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Question:  When uy, — ﬁu = 0 is integrable?
Answer. integrable < c=n(n+1).
In this case

U=cF+ciF +...4ciF™ + ayG+diG + ...+ dpp1 G

with definite cj(x, y), di(x, y) and F(x), G(y) — two arbitrary
functions.

Solution technology: Laplace transformations: after a series of
L.t. one may get a naively factorizable LPDE!

The Problem: Can one decide for a given linear PDE (or a
system of linear PDESs) if it has a closed form solution of this
type and (if yes) how one can find such a solution?

How are solutions and factorizations of LPDEs related?
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Dyur = —6uq + tp + 2u3,

Dyuy = uy +2u2 + us,
(Dx + Dy)uz = 12u4 + 6uz + Us.

It has the complete explicit solution (S.Ts., ISSAC’2005):

ur = 28 G(x) + eX(3F(y) + F'(y)) + exp X H(x — y),
U, = e¥G'(x) +2e*F'(y) — 2uy,
uz = Dyuy +3uy — 2(e7G'(x) +2e°F'(y)),

where F(y), G(x) and H(x — y) are three arbitrary functions of
one variable each.



Technology (Ts., ISSAC’2005):
generalized Laplace transformations

For this system the transformation is:

uy = u,

U = U +2U4,

U3 - ((DX + Dy)u1 - U‘I - 2U2 - 4U1)
The transformed system:

Dyus = us,
D,t, = 2U3 + Uy,
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Alternative technology (F.Schwarz, 2005):
Transform the system into Janet (Grébner) base, with term
order: LEX, us > U» > Uy, x > y:

Ut xxy — Ut xx + Ut xyy — 3U1,xy + 2U1,x — Uy + 2U1,y —u =0,
Uy + 3uUs — 2U17X +8u; =0,

Up x — Uz — %ULXX - %Uny + 3u1,x + %Uty - gU1 =0,
U3+2U2—U17X+U1 =0.

The first equation factors (!!):
DZD, — D + DyD5 — 3DxDy + 2Dy — D + 2Dy, — 1

= (Dx+ Dy = 1)(Dy = 1)(Dx = 1).

So one can find uy easily and then the other two functions u»
and us are obtained from the remaining equations of the Janet
base.



Alternative technology (F.Schwarz, 2005):
Transform the system into Janet (Grébner) base, with term
order: LEX, us > U» > Uy, x > y:
Ut xxy — Ut xx + Ut xyy — 3U1,xy + 2U1,x — Uy + 2U1,y —u =0,
Uy + 3uUs — 2U17X +8u; =0,
Uo x — Uo — %ULXX - %Uny + 3u1,x + %Uty - gU1 = Os
Us + 2Us — hx+U = 0.

The first equation factors (!!):
DZD, — D + DyD5 — 3DxDy + 2Dy — D + 2Dy, — 1

= (Dx+ Dy = 1)(Dy = 1)(Dx = 1).

So one can find uy easily and then the other two functions u»
and us are obtained from the remaining equations of the Janet
base.

Conjecture: For constant-coefficient systems this Grobner
basis technology is equivalent to the generalized Laplace
technology.
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U.Dini. Sopra una classe di equazioni a derivate parziali di
second’ordine con un numero qualunque di variabli. Atti Acc.
Lincei. Mem. Classe fis., mat., nat. (5) 4, 1901, p. 121-178.

2nd paper: 1902, p. 431-467.

An example:
Lu = (DxDy + xDxD, — D;)u = 0.
It has a complete solution, obtained using Dini’s procedures:
u= / (vdx +(Dy + xDz)vdz) +6(y),
where v = [ ¢(x,xy — z) dx + ¢(y, 2).

Can be used to solve initial value problems!
How this solution was obtained?
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Dini transformation:

L == Dny + XDxDz — Dz = (Dy + XDz)DX — Dz =
Dx(Dy + XDz) - 2Dz.

Lu=0 <= (Dy + xD;) Dyu—D,u =0,
~—~
v

— Dyu=v, (1)
Dzu == (Dy + XDz)V.

<= Dy(Dy, + xD,)v = D,v <= 0 = Dx(Dy + xD,)v — D,v =

SO NOW THE OPERATOR FACTORS (after the Dini
transformation)!!

Now we can find v, and the u from (1).
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Proof (cont.)

Then Lu = (51 4 @) (S + B)u+Vu+bu =0 —
N —’
4

(Se+p)u=v,
(V+b)ju=—(5 +a)v.

So[(S2+8),(V+ b)Ju= ((é2 FB)(S +a)+ (V4 b))v

When [(Sz + ), (V + b)]u can be transformed into an
expression involving only v?

Answer: when [(52 + B), (V 4 b)] is a linear combination of
(S + 3) and(V + b) alone.

One can check that this is possible to do choosing a(x, y, 2)
and j3(x, y, z) appropriately (for generic s, ).



dim = 3, ord = 2: chains of Dini transformations

o L(_z) — L(_1) — L — L(1) — L(Z) — ...
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Outline

General theory of factorization of an arbitrary single LPDO



Approach 1: Rings/modules (S.Ts., 1998)

Goals:



Approach 1: Rings/modules (S.Ts., 1998)

Goals:

1) to define a notion of factorization with “good” properties:



Approach 1: Rings/modules (S.Ts., 1998)

Goals:

1) to define a notion of factorization with “good” properties:
1a) VLPDO L ~ L{L, - - - L, with FINITE k.
In particular Dy should be irreducible ...



Approach 1: Rings/modules (S.Ts., 1998)

Goals:

1) to define a notion of factorization with “good” properties:

1a) VLPDO L ~ L{L, - - - L, with FINITE k.

In particular Dy should be irreducible ...

1b) Preserving the property proved by Landau E. (1902) for
LODE: all possible factorizations of a given operator L have the
same number of factors in different expansions
L=1Ly---Lx=Ly---L, into irreducible factors and the factors
Ls, Lp are pairwise “similar”.



Approach 1: Rings/modules (S.Ts., 1998)

Goals:

1) to define a notion of factorization with “good” properties:

1a) VLPDO L ~ L{L, - - - L, with FINITE k.

In particular Dy should be irreducible ...

1b) Preserving the property proved by Landau E. (1902) for
LODE: all possible factorizations of a given operator L have the
same number of factors in different expansions
L=1Ly---Lx=Ly---L, into irreducible factors and the factors
Ls, Lp are pairwise “similar”.

2) Existence of /large classes of solutions should be related to
factorization.



Approach 1: Rings/modules (S.Ts., 1998)

Goals:

1) to define a notion of factorization with “good” properties:

1a) VLPDO L ~ L{L, - - - L, with FINITE k.

In particular Dy should be irreducible ...

1b) Preserving the property proved by Landau E. (1902) for
LODE: all possible factorizations of a given operator L have the
same number of factors in different expansions
L=1Ly---Lx=Ly---L, into irreducible factors and the factors
Ls, Lp are pairwise “similar”.

2) Existence of /large classes of solutions should be related to
factorization.

3) Algorithms?
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Divisor ideals (S.Ts., 1998)

Hint 1: if we have L = L4L, - - - Ly <= we have a chain of left
principal ideals
‘L>C ’L2L3"-LK>C ’Ls‘--Lk>C...C‘Lk>C ’1>

Hint 2: We shall drop the word “principal” (Blumberg’s
example).

Hint 3: But we shall take not all left ideals!
Example: [Dy) C |Dy, D) C [Dx, DJ'~") C ...|Dx, Dy) C [1).

(the same even for multivariate polynomials!)
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Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO,
such that:

1) chains will be finite and for a given L they will have the same
length:
flLychchc...ClkCc|1),|L)cdiChC...CdnC|1)
then k = mand /s are similar to Jp.

2) Irreducible LODO will be still irreducible as LPDEs.

3) for dim = 2, ord = 2 LODO, factorizable <= integrable
(with Laplace transformations).
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such that:

1) chains will be finite and for a given L they will have the same
length:
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3) for dim = 2, ord = 2 LODO, factorizable <= integrable
(with Laplace transformations).

4) Algebraically, the problem is reduced from Q(x, y)[Dx, Dy] to
Q(x,y, Dx)[D,] and/or Q(x,y, Dy)[Dx] (Ore quotients).

Problems:

1) No idea how to generalize to systems of LPDEs.
2) Technical, not intuitive.
3) No algorithms known.
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» If a LPDO is factorizable in this generalized sense, then its
principal symbol is factorizable.

» If a LPDO of order nis solvable then its symbol splits into n
linear factors.
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Abelian category of L.O.D.O.:
objects are operators L = ag(x)D" + a;(x)D"~' 4 ... + ap(x),

morphisms are mappings of solutions with auxiliary operators:
P : L — Miff for every u such that Lu = 0, v = Pu gives a
solution of M: Mv = 0.

Algebraically: M- P =N - L.
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Abelian category S of systems of L.P.D.E.:

Lyqug + ...+ Lisus = 0,
S ..
Liqug + ...+ Lgsus = 0,

Morphism P : S — Q,

Vi = Piiur + ... + PisUs,
P:

Theorem
Any abelian category with finite ascending chains satisfies the
Jordan-Hélder property.

Problem: chains are infinite....
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The solution: Serre-Grothendieck
factorcategory!

For a given (say, determined) system of L.P.D.E. take the
subcategory S,_» of (overdetermined) systems with solution
space parameterized by functions of at most n — 2 variables.
Then in the factorcategory S/S,_» ascending chains are finite!
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Algorithmic problems

1) Laplace transformations and all their generalizations are not
(formally) algorithmic: no stopping criteria known.

2) Is there an algorithm to factorize in K[D,] for skew differential
fields K, for example in Q(x, y, Dx)[Dy]??

3) Is there an algorithm to solve a first-order linear PDE with
rational coefficients in dim = 3 (dim = 2 seems to be solved)?
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