# Logarithmic $\mathcal{D}$-modules 

J.M. Ucha

## Special Semester on Gröbner Bases and related methods

Linz. May 16, 2006

## The rings

- $R=\mathrm{C}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathcal{O}=\mathbf{C}\left\{x_{1}, \ldots, x_{n}\right\}$ convergent power series at 0 .
- $W=R\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$ and $\mathcal{D}=\mathcal{O}\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$, the rings extensions generated by the relations

$$
\partial_{i} \partial_{j}=\partial_{j} \partial_{i}, \quad \partial_{i} r-r \partial_{i}=\frac{\partial r}{\partial x_{i}},
$$

for $r \in R, \mathcal{O}$ respectively.

Gröbner bases for these rings were developed by Briançon-Maisonobe and F.J. Castro (1984).

## Motivation

Problem (Z. Mebkhout, 1996. Still open):
Obtain a constructive proof of

$$
E x t_{\mathcal{D}}^{2}(\mathcal{O}[1 / f], \mathcal{O})=0
$$

for a plane curve $f=0$.

It is useful a presentation of $A n n_{\mathcal{D}}(1 / f)$ because

$$
\mathcal{O}[1 / f] \simeq \mathcal{D} \cdot f^{\alpha} \simeq \mathcal{D} / \operatorname{Ann}_{\mathcal{D}}\left(f^{\alpha}\right),
$$

where $\alpha$ is the smallest integer root of the Bernstein-Sato polynomial of $f$ (Bernstein 1972, Björk 1979).

Algorithmic computation of $E x t_{\mathcal{D}}^{2}(\mathcal{O}[1 / f], \mathcal{O})$ is in general a difficult task...

Example.- If $f=x^{2}+y^{3}$ you have to prove that for every $\varphi \in \mathcal{O}$ there exist $h_{1}, h_{2} \in \mathcal{O}$ such that
$\left(-3 y^{2} \partial_{x}+2 x \partial_{y}, 3 x \partial_{x}+2 y \partial_{y}+5\right) \bullet\binom{h_{1}}{h_{2}}=\varphi$.

This case is easy. Try instead $f=x^{4}+y^{5}+x y^{4}$.

## Logarithmic $\mathcal{D}$-modules

Logarithmic $\mathcal{D}$-modules (initiated by CalderónNarváez) has appeared in a natural way to treat the following problems:

- Presenting $\mathcal{O}[1 / f] \simeq A n n_{\mathcal{D}}\left(f^{\alpha}\right) \Rightarrow$
- Logarithmic Comparison Theorem.


## Presenting $\mathcal{O}[1 / f]$

There are algorithms based in Gröbner bases computations in PBW algebras (Oaku-Takayama '1999 and Briançon-Maisonobe '2002) to obtain:

- $A n n_{\mathcal{D}[s]}\left(f^{s}\right) \rightarrow A n n_{\mathcal{D}}\left(f^{\alpha}\right)$
- The Bernstein-Sato polynomial (Oaku '1997). More generally Bernstein-Sato ideals.

Direct computation: Great expectations with the synergy:

- slimgb (Brickenstein-Levandovskyy '2005) in Singular.
- Briançon-Maisonobe algorithm.

Especially in the calculation of Bernstein-Sato ideals (success with two transversal cuspids!) Of course, there are intractable interesting examples.

Logarithmic $\mathcal{D}$-modules produce natural approximations to obtain $A n n_{\mathcal{D}[s]}\left(f^{s}\right)$ and $A n n_{\mathcal{D}}\left(f^{\alpha}\right)$.

## Logarithmic derivations

Let $D \equiv(f=0)$ be a divisor (hypersurface) in $X:=\mathrm{C}^{n}$.
K. Saito '1980 introduced the complex $\Omega^{\bullet}(\log D)$ of holomorphic differential forms with logarithmic poles along $D$.

For $P \in D$ a vector field $\delta \in \operatorname{Der}\left(\mathcal{O}_{P}\right)$ is said to be logarithmic with respect to $D$ if $\delta(f)=a f$ for some $a \in \mathcal{O}_{P}$. The $\mathcal{O}_{P}$-module of logarithmic derivations is denoted by $\operatorname{Der}(-\log D)_{P}$.

Idea: If $\delta(f)=a f$ then $(\delta+a)(1 / f)=0$

The (left) ideal of $\mathcal{D}$
$A n n_{\mathcal{D}}^{(1)}(1 / f)=\langle\delta+a \mid \delta \in \operatorname{Der}(-\log f), \delta(f)=a f\rangle$
-the ideal generated by operators of order one in the derivatives of the annihilating ideal- is a natural approximation of $A n n_{\mathcal{D}}(1 / f)$ if $\alpha=1$.

For the general case, consider

$$
\langle\delta-\alpha a \mid \delta \in \operatorname{Der}(-\log f), \delta(f)=a f\rangle
$$

## Computation of $A n n_{\mathcal{D}}^{(1)}(1 / f)$

Given $f \in R$,

$$
\begin{gathered}
\left(a_{1} \partial_{1}+\cdots+a_{n} \partial n\right) \cdot(f)=a f \Leftrightarrow \\
\left(a_{1}, \ldots, a_{n},-f\right) \in \operatorname{Syz}\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}, f\right) .
\end{gathered}
$$

For $D \equiv(f=0)$ and $P \in D$, the computation of $\operatorname{Der}(-\log f)_{P}$ is a commutative computation valid for the analytical setting.

## Non-logarithmic approximations

Instead of $A n n_{\mathcal{D}}^{(1)}(1 / f)$ (order one in the derivatives) you can consider elements that annihilate $1 / f$ of any order $l \geq 1$ in the derivatives with commutative calculations (Tajima),
$A n n_{\mathcal{D}}^{(1)}(1 / f) \subseteq A n n_{\mathcal{D}}^{(2)}(1 / f) \subseteq \cdots \subseteq A n n_{\mathcal{D}}(1 / f)$.

Problem: Is there any bound $b$ such that

$$
A n n_{\mathcal{D}}^{(b)}(1 / f)=A n n_{\mathcal{D}}(1 / f)
$$

(say, for any plane curve $f=0$ )?

## Returning to the initial problem

Problem ( $\star$ ): When does the equality

$$
A n n_{\mathcal{D}}^{(1)}(1 / f)=A n n_{\mathcal{D}}(1 / f)
$$

hold?

Our debut on this subject was (Castro-Ucha '2001):

Theorem. For a plane curve $D \equiv(f=0)$, $A n n_{\mathcal{D}}^{1}(1 / f)=A n n_{\mathcal{D}}(1 / f)$ if and only if $f$ is quasi-homogeneous.

## LCT come on stage

In dimension 2 (only) the following conditions are equivalent:

1) $f$ is quasi-homogeneous
2) $D$ is Euler homogeneous (there is a $\chi$ with $\chi(f)=f$ ).
3) $D$ is Locally Quasi-Homogeneous (LQH) (for all $P \in D$ there exists a system of local coordinates ( $V ; x_{1}, \ldots, x_{n}$ ) centered at $P$ such that $D \cap V$ has a strictly weighted homogeneous defining equation with respect to $\left(x_{1}, \ldots, x_{n}\right)$ )
4) ... "LCT holds for $f=0$ " (Calderón-Castro-Narváez-Mond '2002)

## Free divisors

On the other hand, every plane curve is a free divisor: $D$ is free at $P \in D$ if $\operatorname{Der}(-\log D)_{P}$ is a free $\mathcal{O}_{P}$-module.

By Saito's criterion $D \equiv(f=0) \subset \mathrm{C}^{n}$ is free at $P$ if and only if there exist $n$ vector fields $\delta_{i}=\sum_{j=1}^{n} a_{i j} \partial_{j} \in \operatorname{Der}(-\log D)_{P}$, such that $\operatorname{det}\left(a_{i j}\right)=u f$ for a unit $u \in \mathcal{O}_{P}$

Example.- $D \equiv(f=x y z(x+y)(x+z)=0)$ is free at 0 because

$$
\left|\begin{array}{ccc}
0 & 2 x y-2 x z-5 x y-3 y^{2}-2 y z & 5 x z+2 y z+3 z^{2} \\
x^{2}+2 x z & x y+2 y z & -4 x z-3 z^{2} \\
x & y & z
\end{array}\right|=25 f
$$

Let us denote by $i_{D}$ the inclusion morphism $\Omega^{\bullet}(\log D) \hookrightarrow \Omega^{\bullet}(\star D)$.

Thm.- If $D$ is a locally quasi-homogeneous free divisor then the morphism $i_{D}$ is a quasiisomorphism, i.e. $i_{D}$ induces an isomorphism on cohomology. (Castro-Narváez-Mond '1996)

As Grothendieck's Comparison Theorem proves that the last complex calculates the cohomology of the complement of $D$ in $X$, we say that Logarithmic Comparison Theorem (LCT) holds for a divisor $D$ if the morphism $i_{D}$ is a quasi-isomorphism.

Following the clues, we proved (Castro-Ucha '2002)

Thm.- If $D \equiv(f=0)$ is a LQH free divisor then $A n n_{\mathcal{D}}^{(1)}(1 / f)=A n n_{\mathcal{D}}(1 / f)$.

It was a crucial fact that LQH free divisors are Koszul-free and then of Spencer type: this means that the complex

$$
\mathcal{D} \otimes_{\mathcal{O}} \wedge^{\bullet} \operatorname{Der}(\log D) \rightarrow M^{\log D} \rightarrow 0
$$

is a (locally) free resolution of
$M^{\log D}=\mathcal{D} /\langle\operatorname{Der}(-\log D)\rangle \simeq\left(\mathcal{D} / A n n_{\mathcal{D}}^{(1)}(1 / f)\right)^{\star}$, and that these $\mathcal{D}$-modules are holonomic.

Torrelli's gamble: LCT holds for $D \equiv(f=0)$
if and only if $A n n_{\mathcal{D}}^{(1)}(1 / f)=A n n_{\mathcal{D}}(1 / f)$.

Torrelli himself has proved the conjecture for Koszul-free divisors and is true for (Spencer) free divisors (Castro-Ucha '2004). Moreover, if LCT holds for a free divisor $D$ then:

- $D$ is of Spencer type (Calderón-Narváez '2005).
- -1 is the smallest root of the Bernstein-Sato polynomial (Castro-Ucha '2004).

Recent advances Some advances have been obtained in this context of LCT and free (and non-free divisors):

1) $A n n_{W}^{(1)}(1 / f)$ and arrangement of hyperplanes.
2) Extending the family of free divisors for which LCT holds.

## Arrangements of hyperplanes

We have a method for testing if $A n n_{W}^{(1)}(1 / f)=$ $A n n_{W}(1 / f)$ for arrangements of hyperplanes.

It is based in a combinatorial description of the characteristic cycle of the $\mathcal{D}$-module $R_{f}$, due to Àlvarez-Montaner, García-López and Zarzuela (Àlvarez-Montaner, Castro, Ucha '2005 submitted).

Arrangements like

$$
\begin{gathered}
(f=x y z t(x+y)(x+z)(x+t)(y+z)(y+t)(z+t) \\
(x+y+z)(x+y+t)(x+z+t)(y+z+t)(x+y+z+t)=0)
\end{gathered}
$$ turn out to verify Walther's conjecture.

## Recent advances

2) LCT dos not imply LQH for $n \geq 3$ and there are Euler homogeneous free divisors that does not verify LCT. It is a conjecture that Euler homogeneous is a necessary condition for LCT (true in dimension 3, Granger-Schulze '2005 preprint).

The divisor $D \equiv(x y(x+y)(x z+y)=0) \subset$ $\mathrm{C}^{3}$ is not LQH and verifies LCT (it is only a computation!).

Thm.- Let us suppose that $D \equiv(f=0) \subset \mathbf{C}^{n}$ is a free Spencer divisor and -1 is the smallest integer root of its Bernstein-Sato polynomial.

If for every $P \in D$ we have a $\chi=w_{1} x_{1} \partial_{1}+\cdots+$ $w_{n} x_{n} \partial_{n}$ such that $\chi(f)=f$ with some $w_{i}>0$ then LCT holds for $D$.

Key.- Explicit computation of Ext groups.

