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§1 Introduction

• Stabilization, asymptotic tracking and disturbance rejection

or regulation are basic and important requirements for feed-

back control system synthesis.

• The purpose of this presentation is to show the possibility on

applications of Gröbner bases in synthesis of multidimensional

(nD) feedback control systems. In particular, the following

topics will be explored and discussed.

– Definitions and conditions for left, right and duoble co-

primeness and skew primeness of nD matrices over the

ring of structurally stable nD rational functions;

1



– Formaulations and solvability conditions for stabilization

problem using 1DOF (degree-of-freedom) or 2DOF con-

troller, asymptotic tracking problem and disturbance re-

jection problem, which lead to the conclusion that these

problems can be essentially reduced to the solvability prob-

lems of coprime matrix equation and skew prime matrix

equation;

– How to solve these two kind of matrix equations by uti-

lizing Gröbner basis appraoch;

– Open problems.
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§2 Coprimeness and Skew Primeness of nD Matrices

Let R[z]: the ring of real polynomials in z = (z1, . . . , zn),

Ūn = {z ∈ Cn| |z| ≤ 1}, and

G = {n/d | n, d ∈ R[z], d(0, . . . ,0) ̸= 0},
H = {n/d ∈ G |d(z) ̸= 0, ∀z ∈ Ūn}
I = {h ∈ H |h−1 ∈ G},
J = {h ∈ H |h−1 ∈ H}.

Denote by M(∗) the set of matrices with entries in ∗ (e.g., G,

H).

A ∈ M(H) is said to be G-unimodular (respectively H-unimodular)

iff it is square and detA ∈ I (J).
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D−1N , with D, N ∈ M(H) and D G-unimodular, is called a left

matrix fractional description (MFD) (on {G,H, I,J}).

Moreover, D, N are said to be left coprime, and correspondingly

D−1N left coprime MFD, iff there exist U, V ∈ M(H) such that

DU + NV = I. (1)

The dual definitions on right coprimeness can be given analo-

gously.
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P ∈ M(G) is said to admit a left (resp. right) coprime fac-

torization if there exist D, N ∈ M(H) (D̃, Ñ ∈ M(H) such that

P = D−1N (P = ÑD̃−1) and D, N (D̃, Ñ) are left (right) co-

prime.

Moreover, P is said to admit a doubly coprime factorization if

it admits both left and right coprime factorizations, or equiv-

alently, there exist D, N, D̃, Ñ , X1, Y1, X2, Y2 ∈ M(H) such that

P = D−1N = ÑD̃−1 and the doubly coprime relation[
X2 Y2
−N D

] [
D̃ −Y1
Ñ X1

]
= I (2)

or equivalently, [
D̃ −Y1
Ñ X1

] [
X2 Y2
−N D

]
= I (3)

holds.
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Further, two matrices D, N ∈ M(H) are said to be (externally)

skew prime iff there exist U, V ∈ M(H) such that

DU + V N = I. (4)

For P ∈ M(G), it is always possible to find N, D ∈ M(H) such that

P = D−1N , but D, N are not in general left coprime even when

they possess no left common factor. The following theorem

gives the necessary and sufficient condition for the existance of

coprime factorizations.
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Theorem 1. [Quadrat 04, Quadrat 06]

1. P ∈ Gq×r admits a left coprime factorization iff there exists

D ∈ Hq×q such that detD ̸= 0 and

[Iq − P ]Hq+r = D−1Hq, (5)

i.e., [Iq −P ]Hq+r is a free lattice of Gq, or equivalently, [Iq −
P ]Hq+r is a free H-submodule of Gq of rank q. Then, P =

D−1N , where N = DP ∈ Hq×r, is a left coprime factorization

of P .
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2. P ∈ Gq×r admits a right coprime factorization iff there exists

D̃ ∈ Hr×r such that det D̃ ̸= 0 and

H1×(q+r)
[
P
Ir

]
= H1×rD̃−1, (6)

i.e., H1×(q+r)

[
P
Ir

]
is a free lattice of G1×r, or equivalently,

H1×rD̃−1 is a free H-submodule of G1×r of rank r. Then,

P = ÑD̃−1, where Ñ = PD̃ ∈ Hq×r, is a right coprime fac-

torization of P .
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Theorem 2. If P ∈ Gq×r admits a left or right coprime factor-

ization, then it admits a doubly coprime factorization.

Proof: Clear from Corollary 3, Theorem 3 and Corollary 5 of

[Quadrat 04].

Theorem 3. D, N ∈ M(H) where detD ̸= 0 are (externally) skew

prime iff there exist N̄ , D̄ ∈ M(H) such that

ND = D̄N̄ (7)

with D and N̄ right coprime and N and D̄ left coprime.

(Proof omitted.)
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The following lemma will be used later.

Lemma 1. Suppose V , T , F ∈ M(H), detT ̸= 0, and T , F are

left coprime. Then V T−1F ∈ M(H) iff V T−1 ∈ M(H).

Proof. The sufficiency is obvious and the necessity can be shown

as the 1D case [Vidyasagar 85].
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§3 nD Stabilization Problem

Consider the nD feedback system shown in Fig. 1 where P ∈
M(G) is a linear nD plant and C ∈ M(G) is a 1DOF controller.

C P
1
u

2
u

2
e 2

y
1
y1

e

Fig.1 A Feedback System

It is easy to see that

e = Teuu, y = Tyuu (8)

where

e =

[
e1
e2

]
, u =

[
u1
u2

]
, y =

[
y1
y2

]
,
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Teu =

[
(I + PC)−1 −P (I + PC)−1

C(I + PC)−1 (I + PC)−1

]

=

[
(I + PC)−1 −(I + PC)−1P

C(I + PC)−1 I − C(I + PC)−1P

]
,

Tyu =

[
C(I + PC)−1 −C(I + PC)−1P

(I + PC)−1PC (I + PC)−1)P

]
.

Note that

Teu = I − FTyu, Tyu = F (Teu − I) (9)

where F =

[
0 I
−I 0

]
.

If there exists a controller C such that the closed-loop system is
structurally stable, i.e., Tyu ∈ M(H), or equivalently, Teu ∈ M(H),
then P is said to be internally stabilizable and C is called a
stabilizing controller of P .
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Theorem 4. [Quadrat 04]

A given plant P ∈ Gq×r is internally stabilizable iff either of the

following equivalent statements is true.

1. There exists S = [U T V T ]T ∈ H(q+r)×q such that detU ≠ 0

and

(a) SP =

[
UP
V P

]
∈ H(q+r)×r,

(b) [Iq − P ]S = U − PV = Iq.

Then, C = V U−1 internally stabilizes P , and

U = (I − PC)−1, V = C(Iq − PC)−1. (10)
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2. There exists T = [−XY ] ∈ Hr×(q+r) such that detY ̸= 0 and

(a) PT =
[
−PT PY

]
∈ Hq×(q+r),

(b) T

[
P
Ir

]
= −XP + Y = Ir.

Then, C = Y −1X internally stabilizes P , and

Y = (Ir − CP )−1, X = (Ir − CP )−1C. (11)
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Corollary 1. [Quadrat 04]

1. If P ∈ Gq×r admits the left coprime factorization

P = D−1N, DX − NY = Iq, detX ̸= 0

with [XT Y T ]T ∈ H(q+r)×q, then C = Y X−1 is a stabilizing

controller of P .

2. If P ∈ Gq×r admits the right coprime factorization

P = ÑD̃−1, X̃D̃ − Ỹ Ñ = Ir, det X̃ ̸= 0

with [Ỹ X̃] ∈ Hr×(q+r), then C = X̃−1Ỹ is a stabilizing con-

troller of P .
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Theorem 5. [Quadrat 04, Quadrat 06]

Every internally stabilizable nD system defined by a transfer ma-

trix P ∈ M(G) admits a doubly coprime factorization.

Theorem 6. P ∈ M(G) is internally stabilizable iff it admits a

doubly coprime factorization.

Proof. It is clear from Theorem 5 and Corollary 1.
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Corollary 2. [Vidyasagar 85,Quadrat 04, Quadrat 06]

If P ∈ M(G) is internally stabilizable, i.e., there exists a doubly

coprime factorization P = ND−1 = D̃−1Ñ ,[
X2 Y2
−N D

] [
D̃ −Y1
Ñ X1

]

=

[
D̃ −Y1
Ñ X1

] [
X2 Y2
−N D

]
= I, (12)

then the class of all stabilizing controllers of P is given by

C = (Y1 + D̃Q)(X1 − ÑQ)−1

= (X2 − RN)−1(Y2 + RD) (13)

where Q, R ∈ M(H) are arbitrary but det(X1 − ÑQ) ̸= 0,

det(X2 − RN) ̸= 0.
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§4 General nD Stabilization Problem

Consider the nD general feedback system shown in Fig.2

P

C

pw pz

pypu

cu

cwcy

d'd

Fig.2 A General Feedback System

where P ∈ M(G) is linear nD generalized plant given by[
zp

yp

]
= P

[
wp

up

]
, P =

[
P11 P12
P21 P22

]
(14)

and C ∈ M(G) is a linear nD controller described by

yc = [C1 − C2]

[
wc

uc

]
; (15)
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zp: a vector containing the plant variables to be controlled;

yp, yc: the utilized output vectors of the plant and controller,

respectively;

wp, wc: the vectors of all the exogenous inputs (such as

disturbances, initial conditions, reference signals, etc.);

up, uc: the utilized inputs to the plant and controller,

respectively;

d, d′: the exogenous unmodeled signals (such as noise,

interference, etc.).
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The problem considered here is to find a controller C such that

the closed-loop feedback system (16) is structurally stable, i.e.,

Φ ∈ M(H).

 zp

yp

yc

 = Φ


wp

d′

wc

d

 ,

[
up

uc

]
= Ψ


wp

d′

wc

d

 (16)

where

Φ=

 Φ11 P12∆̃ P12∆̃C1 −P12C2∆
∆P21 P22∆̃ P22∆̃C1 −P22C2∆

−C2∆P21 −C2P22∆̃ ∆̃C1 −C2∆

 (17)

(18)

Ψ =

[
0 0 I
0 I 0

]
Φ +

[
0 I 0 0
0 0 0 I

]
(19)

with Φ11 = P11 − P12C2∆P21, ∆ = (I + P22C2)
−1 and

∆̃ = (I + C2P22)
−1.
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Let P22 ∈ M(G) be internally stabilizable. Then, there exist a

doubly coprime factorization P22 = N22D−1
22 = D̃−1

22 Ñ22 and the

relation [
X1 Y1

−Ñ22 D̃22

] [
D22 −Y2
N22 X2

]
= I (20)

such that

C2 = (Y2 + D22Q)(X2 − N22Q)−1 △
= Nc2D−1

c (21)

= (X1 − RÑ22)
−1(Y1 + RD̃22)

△
= D̃−1

c Ñc2 (22)

is the class of stabilizing controllers for P22, where D22, N22,

D̃22, Ñ22, X1, Y1, X2, Y2,∈ M(H), and Q, R ∈ M(H) are arbitrary

but det(X2 − N22Q) ̸= 0, det(X1 − RÑ22) ̸= 0.
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It should be clear that Dc, Nc2 and D̃c, Ñc2 are also right and

left coprime, respectively.

Substituting the results of (20) – (22) into (40) yields

Φ = Φ11 P12D22D̃cP12D22D̃cC1−P12D22Ñc2
DcD̃22P21 DcÑ22 N22D̃cC1 −N22Ñc2

−Nc2D̃22P21 −Nc2Ñ22 D22D̃cC1 −Nc2D̃22


(23)

with Φ11 = P11 − P12Nc2D̃22P21.
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In view of the coprimeness of the pairs of (D̃c, Ñc2), (Dc, Nc2),

(D22, N22), it is easy to see that Φ ∈ M(H) iff the conditions of

(24)–(27) hold.

P11 + P12Nc2D̃22P21 ∈ M(H) (24)

P12D22[D̃c Ñc2] ∈ M(H) ⇔ P12D22 ∈ M(H) (25)[
Dc

Nc2

]
[DT

c NT
c2]

T D̃22P21 ∈ M(H)

⇔ D̃22P21 ∈ M(H) (26)[
D22
N22

]
[DT

22 NY
22]

T D̃cC1 ∈ M(H)

⇔ D̃cC1 ∈ M(H) (27)
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(24)–(26) reveal the conditions for the generalized plant P to

admit a stabilizing controller when P22 is internally stabilizable.

On the other hand, (27) gives the admissible condition for the

2DOF (degree-of-freedom) controller C = [C1 −C2]. In the

sequel, therefore, assume that

[C1 C2] = D̃−1
c [Ñc1 Ñc2],

D̃c, Ñc1, Ñc2 ∈ M(H). For the special 1DOF case, i.e.,

C1 = C2 = D̃−1
c Ñ2c,

the condition (27) is always satisfied.
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§5 nD Regulation and Tracking Problems

The configuration for nD generalized regulation and tracking

problems shown in Fig.3 will be used.

P

C

pw

pz

py
pu

wT

rT

0
w

0
r

r

Fig.3 The nD Regulation and tracking Configuration

where Tr, Tw ∈ M(G) are generators of the reference signal r

and the disturbance signal wp; w0, r0 correspond to the initial or

boundary conditions of the generators, respectively. P, C and

the other variables are defined as in Fig.2.
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The problems to be considered can be stated as follows:

given P , Tw and Tr, to search a controller C for both the 1DOF

(C1 = C2) and 2DOF (C1 ̸= C2) cases such that C stabilizes P

and further

Regulation Problem (RP): Tzpw0 ∈ M(H), i.e., the transfer

matrix from w0 to zp, is structurally stable.

Tracking Problem (TP): Ter0 ∈ M(H), i.e., the transfer ma-

trix from r0 to e = r − zp is structurally stable.

Regulation and Tracking Problem (RTP): the requirements

of RP and TP are satisfied simultaneously.
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Assume in the following that P22 is internally stabilizable, and

Tw = D̃−1
w Ñw, Tr = D̃−1

r Ñr, are both left coprime MFDs.

Define P̄1 = P12D22, P̄2 = D̃22P21, P̄3 = P11 − P12Y2D̃22P21 and

note that P̄1, P̄2, P̄3 ∈ M(H) by (24)–(26).

Then we have:

Theorem 7. For either the 1DOF or 2DOF C, RP is solvable iff

there exist V, Q ∈ M(H) such that, when zp ̸= yp

P̄1QP̄2 + V D̃w = P̄3; (28)

when zp = yp

N22QP̄2 + V D̃w = X2P̄2. (29)
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Theorem 8. TP is solvable iff

(a) for the 2DOF C, there exist W, Ñc1 ∈ M(H) such that,
when zp ̸= yp,

P̄1Ñc1 + WD̃r = I, (30)

i.e., P̄1 and D̃r are skew prime;
when zp = yp,

N22Ñc1 + WD̃r = I, (31)

i.e., N22 and D̃r are skew prime.

(b) for the 1DOF C, there exist Q, W ∈ M(H) such that,
when zp ̸= yp,

P̄1QD̃22 + WD̃r = I − P̄1Y1; (32)

when zp = yp,

N22QD̃22 + WD̃r = X2D̃22. (33)
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Theorem 9. RTP is solvable iff

(a) for the 2DOF C, RP and TP are independently solvable, i.e.,

when zp ̸= yp, (28) and (30), when zp = yp, (29) and (31), are

separately solvable.

(b) for the 1DOF C, when zp ̸= yp, (28), (32) and (34), when

zp = yp, (29), (33) and (35), are simultaneously satisfied, re-

spectively.

V D̃w − WD̃rP21 = P11 − P21 (34)

V D̃w = WD̃rP21 (35)
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Theorem 10. Suppose that P̄2D̃−1
w = N2wD−1

2w = D̃−1
2wÑ2w,

P̄3D̃−1
w = N3wD−1

3w , and N2wD−1
2w , D̃−1

2wÑ2w, N3wD−1
3w are coprime

MFDs. Then (28) is solvable iff D1w = D−1
3wD2w ∈ M(H) and

there exist Q, V̄ ∈ M(H) such that

P̄1Q + V̄ D̃2w = N̄ (36)

where N̄
△
= N3wD1wY2w ∈ M(H), and Y2w is determined by the

equation X2wD2w + Y2wN2w = I.
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Theorem 11. Let D̃2w, Ñ2w, D2w, N2w as defined in Theorem

10. Then, (29) is solvable iff Ñ22 and D̃2w are skew prime.
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Further, the following theorem gives a necessary and sufficient

condition for the solvability of (36).

Theorem 12. If P̄1 is square and nonsingular, and P̄1 and N̄ are

left coprime, then (36) is solvable iff P̃1 and N̄ are skew prime

where P̃1 is given by P̄−1
1 N̄ = ÑP̃−1

1 with Ñ , P̃1 right coprime.

(Proof omitted.)

Due to the results of Theorems 8, 10, 11, and 12, we see that the

solvability problems of RP and TP have been essentially reduced

to the skew primeness of certain matrices over H.
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§6 Solution of Coprime Matrix Equation by Gröbner
Basis Approach

It has been clarified that

• Synthesis of stabilizing controllers ⇒ find left or/and right

coprime MFDs of P , and solve the corresponding coprime

matrix equations;

• The solution of RP and TP ⇒ solve certain skew prime ma-

trix equations.

⇓

By Theorem 3, the solution of a skew prime matrix equation

can be essentially reduced to the solution problems of left

and right coprime matrix equations.
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Therefore, in the following, we focus ourselves on the problems:

• how to obtain a coprime MFD for a given P , say a left co-

prime MFD P = D−1N , and

• how to solve the left coprime matrix equation

DX + NY = I. (37)
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As R[z] ⊂ H, we can only consider, without loss of generality,
the left coprime MFD P = D−1N with D, N ∈ M(R[z]), and (37)
can be equivalently transformed to

DX̄ + NȲ = V (38)

where X̄, Ȳ and V ∈ M(R[z]) and detV (z) ̸= 0 on Ūn.

Further, applying Cauchy-Binet theorem to (38) yields that

β∑
i=1

ai(z)xi(z) = detV (z) (39)

where ai(z) are the maximal order minors of the matrix
F = [D N ] and xi(z) are the maximal order minors of [X̄T Ȳ T ]T .

Let I be the ideal generated by ai(z) (i = 1, . . . , β) and V(I)
the variety of I. A necessary condition for D and N to be left
coprime is that V(I) ∩ Ūn = ∅, i.e., ai(z) (i = 1, . . . , β) possess
no common zeros in Ūn.
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For 2D case, it is well known that

• factor coprimeness ⇔ minor coprimeness [Youla 79],

• a factor/minor coprime MFD over R([z1, z2]) for a given P ∈
M(G) (with n = 2) can always be obtained [Guiver and Bose

82].

Theorem 13. [Guiver and Bose 85, Bisiacco 86]

P ∈ M(G) (n = 2) admits a left coprime factorization iff, for

any left MFD P = D−1N with D, N ∈ M(R[z1, z2]) being left

factor/minor coprime, V(I) ∩ Ū2 = ∅.

Theorem 13 implies that a left coprime MFD for a 2D causal

plant P can be obtained, if it exists, by using any left factor

coprime 2D polynomial MFD of P .
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In the following, we show a test for the condition V(I) ∩ Ū2 = ∅
by Gröbner basis approach [Xu et al. 94].

Consider P (z1,z2)=D−1(z1,w)N(z1,z2) where D(z1,z2)∈R[z1, z2]
m×m

and N(z1, z2) ∈ R[z1, z2]
m×l, are left factor coprime.

By the results of [Morf et al., 77], then, we always have X1, Y1,

X2 and Y2 ∈ M(R[z1, z2]) such that

D(z1, z2)X1(z1, z2) + N(z1, z2)Y1(z1, z2) = V1(z1) (40)

D(z1, z2)X2(z1, z2) + N(z1, z2)Y2(z1, z2) = V2(z2) (41)

where V1(z1), V2(z2) are diagonal 1D polynomial matrices with

non-zero determinants.
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Decompose V1(z1) and V2(z2) as

V1(z1) = V1u(z1)V1s(z1) (42a)

V2(z2) = V2u(z2)V2s(z2) (42b)

such that all the entries of V1s(ξ) and V1s(ξ) are 1D stable poly-

nomials, while all the entries of V1u(ξ) and V2u(ξ) are 1D com-

pletely unstable polynomials, i.e., have only unstable zeros in Ū

[Xu et al., 94].

Define

V(detV1u(z1),detV2u(z2)) =

{(z1, z2) ∈ C2 |detV1u(z1) = 0,detV2u(z2) = 0}.

38



Let

F (z1, z2) =
[

D(z1, z2) N(z1, z2)
]
=

[
f⃗1 · · · f⃗k

]
where k = m + l and f⃗i (i = 1, . . . , k) are m × 1 2D polynomial

vectors.

Theorem 14. [Xu et al., 94]

The following statements are equivalent:

(i) V(I) ∩ Ū2 = ∅, or equivalently, (38) is solvable when n = 2;

(ii) For any (z10, z20) ∈ V(detV1u(z1),detV2u(z2)), F (z10, z20) is

of full rank;

(iii) A non-zero constant is an element in the Gröbner basis

of the ideal generated by detV1u(z1), detV2u(z2) and ai(z1, z2),

i = 1, . . . , β;
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(iv) For i = 1, . . . , m, e⃗i is an element of the Gröbner basis of the

module generated by

{f⃗1, · · · , f⃗k,



0
...
0

detV1u(z1)
0
...
0


∗,



0
...
0

detV2u(z2)
0
...
0


∗} (43)

where e⃗i denotes an m × 1 vector having 1 at the ith position

and 0 at the other positions, and ∗ denotes the ith position of

the associated vectors.

40



Next, we show a procedure for constructing a solution to (38)

by using Gröbner basis approach.

Theorem 15. [Xu et al., 94] Suppose that V(I)∩ Ū2 = ∅. Then

the polynomial s(z1, z2) defined as

s(z1, z2) = detV1s(z1) detV2s(z2) (44)

vanishes on V(I) and is stable, namely, devoid of zeros in Ū2.
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2D Solution Procedure

Input: F (z1, z2) = [D(z1, z2) N(z1, z2)] = [f⃗1, . . . , f⃗k], a stable

polynomial s(z1, z2) ∈ R[z1, z2] vanishing over V(I).

Output: X̄(z1, z2), Ȳ (z1, z2) and V (z1, z2) for (38).

step 1. Solve the following equation using the Gröbner basis

approach for i = 1, . . . , m:

x̄i,1(z1, z2, t)f⃗1(z1, z2) + · · · + x̄i,k(z1, z2, t)f⃗k(z1, z2)

+ x̃i(z1, z2, t)


0
...

1 − ts(z1, z2)
...
0

∗ =


0
...
1
...
0

∗

where t is a new indeterminate.
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step 2. Substituting t = 1/s into the above equations and clear-

ing out the denominators yields

F (z1, z2)f⃗i
′
(z1, z2) = [0, · · · , s(z1, z2)

ri, · · · ,0]T

or equivalently,

F (z1, z2)[f⃗1
′
, · · · , f⃗m

′
] =

sr1
. . .

srm


, V (z1, z2)

where f⃗i
′
(z1, z2) (i = 1, . . . , m) are k × 1 2D polynomial

vectors and ri (i = 1, . . . , m) are non-negative integers.
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step 3. Partitioning [f⃗1
′
(z1, z2), . . . , f⃗m

′
(z1, z2)] as

[X̄(z1, z2)
T Ȳ (z1, z2)

T ]T , we have that

D(z1, z2)X̄(z1, z2)+N(z1, z2)Ȳ (z1, z2)=V (z1, z2)

where detV (z1, z2) = s(z1, z2)
r1+···+rm is obviously a

stable 2D polynomial.

44



For a general nD (n ≥ 3) case, we encounter the difficulties

that factor coprimeness of two nD polynomial matrices does not

imply the minor coprimeness of them, and we do not know how

to construct a minor coprime MFD for a given P ∈ M(G).

It is still an open problem to construct a coprime MFD for a

given P ∈ M(G), though its existence condition has been shown

recently by the result of Theorem 5 [Quadrat 04, Quadrat 06].
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By introducing the concept of reduced minors of an nD polyno-

mial matrix, it has been shown that the nD stabilization problem

can be characterized by using polynomial MFDs of a given plant

P ∈ M(G) which are not necessarily minor coprime [Lin 98, Lin

01].

Let a1(z), . . . , aβ(z) denote the m × m minors of the nD polyno-

mial matrix F (z) = [D(z) N(z)]. Extracting a greatest common

divisor d(z) of ai(z) (i = 1, . . . , β) yields

ai(z) = d(z)bi(z), i = 1, . . . , β.

Then, bi(z), . . . , bβ(z) are called the reduced minors of F (z) [Sule

94, Lin 98, Lin 01].
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It has been shown that P (z) = D(z)−1N(z) (not necessarily left

minor coprime) is stabilizable iff b1(z), . . . , bβ(z) have no common

zeros in Ūn, or equivalently, there exist x1(z), . . . , xβ(z) such that

β∑
i=1

bi(z)xi(z) = s(z) (45)

where s(z) is stable, i.e., s(z) ̸= 0 for any z ∈ Ūn.

Further, it has been shown that if the solution xi(z) (i = 1, . . . , β)

can be found, then a stabilizing controller C(z) can be construc-

tively obtained [Lin 98, Lin 01].
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§7 Open Problems

Let I be the ideal generated by b1(z), . . . , bβ(z), and V(I) the

variety of I.

Problem 1. [Lin 01] find an efficient method to determine

whether or not V(I) ∩ Ūn = ∅.

Problem 2. [Lin 01, Xu et al. 04]

Suppose that V(I) ∩ Ūn = ∅. Find a constructive method to

obtain a stable polynomial s̃(z) such that s̃(z) vanishes on V(I).

For the case when I is of zero dimension, i.e., V(I) consists of

only a finite number of points, such a stable polynomial s̃(z) can

be constructed by utilizing Gröbner bases [Xu et al. 98].
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Note also that, once this problem is solved, it will be ready to

construct a solution to (45) by Gröbner basis approach [Xu et

al. 94, Xu et al. 98].

Problem 3. Find a constructive method to obtain a left or/and

right coprime MFDs for a given stabilizable P ∈ M(G).

Problem 4. Find a constructive method to construct the ma-

trices D̄ and N̄ defined in Theorem 3 when n ≥ 3. (Solution for

the 2D case can be found in [Xu et al. 90].)
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§8 Conclusions

• Necessary and sufficient solvability conditions have been given

for nD stabilization, regulation and tracking problems under

various configurations and/or cases, which show that these

problems can be essentially reduced to the solvability prob-

lems of coprime and skew prime matrix equations.

• It has been shown that for the 2D case, these equations,

and thus the synthesis problems of various kinds of 2D con-

trollers can be constructively solved by utilizing Gröbner basis

approach. However, for the general nD (n ≥ 3) cases, some

substantial challenges still remain, which are summarized as

several open problems.
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Thanks for your attention!
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