} \exp _{\lambda}=\lambda_{i} \exp _{\lambda} \Rightarrow$

$$
R c \exp _{\lambda}=R(\lambda) c \exp (\lambda)
$$

Thus $c \exp _{\lambda} \in \mathcal{B} \Leftrightarrow R(\lambda) c=0$
Conclude: λ is pole of $\mathcal{B} \Leftrightarrow \operatorname{rank}(R(\lambda))<q$
Algebraically speaking: $\lambda \in V=\mathcal{V}\left(\mathcal{F}_{0}(\mathcal{M})\right)=\mathcal{V}(\operatorname{ann}(\mathcal{M})) \subset \mathbb{C}^{n}$
$\mathcal{F}_{0} \ldots$ 0-th Fitting ideal (generated by $q \times q$ minors of R) $V \ldots$ the pole variety of \mathcal{B}

Recall: by assumption, \mathcal{B} autonomous, i.e., $V \neq \mathbb{C}^{n}$

Known from the 1d case: not sufficient to consider only exponential solutions, one has to admit polynomial-exponential solutions

$$
w=p \exp _{\lambda}, \quad p \in \mathbb{C}\left[t_{1}, \ldots, t_{n}\right]^{q}
$$

and their sums (here again $\mathbb{K}=\mathbb{C}$)
\mathcal{B} has only polynomial-exponential trajectories \Leftrightarrow \mathcal{B} is finite-dimensional as a \mathbb{K}-vector space

Known from the 1d case: not sufficient to consider only exponential solutions, one has to admit polynomial-exponential solutions

$$
w=p \exp _{\lambda}, \quad p \in \mathbb{C}\left[t_{1}, \ldots, t_{n}\right]^{q}
$$

and their sums (here again $\mathbb{K}=\mathbb{C}$)
\mathcal{B} has only polynomial-exponential trajectories \Leftrightarrow \mathcal{B} is finite-dimensional as a \mathbb{K}-vector space

For 1d systems: finite-dimensional \Leftrightarrow autonomous
In n d: finite-dimensional \Rightarrow autonomous
but \nLeftarrow, e.g. $\mathcal{B}=\left\{w \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}, \mathbb{K}\right) \mid \partial_{1} w=0\right\}$
is autonomous, but not finite-dimensional

Finite-dimensional systems

\mathcal{B} finite-dimensional \Leftrightarrow
$\exists \nu \in \mathbb{N}, A_{i} \in \mathbb{K}^{\nu \times \nu}, C \in \mathbb{K}^{q \times \nu}$ such that

$$
w \in \mathcal{B} \quad \Leftrightarrow \quad \exists x \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}, \mathbb{K}^{\nu}\right):\left\{\begin{array}{ccc}
\partial_{1} x & =A_{1} x \\
\vdots & \vdots \\
\partial_{n} x & = & A_{n} x \\
w & = & C x
\end{array}\right.
$$

Moreover, $A_{i} A_{j}=A_{j} A_{i}$ for all i, j

Finite-dimensional systems

\mathcal{B} finite-dimensional \Leftrightarrow
$\exists \nu \in \mathbb{N}, A_{i} \in \mathbb{K}^{\nu \times \nu}, C \in \mathbb{K}^{q \times \nu}$ such that

$$
w \in \mathcal{B} \quad \Leftrightarrow \quad \exists x \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}, \mathbb{K}^{\nu}\right):\left\{\begin{array}{ccc}
\partial_{1} x & =A_{1} x \\
\vdots & \vdots \\
\partial_{n} x & = & A_{n} x \\
w & =C x
\end{array}\right.
$$

Moreover, $A_{i} A_{j}=A_{j} A_{i}$ for all i, j
Construction: companion matrices of zero-dim. module \mathcal{M}

Finite-dimensional systems

\mathcal{B} finite-dimensional \Leftrightarrow
$\exists \nu \in \mathbb{N}, A_{i} \in \mathbb{K}^{\nu \times \nu}, C \in \mathbb{K}^{q \times \nu}$ such that

$$
w \in \mathcal{B} \quad \Leftrightarrow \quad \exists x \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}, \mathbb{K}^{\nu}\right):\left\{\begin{array}{ccc}
\partial_{1} x & =A_{1} x \\
\vdots & \vdots \\
\partial_{n} x & =A_{n} x \\
w= & =C x
\end{array}\right.
$$

Moreover, $A_{i} A_{j}=A_{j} A_{i}$ for all i, j
Construction: companion matrices of zero-dim. module \mathcal{M}
Then $w \in \mathcal{B} \Leftrightarrow$ for some $x_{0} \in \mathbb{K}^{\nu}$:

$$
w(t)=C \exp \left(A_{1} t_{1}+\ldots+A_{n} t_{n}\right) x_{0} \text { for all } t \in \mathbb{R}^{n}
$$

If $\nu=\operatorname{dim}_{\mathbb{K}} \mathcal{B}$, this yields a basis of \mathcal{B}
Equivalent: $\bigcap_{\mu \in \mathbb{N}^{n}} \operatorname{ker} C A^{\mu}=0$ (observability)

Algebraic characterization of finite-dimensional systems:

- module \mathcal{M} has Krull dimension zero
- ideals $\mathcal{F}_{0}(\mathcal{M})$ and ann (\mathcal{M}) are zero-dimensional
- pole variety is finite

Algebraic characterization of finite-dimensional systems:

- module \mathcal{M} has Krull dimension zero
- ideals $\mathcal{F}_{0}(\mathcal{M})$ and $\operatorname{ann}(\mathcal{M})$ are zero-dimensional
- pole variety is finite

Caution: $\mathcal{D}=\mathbb{K}\left[\frac{d}{d t}, \sigma, \sigma^{-1}\right], \sigma \ldots$ shift operator $\mathcal{A}=\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{K})$

$$
\mathcal{B}=\left\{w \in \mathcal{A} \left\lvert\, \frac{d w}{d t}=0\right.\right\}
$$

is finite-dimensional, but $\mathcal{M}=\mathcal{D} /\left\langle\frac{d}{d t}\right\rangle$ has Krull dim. 1

Reason: $(\sigma-1) w=0$ is analytic consequence of the system law, but not an algebraic consequence
"true" system module $\mathcal{D} /\left\langle\frac{d}{d t}, \sigma-1\right\rangle$ has Krull dim. 0

Polynomial-exponential trajectories of \mathcal{B} w.r.t. a fixed pole ... local properties of \mathcal{B} at λ

Decide whether total degree of polynomial part is bounded (in 1d: always true, but not in n d)
multiplicity of a pole $\mu(\lambda) \in \mathbb{N} \cup\{\infty\} \ldots \mathbb{K}$-dim of poly part

Polynomial-exponential trajectories of \mathcal{B} w.r.t. a fixed pole ... Iocal properties of \mathcal{B} at λ

Decide whether total degree of polynomial part is bounded (in 1d: always true, but not in $n d$)
multiplicity of a pole $\mu(\lambda) \in \mathbb{N} \cup\{\infty\} \ldots \mathbb{K}$-dim of poly part
Geometrically: the multiplicity of λ is finite \Leftrightarrow
λ is an isolated point in the pole variety $V \Leftrightarrow$ $\lambda \notin \overline{V \backslash\{\lambda\}}$

Computationally: $(\mathbb{K}=\mathbb{C})$
Compute S with ($\mathcal{D}^{1 \times g} R: \mathfrak{m}_{\lambda}^{\infty}$) $=\mathcal{D}^{1 \times h} S$
Test whether $S(\lambda)$ has full column rank
If yes, then $\mu(\lambda)<\infty$ [Sturmfels, $q=1$]
In fact: $\mu(\lambda)=\operatorname{dim}_{\mathbb{K}} \mathcal{M}_{\lambda}$ (localization)

Consider

$$
\mathcal{B}_{\lambda, d}=\left\{w\left|R w=0,(\partial-\lambda)^{\mu} w=0 \forall \mu \in \mathbb{N}^{n}:|\mu|=d\right\}\right.
$$

... polynomial-exponential trajectories with frequency λ and total degree of polynomial part $\leq d-1$

$$
\mathcal{B}_{\lambda}=\bigcup_{d \geq 0} \mathcal{B}_{\lambda, d}
$$

... all polynomial-exponential trajectories with frequency λ

Consider

$$
\mathcal{B}_{\lambda, d}=\left\{w\left|R w=0,(\partial-\lambda)^{\mu} w=0 \forall \mu \in \mathbb{N}^{n}:|\mu|=d\right\}\right.
$$

... polynomial-exponential trajectories with frequency λ and total degree of polynomial part $\leq d-1$

$$
\mathcal{B}_{\lambda}=\bigcup_{d \geq 0} \mathcal{B}_{\lambda, d}
$$

... all polynomial-exponential trajectories with frequency λ
If $\mu(\lambda)<\infty: \exists d^{*}: \mathcal{B}_{\lambda}=\mathcal{B}_{\lambda, d^{*}}$
Thus, we can compute a basis of \mathcal{B}_{λ}
$\mu(\lambda)=\operatorname{dim}_{\mathbb{K}} \mathcal{B}_{\lambda}$

If $\mu(\lambda)=\infty$:
determine the growth of $\operatorname{dim}_{\mathbb{K}} \mathcal{B}_{\lambda, d}$ as $d \rightarrow \infty$

Result: for large $d, \operatorname{dim}_{\mathbb{K}} \mathcal{B}_{\lambda, d}$ is polynomial of degree $\operatorname{dim}\left(\mathcal{M}_{\lambda}\right)$
(whose first difference equals the Hilbert polynomial in the homogeneous case)

Example: Cauchy-Riemann equations

$$
\begin{gathered}
\mathcal{B}=\left\{w \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right) \mid \partial_{1} w_{1}=\partial_{2} w_{2}, \partial_{1} w_{2}=-\partial_{2} w_{1}\right\} \\
R=\left[\begin{array}{rr}
\partial_{1} & -\partial_{2} \\
\partial_{2} & \partial_{1}
\end{array}\right]
\end{gathered}
$$

\mathcal{B} is autonomous
$\lambda \in \mathbb{C}^{2}$ pole $\Leftrightarrow \lambda_{1}^{2}+\lambda_{2}^{2}=0$
e.g. $\lambda=(0,0)$ has multiplicity ∞
and $\operatorname{dim}_{\mathbb{R}} \mathcal{B}_{(0,0), d}=2 d$

Poles of non-autonomous systems

Given \mathcal{B}, let \mathcal{B}_{c} be its controllable part
... the largest controllable subsystem of \mathcal{B}

Consider the poles of $\mathcal{B} / \mathcal{B}_{c}$ (which is autonomous)
... uncontrollable poles of \mathcal{B} [Wood, Oberst et al.]

Algebraically: $\mathcal{B} / \mathcal{B}_{c} \ldots$ torsion submodule of \mathcal{M}
[Pommaret \& Quadrat]

Compare: Kalman decomposition of a state space system

So far: Autonomous system \rightsquigarrow investigate the poly-exp solutions

Now: Inverse problem

Given poly-exp functions, find a system that may have generated them
... modeling from data / system identification

Model class: Systems given by linear PDE with complex coeff.

$$
\mathcal{B}=\left\{w \in \mathcal{A}^{q} \mid R w=0\right\}, \quad R \in \mathcal{D}^{g \times q}, \quad \mathcal{D}=\mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right]
$$

Model class: Systems given by linear PDE with complex coeff.

$$
\mathcal{B}=\left\{w \in \mathcal{A}^{q} \mid R w=0\right\}, \quad R \in \mathcal{D}^{g \times q}, \quad \mathcal{D}=\mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right]
$$

Modeling problem:
Given polynomial-exponential functions w_{1}, \ldots, w_{N}, that is,

$$
w_{i}(t)=p_{i}(t) \exp _{\lambda_{i}}(t) \quad \text { for all } t \in \mathbb{R}^{n}
$$

for some $p_{i} \in \mathbb{C}\left[t_{1}, \ldots, t_{n}\right]^{q}$ and $\lambda_{i} \in \mathbb{C}^{n}$

Model class: Systems given by linear PDE with complex coeff.

$$
\mathcal{B}=\left\{w \in \mathcal{A}^{q} \mid R w=0\right\}, \quad R \in \mathcal{D}^{g \times q}, \quad \mathcal{D}=\mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right]
$$

Modeling problem:
Given polynomial-exponential functions w_{1}, \ldots, w_{N}, that is,

$$
w_{i}(t)=p_{i}(t) \exp _{\lambda_{i}}(t) \quad \text { for all } t \in \mathbb{R}^{n}
$$

for some $p_{i} \in \mathbb{C}\left[t_{1}, \ldots, t_{n}\right]^{q}$ and $\lambda_{i} \in \mathbb{C}^{n}$
find a model \mathcal{B}^{\star} in the model class that

- explains the data, that is, $\mathcal{B}^{\star} \ni w_{i} \forall i$
- is as small as possible, that is,

$$
\mathcal{B} \ni w_{i} \forall i \quad \Rightarrow \quad \mathcal{B} \supseteq \mathcal{B}^{\star}
$$

Model class: Systems given by linear PDE with complex coeff.

$$
\mathcal{B}=\left\{w \in \mathcal{A}^{q} \mid R w=0\right\}, \quad R \in \mathcal{D}^{g \times q}, \quad \mathcal{D}=\mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right]
$$

Modeling problem:
Given polynomial-exponential functions w_{1}, \ldots, w_{N}, that is,

$$
w_{i}(t)=p_{i}(t) \exp _{\lambda_{i}}(t) \quad \text { for all } t \in \mathbb{R}^{n}
$$

for some $p_{i} \in \mathbb{C}\left[t_{1}, \ldots, t_{n}\right]^{q}$ and $\lambda_{i} \in \mathbb{C}^{n}$
find a model \mathcal{B}^{\star} in the model class that

- explains the data, that is, $\mathcal{B}^{\star} \ni w_{i} \forall i$
- is as small as possible, that is,

$$
\mathcal{B} \ni w_{i} \forall i \quad \Rightarrow \quad \mathcal{B} \supseteq \mathcal{B}^{\star}
$$

$\mathcal{B}^{\star} \ldots$ most powerful unfalsified model (MPUM)
[Antoulas \& Willems, $n=1$]

Remark: there is no loss of generality in assuming that

$$
w(t)=p(t) \exp _{\lambda}(t)
$$

instead of

$$
w(t)=\sum_{\text {finite }} p_{i}(t) \exp _{\lambda_{i}}(t)
$$

since finite-dimensional systems satisfy

$$
\mathcal{B}=\bigoplus_{\lambda \in V} \mathcal{B}_{\lambda}
$$

and the MPUM is finite-dimensional, because it equals the span of the given functions and their derivatives

Construction of the MPUM
$N=1: w(t)=p(t) \exp _{\lambda}(t)$ for all $t \in \mathbb{R}^{n}$

Construction of the MPUM

$N=1: w(t)=p(t) \exp _{\lambda}(t)$ for all $t \in \mathbb{R}^{n}$

Let d be the total degree of $p, \mathfrak{m}_{\lambda}=\left\langle\partial_{1}-\lambda_{1}, \ldots, \partial_{n}-\lambda_{n}\right\rangle$ and

$$
\mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right] / \mathfrak{m}_{\lambda}^{d+1} \cong \mathbb{C}^{\delta}
$$

Construction of the MPUM
$N=1: w(t)=p(t) \exp _{\lambda}(t)$ for all $t \in \mathbb{R}^{n}$

Let d be the total degree of $p, \mathfrak{m}_{\lambda}=\left\langle\partial_{1}-\lambda_{1}, \ldots, \partial_{n}-\lambda_{n}\right\rangle$ and

$$
\mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right] / \mathfrak{m}_{\lambda}^{d+1} \cong \mathbb{C}^{\delta}
$$

Let $A_{1}, \ldots, A_{n} \in \mathbb{C}^{\delta \times \delta}$ be pairwise commuting matrices such that multiplication by ∂_{i} corresponds to multiplication by A_{i} (companion matrices) $\operatorname{spec}\left(A_{i}\right)=\left\{\lambda_{i}\right\}, \exists z \neq 0: A_{i} z=\lambda_{i} z \forall i$

Construction of the MPUM

$N=1: w(t)=p(t) \exp _{\lambda}(t)$ for all $t \in \mathbb{R}^{n}$
Let d be the total degree of $p, \mathfrak{m}_{\lambda}=\left\langle\partial_{1}-\lambda_{1}, \ldots, \partial_{n}-\lambda_{n}\right\rangle$ and

$$
\mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right] / \mathfrak{m}_{\lambda}^{d+1} \cong \mathbb{C}^{\delta}
$$

Let $A_{1}, \ldots, A_{n} \in \mathbb{C}^{\delta \times \delta}$ be pairwise commuting matrices such that multiplication by ∂_{i} corresponds to multiplication by A_{i} (companion matrices) $\operatorname{spec}\left(A_{i}\right)=\left\{\lambda_{i}\right\}, \exists z \neq 0: A_{i} z=\lambda_{i} z \forall i$

Then:

$$
v \in \operatorname{span}_{\mathbb{C}}\left\{\partial^{\mu} w \mid \mu \in \mathbb{N}^{n}\right\} \Leftrightarrow \exists x_{0} \in \mathbb{C}^{\delta}: v(t)=C \exp \left(\sum_{i=1}^{n} A_{i} t_{i}\right) x_{0}
$$

where $C \in \mathbb{C}^{q \times \delta}$ is obtained from the coeff. of p by book-keeping

Example: $w\left(t_{1}, t_{2}\right)=2+t_{1}-t_{2}, n=2, q=1, \lambda=0, d=1$

Example: $w\left(t_{1}, t_{2}\right)=2+t_{1}-t_{2}, n=2, q=1, \lambda=0, d=1$
$\mathbb{C}\left[\partial_{1}, \partial_{2}\right] /\left\langle\partial_{1}, \partial_{2}\right\rangle^{2} \cong \mathbb{C}^{3}:[1] \leftrightarrow e_{1},\left[\partial_{1}\right] \leftrightarrow e_{2},\left[\partial_{2}\right] \leftrightarrow e_{3}$

$$
\begin{gathered}
A_{1}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad C=[2,1,-1] \\
C \exp \left(A_{1} t_{1}+A_{2} t_{2}\right)=[2,1,-1]\left[\begin{array}{ccc}
1 & 0 & 0 \\
t_{1} & 1 & 0 \\
t_{2} & 0 & 1
\end{array}\right]=\left[w, \partial_{1} w, \partial_{2} w\right]
\end{gathered}
$$

Example: $w\left(t_{1}, t_{2}\right)=2+t_{1}-t_{2}, n=2, q=1, \lambda=0, d=1$
$\mathbb{C}\left[\partial_{1}, \partial_{2}\right] /\left\langle\partial_{1}, \partial_{2}\right\rangle^{2} \cong \mathbb{C}^{3}:[1] \leftrightarrow e_{1},\left[\partial_{1}\right] \leftrightarrow e_{2},\left[\partial_{2}\right] \leftrightarrow e_{3}$

$$
\begin{gathered}
A_{1}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad C=[2,1,-1] \\
C \exp \left(A_{1} t_{1}+A_{2} t_{2}\right)=[2,1,-1]\left[\begin{array}{ccc}
1 & 0 & 0 \\
t_{1} & 1 & 0 \\
t_{2} & 0 & 1
\end{array}\right]=\left[w, \partial_{1} w, \partial_{2} w\right]
\end{gathered}
$$

Thus
$v \in \operatorname{span}_{\mathbb{C}}\left\{w, \partial_{1} w, \partial_{2} w\right\} \Leftrightarrow v(t)=C \exp \left(A_{1} t_{1}+A_{2} t_{2}\right) x_{0}$ for some x_{0}

So far:

$v \in \mathcal{W}:=\operatorname{span}_{\mathbb{C}}\left\{\partial^{\mu} w \mid \mu \in \mathbb{N}^{n}\right\} \Leftrightarrow \exists x_{0} \in \mathbb{C}^{\delta}: v(t)=C \exp \left(\sum_{i=1}^{n} A_{i} t_{i}\right) x_{0}$

But \mathcal{W} must be contained in any model of w in the model class

So far:

$v \in \mathcal{W}:=\operatorname{span}_{\mathbb{C}}\left\{\partial^{\mu} w \mid \mu \in \mathbb{N}^{n}\right\} \Leftrightarrow \exists x_{0} \in \mathbb{C}^{\delta}: v(t)=C \exp \left(\sum_{i=1}^{n} A_{i} t_{i}\right) x_{0}$

But \mathcal{W} must be contained in any model of w in the model class
To show that $\mathcal{W}=\mathcal{B}^{\star}$, we need to find R^{\star} such that

$$
R^{\star} v=0 \quad \Leftrightarrow \quad v \in \mathcal{W} \quad \Leftrightarrow \quad \exists x:\left\{\begin{aligned}
\partial_{i} x & =A_{i} x \text { for } 1 \leq i \leq n \\
v & =C x
\end{aligned}\right.
$$

This is possible due to the fundamental principle [Ehrenpreis, Malgrange, Palamodov] reflecting the injectivity of the \mathcal{D}-module \mathcal{A}

If $\left[X_{1}, \ldots, X_{n}, Y\right]$ is a \mathcal{D}-matrix whose rows generate the left kernel of

$$
H=\left[\begin{array}{c}
\partial_{1} I-A_{1} \\
\vdots \\
\partial_{n} I-A_{n} \\
C
\end{array}\right]
$$

then $R^{\star}:=Y$ does it

If $\left[X_{1}, \ldots, X_{n}, Y\right]$ is a \mathcal{D}-matrix whose rows generate the left kernel of

$$
H=\left[\begin{array}{c}
\partial_{1} I-A_{1} \\
\vdots \\
\partial_{n} I-A_{n} \\
C
\end{array}\right]
$$

then $R^{\star}:=Y$ does it

Example:

$$
H=\left[\begin{array}{ccc}
\partial_{1} & 0 & 0 \\
-1 & \partial_{1} & 0 \\
0 & 0 & \partial_{1} \\
\partial_{2} & 0 & 0 \\
0 & \partial_{2} & 0 \\
-1 & 0 & \partial_{2} \\
2 & 1 & -1
\end{array}\right]
$$

yields
$R^{\star}=\left[\begin{array}{c}\partial_{1}+\partial_{2} \\ \partial_{2}^{2}\end{array}\right]$
$\ldots M P U M$ of $w(t)=2+t_{1}-t_{2}$
Note: vector space dimension 2 , but model of size 3

We have constructed the MPUM of a single data trajectory
It takes the form $\exists x:\left\{\begin{aligned} \partial_{i} x & =A_{i} x \text { for } 1 \leq i \leq n \\ v & =C x\end{aligned}\right.$

We have constructed the MPUM of a single data trajectory
It takes the form $\exists x:\left\{\begin{aligned} \partial_{i} x & =A_{i} x \text { for } 1 \leq i \leq n \\ v & =C x\end{aligned}\right.$
From this, it is easy to construct the MPUM of several data trajectories w_{1}, \ldots, w_{N} via

$$
x=\left[\begin{array}{c}
x^{(1)} \\
\vdots \\
x^{(N)}
\end{array}\right] \quad A_{i}=\left[\begin{array}{ccc}
A_{i}^{(1)} & & \\
& \ddots & \\
& & A_{i}^{(N)}
\end{array}\right] C=\left[C^{(1)}, \ldots, C^{(N)}\right]
$$

since the resulting model is equivalent to

$$
v \in \mathcal{W}_{1}+\ldots+\mathcal{W}_{N}=\operatorname{span}_{\mathbb{C}}\left\{\partial^{\mu} w_{i} \mid \mu \in \mathbb{N}^{n}, 1 \leq i \leq N\right\}
$$

which must be contained in any model for w_{1}, \ldots, w_{N} in the model class

Recursive update

Suppose that the MPUM representation R^{\star} for w_{1}, \ldots, w_{N} has already been constructed

Given $w_{N+1}(t)=p(t) \exp _{\lambda}(t)$, how should one adapt the model?

Recursive update

Suppose that the MPUM representation R^{\star} for w_{1}, \ldots, w_{N} has already been constructed

Given $w_{N+1}(t)=p(t) \exp _{\lambda}(t)$, how should one adapt the model?

Step 1: Define $e:=R^{\star} w_{N+1}$
Step 2: Let Γ be the MPUM of e
Step 3: Then $R_{\text {new }}^{\star}:=\Gamma R^{\star}$ does it

Refinement: By successively adding $\left(\partial^{\mu} p\right) \cdot \exp _{\lambda}(t)$ to the model, Step 2 can be reduced to the case where e is purely exponential

$$
e(t)=e_{0} \exp _{\lambda}(t), \quad e_{0} \text { constant, wlog } e_{0}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
\tilde{e}_{0}
\end{array}\right]
$$

Then the MPUM of e is

$$
\Gamma=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & \partial_{1}-\lambda_{1} & 0 \\
\vdots & \vdots & \vdots \\
0 & \partial_{n}-\lambda_{n} & 0 \\
0 & -\tilde{e}_{0} & I
\end{array}\right]
$$

Example:

$$
\begin{aligned}
& w_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], w_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{t_{1}}, w_{3}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{t_{2}}, w_{4}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] e^{t_{1}+t_{2}} \\
& A_{1}=\operatorname{diag}(0,1,0,1), A_{2}=\operatorname{diag}(0,0,1,1), C=\left[\begin{array}{rrrr}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & -1
\end{array}\right]
\end{aligned}
$$

$$
R^{\star}=\left[\begin{array}{cc}
-\partial_{2}^{2}+\partial_{2} & 0 \\
0 & \partial_{2}^{2}-\partial_{2} \\
-\partial_{1}+1 & \partial_{2}-1 \\
\partial_{2} & \partial_{1}
\end{array}\right], \quad \operatorname{dim}_{\mathbb{C}}(\text { MPUM })=4
$$

Additional data trajectory: $\quad w_{5}=\left[\begin{array}{c}t_{1}+t_{2} \\ t_{1}\end{array}\right]$

$$
\begin{aligned}
R_{\text {new }}^{\star}= & {\left[\begin{array}{ccccc}
\partial_{1} & & & & \\
\partial_{2} & & & & \\
& 1 & & & \\
& & 1 & & \\
-1 & & & 1 & \\
-2 & & & & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & \partial_{1} & \\
& & \partial_{2} & \\
& & & 1
\end{array}\right] R^{\star} } \\
& \operatorname{dim}_{\mathbb{C}}\left(M P U M_{\text {new }}\right)=6
\end{aligned}
$$

Minimality issues

$$
\left\{v \mid v(t)=C \exp \left(A_{1} t_{1}+\ldots+A_{n} t_{n}\right) x_{0} \text { for some } x_{0} \in \mathbb{C}^{\delta}\right\}
$$

$A_{i} \in \mathbb{C}^{\delta \times \delta}$ pairwise commuting, $C \in \mathbb{C}^{q \times \delta}$
$\delta \ldots$ size of the representation $\left(A_{1}, \ldots, A_{n}, C\right)$
representation minimal $\Leftrightarrow \nexists$ representation of smaller size \Leftrightarrow

$$
\bigcap_{\mu} \operatorname{ker}\left(C A_{1}^{\mu_{1}} \cdots A_{n}^{\mu_{n}}\right)=\{0\}
$$

(observability)

Direct method (linear algebra) to reduce any given representation to minimality (Kalman decomposition)

Alternative characterization of minimality:
$\left(A_{1}, \ldots, A_{n}, C\right)$ minimal \Leftrightarrow

$$
\operatorname{ker}\left[\begin{array}{c}
\lambda_{1} I-A_{1} \\
\vdots \\
\lambda_{n} I-A_{n} \\
C
\end{array}\right]=\{0\}
$$

for all $\lambda \in \operatorname{spec}\left(A_{1}, \ldots, A_{n}\right):=\left\{\lambda \in \mathbb{C}^{n} \mid \exists z \neq 0: A_{i} z=\lambda_{i} z \forall i\right\}$ (Hautus test)

Advantage here: $\operatorname{spec}\left(A_{1}, \ldots, A_{n}\right)$ is known

Iterative method (linear algebra) reduces any given representation to minimality

Example:

$$
\begin{gathered}
A_{1}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad C=[2,1,-1] \\
\lambda_{1}=\lambda_{2}=0, \quad \operatorname{rank}\left[\begin{array}{ccc}
A_{1} \\
A_{2} \\
C
\end{array}\right]=\operatorname{rank}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
2 & 1 & -1
\end{array}\right]=2<3
\end{gathered}
$$

in accordance with $\operatorname{dim}_{\mathbb{C}}(M P U M)=2$
Minimal representation:

$$
A_{1}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{rr}
0 & 0 \\
-1 & 0
\end{array}\right], \quad C=[2,1]
$$

What has all this to do with Gröbner bases?

What has all this to do with Gröbner bases?

Thanks to the injective cogenerator property, all addressed questions can be reduced to the manipulation of polynomial modules

What has all this to do with Gröbner bases?

Thanks to the injective cogenerator property, all addressed questions can be reduced to the manipulation of polynomial modules

- explicit isomorphism $\mathcal{M} \cong \mathbb{K}^{\delta}$ for zero-dimensional module \mathcal{M} (companion matrices) realization of finite-dim. systems, MPUM

What has all this to do with Gröbner bases?

Thanks to the injective cogenerator property, all addressed questions can be reduced to the manipulation of polynomial modules

- explicit isomorphism $\mathcal{M} \cong \mathbb{K}^{\delta}$ for zero-dimensional module \mathcal{M} (companion matrices) realization of finite-dim. systems, MPUM
- saturations, localizations, dimensions (Krull-dim \& dim ${ }_{\mathbb{K}}$) multiplicities of poles

What has all this to do with Gröbner bases?

Thanks to the injective cogenerator property, all addressed questions can be reduced to the manipulation of polynomial modules

- explicit isomorphism $\mathcal{M} \cong \mathbb{K}^{\delta}$ for zero-dimensional module \mathcal{M} (companion matrices) realization of finite-dim. systems, MPUM
- saturations, localizations, dimensions (Krull-dim \& dim ${ }_{\mathbb{K}}$) multiplicities of poles
- syzygy computation
fundamental principle: realization \rightarrow kernel representation

What has all this to do with Gröbner bases?

Thanks to the injective cogenerator property, all addressed questions can be reduced to the manipulation of polynomial modules

- explicit isomorphism $\mathcal{M} \cong \mathbb{K}^{\delta}$ for zero-dimensional module \mathcal{M} (companion matrices) realization of finite-dim. systems, MPUM
- saturations, localizations, dimensions (Krull-dim \& dim ${ }_{\mathbb{K}}$) multiplicities of poles
- syzygy computation
fundamental principle: realization \rightarrow kernel representation
- combination of computer algebra \& linear algebra model reduction

