Generalized factorization of PDEs:
 A tool for finding their closed-form solutions, $\operatorname{dim} \geq 2$

Sergey P. Tsarev

TU-Berlin, Germany
\&
Krasnoyarsk SPU, Russia
email: tsarev@math.tu-berlin.de tsarev@newmail.ru
11.05 .2006

Outline

A teaser: $\operatorname{dim}=2$, ord $=2,1773$

$$
\begin{aligned}
\operatorname{dim}=2, \text { ord } & \geq 3,2005 \\
& \text { refrain: Gröbner bases, Gröbner bases, } \\
\operatorname{dim} \geq 3, \text { ord } & =2,1901-2006 \\
& \text { refrain: Gröbner bases, Gröbner bases, }
\end{aligned}
$$

Other interesting partial results
General theory of factorization of an arbitrary single LPDO
General approach: Abelian categories
Algorithmic problems
Acknowledgment

A teaser: solvable non-factorizable LPDEs, $\operatorname{dim}=2$, ord $=2$

$$
\text { Ex 1. } u_{x y}=D_{x} D_{y} u=0 \quad \Leftrightarrow \quad u=F(x)+G(y)
$$

A teaser: solvable non-factorizable LPDEs, $\operatorname{dim}=2$, ord $=2$
$E x$ 1. $u_{x y}=D_{x} D_{y} u=0 \Leftrightarrow u=F(x)+G(y)$
$E x$ 2. $u_{x y}-\frac{2}{(x+y)^{2}} u=\left(D_{x} D_{y}-\frac{2}{(x+y)^{2}}\right) u=0$

A teaser: solvable non-factorizable LPDEs, $\operatorname{dim}=2$, ord $=2$

$$
\begin{aligned}
E x \text { 1. } u_{x y}=D_{x} D_{y} u & =0 \quad \Leftrightarrow \quad u=F(x)+G(y) \\
E x \text { 2. } u_{x y}-\frac{2}{(x+y)^{2}} u & =\left(D_{x} D_{y}-\frac{2}{(x+y)^{2}}\right) u=0 \\
\Leftrightarrow \quad u & =-\frac{2(F(x)+G(y))}{x+y}+F^{\prime}(x)+G^{\prime}(y)
\end{aligned}
$$

A teaser: solvable non-factorizable LPDEs, $\operatorname{dim}=2$, ord $=2$
$E x$ 1. $u_{x y}=D_{x} D_{y} u=0 \quad \Leftrightarrow \quad u=F(x)+G(y)$
Ex 2. $u_{x y}-\frac{2}{(x+y)^{2}} u=\left(D_{x} D_{y}-\frac{2}{(x+y)^{2}}\right) u=0$

$$
\Leftrightarrow \quad u=-\frac{2(F(x)+G(y))}{x+y}+F^{\prime}(x)+G^{\prime}(y)
$$

Ex 3. $u_{x y}-\frac{6}{(x+y)^{2}} u=\left(D_{x} D_{y}-\frac{6}{(x+y)^{2}}\right) u=0$

A teaser: solvable non-factorizable LPDEs, $\operatorname{dim}=2$, ord $=2$
$E x$ 1. $u_{x y}=D_{x} D_{y} u=0 \quad \Leftrightarrow \quad u=F(x)+G(y)$
Ex 2. $u_{x y}-\frac{2}{(x+y)^{2}} u=\left(D_{x} D_{y}-\frac{2}{(x+y)^{2}}\right) u=0$

$$
\Leftrightarrow \quad u=-\frac{2(F(x)+G(y))}{x+y}+F^{\prime}(x)+G^{\prime}(y)
$$

Ex 3. $u_{x y}-\frac{6}{(x+y)^{2}} u=\left(D_{x} D_{y}-\frac{6}{(x+y)^{2}}\right) u=0$

$$
\begin{aligned}
& \Leftrightarrow \quad u=\frac{12(F(x)+G(y))}{(x+y)^{2}}-\frac{6\left(F^{\prime}(x)+G^{\prime}(y)\right)}{x+y} \\
&+F^{\prime \prime}(x)+G^{\prime \prime}(y)
\end{aligned}
$$

Question: When $u_{x y}-\frac{c}{(x+y)^{2}} u=0$ is integrable?

Question: When $u_{x y}-\frac{c}{(x+y)^{2}} u=0$ is integrable? Answer: integrable $\Leftrightarrow c=n(n+1)$.

Question: When $u_{x y}-\frac{c}{(x+y)^{2}} u=0$ is integrable? Answer: integrable $\Leftrightarrow c=n(n+1)$. In this case
$u=c_{0} F+c_{1} F^{\prime}+\ldots+c_{n} F^{(n)}+d_{0} G+d_{1} G^{\prime}+\ldots+d_{n+1} G^{(n+1)}$
with definite $c_{i}(x, y), d_{i}(x, y)$ and $F(x), G(y)$ - two arbitrary functions.

Question: When $u_{x y}-\frac{c}{(x+y)^{2}} u=0$ is integrable? Answer: integrable $\Leftrightarrow c=n(n+1)$. In this case
$u=c_{0} F+c_{1} F^{\prime}+\ldots+c_{n} F^{(n)}+d_{0} G+d_{1} G^{\prime}+\ldots+d_{n+1} G^{(n+1)}$
with definite $c_{i}(x, y), d_{i}(x, y)$ and $F(x), G(y)$ - two arbitrary functions.

Solution technology: Laplace transformations: after a series of L.t. one may get a naively factorizable LPDE!

Question: When $u_{x y}-\frac{c}{(x+y)^{2}} u=0$ is integrable? Answer: integrable $\Leftrightarrow c=n(n+1)$. In this case
$u=c_{0} F+c_{1} F^{\prime}+\ldots+c_{n} F^{(n)}+d_{0} G+d_{1} G^{\prime}+\ldots+d_{n+1} G^{(n+1)}$
with definite $c_{i}(x, y), d_{i}(x, y)$ and $F(x), G(y)$ - two arbitrary functions.

Solution technology: Laplace transformations: after a series of L.t. one may get a naively factorizable LPDE!

The Problem: Can one decide for a given linear PDE (or a system of linear PDEs) if it has a closed form solution of this type and (if yes) how one can find such a solution?

Question: When $u_{x y}-\frac{c}{(x+y)^{2}} u=0$ is integrable? Answer: integrable $\Leftrightarrow c=n(n+1)$. In this case
$u=c_{0} F+c_{1} F^{\prime}+\ldots+c_{n} F^{(n)}+d_{0} G+d_{1} G^{\prime}+\ldots+d_{n+1} G^{(n+1)}$
with definite $c_{i}(x, y), d_{i}(x, y)$ and $F(x), G(y)$ - two arbitrary functions.

Solution technology: Laplace transformations: after a series of L.t. one may get a naively factorizable LPDE!

The Problem: Can one decide for a given linear PDE (or a system of linear PDEs) if it has a closed form solution of this type and (if yes) how one can find such a solution?

How are solutions and factorizations of LPDEs related?

Outline

A teaser: $\operatorname{dim}=2$, ord $=2,1773$
$\operatorname{dim}=2$, ord $\geq 3,2005$
refrain: Gröbner bases, Gröbner bases,
$\operatorname{dim} \geq 3$, ord $=2,1901-2006$
refrain: Gröbner bases, Gröbner bases, ...
Other interesting partial results
General theory of factorization of an arbitrary single LPDO
General approach: Abelian categories
Algorithmic problems
Acknowledgment

$d i m=2$, ord $\geq 3,2005$

$$
\left\{\begin{array}{l}
D_{x} u_{1}=u_{1}+2 u_{2}+u_{3} \\
D_{y} u_{2}=-6 u_{1}+u_{2}+2 u_{3} \\
\left(D_{x}+D_{y}\right) u_{3}=12 u_{1}+6 u_{2}+u_{3}
\end{array}\right.
$$

$d i m=2$, ord $\geq 3,2005$

$$
\left\{\begin{array}{l}
D_{x} u_{1}=u_{1}+2 u_{2}+u_{3} \\
D_{y} u_{2}=-6 u_{1}+u_{2}+2 u_{3} \\
\left(D_{x}+D_{y}\right) u_{3}=12 u_{1}+6 u_{2}+u_{3}
\end{array}\right.
$$

It has the complete explicit solution (S.Ts., ISSAC'2005):

$$
\left\{\begin{array}{l}
u_{1}=2 e^{y} G(x)+e^{x}\left(3 F(y)+F^{\prime}(y)\right)+\exp \frac{x+y}{2} H(x-y), \\
u_{2}=e^{y} G^{\prime}(x)+2 e^{x} F^{\prime}(y)-2 u_{1} \\
u_{3}=D_{x} u_{1}+3 u_{1}-2\left(e^{y} G^{\prime}(x)+2 e^{x} F^{\prime}(y)\right)
\end{array}\right.
$$

where $F(y), G(x)$ and $H(x-y)$ are three arbitrary functions of one variable each.

Technology (Ts., ISSAC’2005): generalized Laplace transformations

For this system the transformation is:

$$
\left\{\begin{array}{l}
\bar{u}_{1}=u_{1} \\
\bar{u}_{2}=u_{2}+2 u_{1} \\
\bar{u}_{3}=\left(\left(D_{x}+D_{y}\right) u_{1}-u_{1}-2 u_{2}-4 u_{1}\right)
\end{array}\right.
$$

The transformed system:

$$
\left\{\begin{array}{l}
D_{x} \bar{u}_{3}=\bar{u}_{3}, \\
D_{y} \bar{u}_{2}=2 \bar{u}_{3}+\bar{u}_{2}, \\
\left(D_{x}+D_{y}\right) u_{1}=\bar{u}_{3}+2 \bar{u}_{2}+u_{1} .
\end{array}\right.
$$

Outline

A teaser: $\operatorname{dim}=2$, ord $=2,1773$
$\operatorname{dim}=2$, ord $\geq 3,2005$
refrain: Gröbner bases, Gröbner bases, ...
$\operatorname{dim} \geq 3$, ord $=2,1901-2006$
refrain: Gröbner bases, Gröbner bases,
Other interesting partial results
General theory of factorization of an arbitrary single LPDO
General approach: Abelian categories
Algorithmic problems
Acknowledgment

Alternative technology (F.Schwarz, 2005):

Transform the system into Janet (Gröbner) base, with term order: LEX, $u_{3}>u_{2}>u_{1}, x>y$:

$$
\begin{aligned}
& u_{1, x x y}-u_{1, x x}+u_{1, x y y}-3 u_{1, x y}+2 u_{1, x}-u_{1, y y}+2 u_{1, y}-u_{1}=0, \\
& u_{2, y}+3 u_{2}-2 u_{1, x}+8 u_{1}=0 \\
& u_{2, x}-u_{2}-\frac{1}{2} u_{1, x x}-\frac{1}{2} u_{1, x y}+3 u_{1, x}+\frac{1}{2} u_{1, y}-\frac{5}{2} u_{1}=0, \\
& u_{3}+2 u_{2}-u_{1, x}+u_{1}=0 .
\end{aligned}
$$

The first equation factors (!!):

$$
\begin{gathered}
D_{x}^{2} D_{y}-D_{x}^{2}+D_{x} D_{y}^{2}-3 D_{x} D_{y}+2 D_{x}-D_{y}^{2}+2 D_{y}-1 \\
=\left(D_{x}+D_{y}-1\right)\left(D_{y}-1\right)\left(D_{x}-1\right)
\end{gathered}
$$

So one can find u_{1} easily and then the other two functions u_{2} and u_{3} are obtained from the remaining equations of the Janet base.

Alternative technology (F.Schwarz, 2005):

Transform the system into Janet (Gröbner) base, with term order: LEX, $u_{3}>u_{2}>u_{1}, x>y$:
$u_{1, x x y}-u_{1, x x}+u_{1, x y y}-3 u_{1, x y}+2 u_{1, x}-u_{1, y y}+2 u_{1, y}-u_{1}=0$,
$u_{2, y}+3 u_{2}-2 u_{1, x}+8 u_{1}=0$,
$u_{2, x}-u_{2}-\frac{1}{2} u_{1, x x}-\frac{1}{2} u_{1, x y}+3 u_{1, x}+\frac{1}{2} u_{1, y}-\frac{5}{2} u_{1}=0$,
$u_{3}+2 u_{2}-u_{1, x}+u_{1}=0$.
The first equation factors (!!):

$$
\begin{gathered}
D_{x}^{2} D_{y}-D_{x}^{2}+D_{x} D_{y}^{2}-3 D_{x} D_{y}+2 D_{x}-D_{y}^{2}+2 D_{y}-1 \\
=\left(D_{x}+D_{y}-1\right)\left(D_{y}-1\right)\left(D_{x}-1\right) .
\end{gathered}
$$

So one can find u_{1} easily and then the other two functions u_{2} and u_{3} are obtained from the remaining equations of the Janet base.
Conjecture: For constant-coefficient systems this Gröbner basis technology is equivalent to the generalized Laplace technology.

Outline

A teaser: $\operatorname{dim}=2$, ord $=2,1773$

$$
\operatorname{dim}=2, \text { ord } \geq 3,2005
$$

refrain: Gröbner bases, Gröbner bases,
$\operatorname{dim} \geq 3$, ord $=2,1901-2006$
refrain: Gröbner bases, Gröbner bases,
Other interesting partial results
General theory of factorization of an arbitrary single LPDO
General approach: Abelian categories
Algorithmic problems
Acknowledgment

$\operatorname{dim}=3$, ord $=2,1901-2006$

U.Dini. Sopra una classe di equazioni a derivate parziali di second'ordine con un numero qualunque di variabli. Atti Acc. Lincei. Mem. Classe fis., mat., nat. (5) 4, 1901, p. 121-178.

2nd paper: 1902, p. 431-467.

$\operatorname{dim}=3$, ord $=2,1901-2006$

U.Dini. Sopra una classe di equazioni a derivate parziali di second'ordine con un numero qualunque di variabli. Atti Acc. Lincei. Mem. Classe fis., mat., nat. (5) 4, 1901, p. 121-178.
2nd paper: 1902, p. 431-467.
An example:

$$
L u=\left(D_{x} D_{y}+x D_{x} D_{z}-D_{z}\right) u=0 .
$$

$\operatorname{dim}=3$, ord $=2,1901-2006$

U.Dini. Sopra una classe di equazioni a derivate parziali di second'ordine con un numero qualunque di variabli. Atti Acc. Lincei. Mem. Classe fis., mat., nat. (5) 4, 1901, p. 121-178.
2nd paper: 1902, p. 431-467.
An example:

$$
L u=\left(D_{x} D_{y}+x D_{x} D_{z}-D_{z}\right) u=0 .
$$

It has a complete solution, obtained using Dini's procedures:

$$
u=\int\left(v d x+\left(D_{y}+x D_{z}\right) v d z\right)+\theta(y)
$$

where $v=\int \phi(x, x y-z) d x+\psi(y, z)$.

$\operatorname{dim}=3$, ord $=2,1901-2006$

U.Dini. Sopra una classe di equazioni a derivate parziali di second'ordine con un numero qualunque di variabli. Atti Acc. Lincei. Mem. Classe fis., mat., nat. (5) 4, 1901, p. 121-178.
2nd paper: 1902, p. 431-467.
An example:

$$
L u=\left(D_{x} D_{y}+x D_{x} D_{z}-D_{z}\right) u=0 .
$$

It has a complete solution, obtained using Dini's procedures:

$$
u=\int\left(v d x+\left(D_{y}+x D_{z}\right) v d z\right)+\theta(y)
$$

where $v=\int \phi(x, x y-z) d x+\psi(y, z)$.
Can be used to solve initial value problems!

$\operatorname{dim}=3$, ord $=2,1901-2006$

U.Dini. Sopra una classe di equazioni a derivate parziali di second'ordine con un numero qualunque di variabli. Atti Acc. Lincei. Mem. Classe fis., mat., nat. (5) 4, 1901, p. 121-178.
2nd paper: 1902, p. 431-467.
An example:

$$
L u=\left(D_{x} D_{y}+x D_{x} D_{z}-D_{z}\right) u=0 .
$$

It has a complete solution, obtained using Dini's procedures:

$$
u=\int\left(v d x+\left(D_{y}+x D_{z}\right) v d z\right)+\theta(y)
$$

where $v=\int \phi(x, x y-z) d x+\psi(y, z)$.
Can be used to solve initial value problems! How this solution was obtained?

Outline

```
A teaser: }\operatorname{dim}=2,\mathrm{ ord =2,1773
```

```
\(\operatorname{dim}=2\), ord \(\geq 3,2005\)
```

refrain: Gröbner bases, Gröbner bases,
$\operatorname{dim} \geq 3$, ord $=2,1901-2006$
refrain: Gröbner bases, Gröbner bases, ...
Other interesting partial results
General theory of factorization of an arbitrary single LPDO
General approach: Abelian categories
Algorithmic problems
Acknowledgment

Dini transformation:

$$
\begin{aligned}
& L=D_{x} D_{y}+x D_{x} D_{z}-D_{z}=\left(D_{y}+x D_{z}\right) D_{x}-D_{z}= \\
& D_{x}\left(D_{y}+x D_{z}\right)-2 D_{z}
\end{aligned}
$$

Dini transformation:

$$
\begin{aligned}
& L=D_{x} D_{y}+x D_{x} D_{z}-D_{z}=\left(D_{y}+x D_{z}\right) D_{x}-D_{z}= \\
& D_{x}\left(D_{y}+x D_{z}\right)-2 D_{z} .
\end{aligned}
$$

$$
L u=0 \Longleftrightarrow\left(D_{y}+x D_{z}\right) \underbrace{D_{x} u}_{v}-D_{z} u=0,
$$

Dini transformation:

$$
\begin{align*}
& L=D_{x} D_{y}+x D_{x} D_{z}-D_{z}=\left(D_{y}+x D_{z}\right) D_{x}-D_{z}= \\
& D_{x}\left(D_{y}+x D_{z}\right)-2 D_{z} . \\
& \qquad L u=0 \Longleftrightarrow\left(D_{y}+x D_{z}\right) \underbrace{D_{x} u}_{v}-D_{z} u=0, \\
& \tag{1}\\
& \Longleftrightarrow\left\{\begin{array}{l}
D_{x} u=v, \\
D_{z} u=\left(D_{y}+x D_{z}\right) v .
\end{array}\right.
\end{align*}
$$

Dini transformation:

$$
\begin{align*}
& L=D_{x} D_{y}+x D_{x} D_{z}-D_{z}=\left(D_{y}+x D_{z}\right) D_{x}-D_{z}= \\
& D_{x}\left(D_{y}+x D_{z}\right)-2 D_{z} . \\
& \qquad L u=0 \Longleftrightarrow\left(D_{y}+x D_{z}\right) \underbrace{D_{x} u}_{v}-D_{z} u=0, \\
& \tag{1}\\
& \Longleftrightarrow\left\{\begin{array}{l}
D_{x} u=v, \\
D_{z} u=\left(D_{y}+x D_{z}\right) v .
\end{array}\right.
\end{align*}
$$

$\Longleftrightarrow D_{x}\left(D_{y}+x D_{z}\right) v=D_{z} v \Longleftrightarrow 0=D_{x}\left(D_{y}+x D_{z}\right) v-D_{z} v=$ $\left(D_{x} D_{y}+x D_{x} D_{z}\right) v=\left(D_{y}+x D_{z}\right) D_{x} v$

Dini transformation:

$$
\begin{align*}
& L=D_{x} D_{y}+x D_{x} D_{z}-D_{z}=\left(D_{y}+x D_{z}\right) D_{x}-D_{z}= \\
& D_{x}\left(D_{y}+x D_{z}\right)-2 D_{z} . \\
& \qquad L u=0 \Longleftrightarrow\left(D_{y}+x D_{z}\right) \underbrace{D_{x} u}_{v}-D_{z} u=0, \\
& \tag{1}\\
& \Longleftrightarrow\left\{\begin{array}{l}
D_{x} u=v, \\
D_{z} u=\left(D_{y}+x D_{z}\right) v .
\end{array}\right.
\end{align*}
$$

$\Longleftrightarrow D_{x}\left(D_{y}+x D_{z}\right) v=D_{z} v \Longleftrightarrow 0=D_{x}\left(D_{y}+x D_{z}\right) v-D_{z} v=$ $\left(D_{x} D_{y}+x D_{x} D_{z}\right) v=\left(D_{y}+x D_{z}\right) D_{x} v$

SO NOW THE OPERATOR FACTORS (after the Dini transformation)!!

Dini transformation:

$$
\begin{align*}
& L=D_{x} D_{y}+x D_{x} D_{z}-D_{z}=\left(D_{y}+x D_{z}\right) D_{x}-D_{z}= \\
& D_{x}\left(D_{y}+x D_{z}\right)-2 D_{z} \\
& \qquad L u=0 \Longleftrightarrow\left(D_{y}+x D_{z}\right) \underbrace{D_{x} u}_{v}-D_{z} u=0
\end{aligned}, \begin{aligned}
& D_{x} u=v, \\
& D_{z} u=\left(D_{y}+x D_{z}\right) v . \tag{1}
\end{align*}
$$

$\Longleftrightarrow D_{x}\left(D_{y}+x D_{z}\right) v=D_{z} v \Longleftrightarrow 0=D_{x}\left(D_{y}+x D_{z}\right) v-D_{z} v=$ $\left(D_{x} D_{y}+x D_{x} D_{z}\right) v=\left(D_{y}+x D_{z}\right) D_{x} v$

SO NOW THE OPERATOR FACTORS (after the Dini transformation)!!

Now we can find v, and the u from (1).

$\operatorname{dim}=3$, ord $=2$: general result

Theorem
Let $L=\sum_{i+j+k \leq 2} a_{j j k}(x, y, z) D_{x}^{i} D_{y}^{j} D_{z}^{k}$ have factorizable principal symbol: $\sum_{i+j+k=2} a_{j j k}(x, y, z) D_{x}^{i} D_{y}^{j} D_{z}^{k}=\hat{S}_{1} \hat{S}_{2}$ (mod lower-order terms) with generic (non-commuting) first-order LPDO \hat{S}_{1}, \hat{S}_{2}. Then there exist two Dini transformations $L_{(1)}, L_{(-1)}$ of L.

$\operatorname{dim}=3$, ord $=2$: general result

Theorem

Let $L=\sum_{i+j+k \leq 2} a_{j k k}(x, y, z) D_{x}^{i} D_{y}^{j} D_{z}^{k}$ have factorizable principal symbol: $\sum_{i+j+k=2} a_{i j k}(x, y, z) D_{x}^{i} D_{y}^{j} D_{z}^{k}=\hat{S}_{1} \hat{S}_{2}$ (mod lower-order terms) with generic (non-commuting) first-order LPDO \hat{S}_{1}, \hat{S}_{2}. Then there exist two Dini transformations $L_{(1)}, L_{(-1)}$ of L.

Proof.

One can represent L in two possible ways:
$L=\hat{S}_{1} \hat{S}_{2}+\hat{T}+a(x, y, z)=\hat{S}_{2} \hat{S}_{1}+\hat{U}+a(x, y, z)$
with some first-order LPDO \hat{T}, \hat{U}. We will consider the first one obtaining a transformation of L into $L_{(1)}$.

$\operatorname{dim}=3$, ord $=2$: general result

Theorem

Let $L=\sum_{i+j+k \leq 2} a_{j k k}(x, y, z) D_{x}^{i} D_{y}^{j} D_{z}^{k}$ have factorizable principal symbol: $\sum_{i+j+k=2} a_{i j k}(x, y, z) D_{x}^{i} D_{y}^{j} D_{z}^{k}=\hat{S}_{1} \hat{S}_{2}$ (mod lower-order terms) with generic (non-commuting) first-order LPDO \hat{S}_{1}, \hat{S}_{2}. Then there exist two Dini transformations $L_{(1)}, L_{(-1)}$ of L.

Proof.

One can represent L in two possible ways:
$L=\hat{S}_{1} \hat{S}_{2}+\hat{T}+a(x, y, z)=\hat{S}_{2} \hat{S}_{1}+\hat{U}+a(x, y, z)$
with some first-order LPDO \hat{T}, \hat{U}. We will consider the first one obtaining a transformation of L into $L_{(1)}$.
Let $L=\left(\hat{S}_{1}+\alpha\right)\left(\hat{S}_{2}+\beta\right)$

$\operatorname{dim}=3$, ord $=2$: general result

Theorem

Let $L=\sum_{i+j+k \leq 2} a_{j k k}(x, y, z) D_{x}^{i} D_{y}^{j} D_{z}^{k}$ have factorizable principal symbol: $\sum_{i+j+k=2} a_{j j k}(x, y, z) D_{x}^{i} D_{y}^{j} D_{z}^{k}=\hat{S}_{1} \hat{S}_{2}$ (mod lower-order terms) with generic (non-commuting) first-order LPDO \hat{S}_{1}, \hat{S}_{2}. Then there exist two Dini transformations $L_{(1)}, L_{(-1)}$ of L.

Proof.

One can represent L in two possible ways:
$L=\hat{S}_{1} \hat{S}_{2}+\hat{T}+a(x, y, z)=\hat{S}_{2} \hat{S}_{1}+\hat{U}+a(x, y, z)$
with some first-order LPDO \hat{T}, \hat{U}. We will consider the first one obtaining a transformation of L into $L_{(1)}$.
Let $L=\left(\hat{S}_{1}+\alpha\right)\left(\hat{S}_{2}+\beta\right)+\hat{V}+b(x, y, z)$

$\operatorname{dim}=3$, ord $=2$: general result

Theorem

Let $L=\sum_{i+j+k \leq 2} a_{j k k}(x, y, z) D_{x}^{i} D_{y}^{j} D_{z}^{k}$ have factorizable principal symbol: $\sum_{i+j+k=2} a_{j j k}(x, y, z) D_{x}^{i} D_{y}^{j} D_{z}^{k}=\hat{S}_{1} \hat{S}_{2}$ (mod lower-order terms) with generic (non-commuting) first-order LPDO \hat{S}_{1}, \hat{S}_{2}. Then there exist two Dini transformations $L_{(1)}, L_{(-1)}$ of L.

Proof.

One can represent L in two possible ways:
$L=\hat{S}_{1} \hat{S}_{2}+\hat{T}+a(x, y, z)=\hat{S}_{2} \hat{S}_{1}+\hat{U}+a(x, y, z)$
with some first-order LPDO \hat{T}, \hat{U}. We will consider the first one obtaining a transformation of L into $L_{(1)}$.
Let $L=\left(\hat{S}_{1}+\alpha\right)\left(\hat{S}_{2}+\beta\right)+\hat{V}+b(x, y, z)$
with some indefinite $\alpha=\alpha(x, y, z), \beta=\beta(x, y, z)$,
and $\hat{V}=\hat{T}-\beta \hat{S}_{2}-\alpha \hat{S}_{1}, b=a-\alpha \beta-\hat{S}_{1}(\beta)$.

$\operatorname{dim}=3$, ord $=2$: general result

Theorem

Let $L=\sum_{i+j+k \leq 2} a_{j k k}(x, y, z) D_{x}^{i} D_{y}^{j} D_{z}^{k}$ have factorizable principal symbol: $\sum_{i+j+k=2} a_{j j k}(x, y, z) D_{x}^{i} D_{y}^{j} D_{z}^{k}=\hat{S}_{1} \hat{S}_{2}$ (mod lower-order terms) with generic (non-commuting) first-order LPDO \hat{S}_{1}, \hat{S}_{2}. Then there exist two Dini transformations $L_{(1)}, L_{(-1)}$ of L.

Proof.

One can represent L in two possible ways:
$L=\hat{S}_{1} \hat{S}_{2}+\hat{T}+a(x, y, z)=\hat{S}_{2} \hat{S}_{1}+\hat{U}+a(x, y, z)$
with some first-order LPDO \hat{T}, \hat{U}. We will consider the first one obtaining a transformation of L into $L_{(1)}$.
Let $L=\left(\hat{S}_{1}+\alpha\right)\left(\hat{S}_{2}+\beta\right)+\hat{V}+b(x, y, z)$
with some indefinite $\alpha=\alpha(x, y, z), \beta=\beta(x, y, z)$,
and $\hat{V}=\hat{T}-\beta \hat{S}_{2}-\alpha \hat{S}_{1}, b=a-\alpha \beta-\hat{S}_{1}(\beta)$.

Proof (cont.)

Then $L u=\left(\hat{S}_{1}+\alpha\right) \underbrace{\left(\hat{S}_{2}+\beta\right) u}_{v}+\hat{V} u+b u=0 \Longleftrightarrow$

Proof (cont.)

Then $L u=\left(\hat{S}_{1}+\alpha\right) \underbrace{\left(\hat{S}_{2}+\beta\right) u}_{v}+\hat{V} u+b u=0 \Longleftrightarrow$

$$
\left\{\begin{array}{l}
\left(\hat{S}_{2}+\beta\right) u=v, \\
(\hat{V}+b) u=-\left(\hat{S}_{1}+\alpha\right) v .
\end{array}\right.
$$

Proof (cont.)

Then $L u=\left(\hat{S}_{1}+\alpha\right) \underbrace{\left(\hat{S}_{2}+\beta\right) u}_{v}+\hat{V} u+b u=0 \Longleftrightarrow$

$$
\left\{\begin{array}{l}
\left(\hat{S}_{2}+\beta\right) u=v, \\
(\hat{V}+b) u=-\left(\hat{S}_{1}+\alpha\right) v .
\end{array}\right.
$$

So $\left[\left(\hat{S}_{2}+\beta\right),(\hat{V}+b)\right] u=\left(\left(\hat{S}_{2}+\beta\right)\left(\hat{S}_{1}+\alpha\right)+(\hat{V}+b)\right) v$

Proof (cont.)

Then $L u=\left(\hat{S}_{1}+\alpha\right) \underbrace{\left(\hat{S}_{2}+\beta\right) u}_{v}+\hat{V} u+b u=0 \Longleftrightarrow$

$$
\left\{\begin{array}{l}
\left(\hat{S}_{2}+\beta\right) u=v, \\
(\hat{V}+b) u=-\left(\hat{S}_{1}+\alpha\right) v .
\end{array}\right.
$$

So $\left[\left(\hat{S}_{2}+\beta\right),(\hat{V}+b)\right] u=\left(\left(\hat{S}_{2}+\beta\right)\left(\hat{S}_{1}+\alpha\right)+(\hat{V}+b)\right) v$
When $\left[\left(\hat{S}_{2}+\beta\right),(\hat{V}+b)\right] u$ can be transformed into an expression involving only v ?

Proof (cont.)

Then $L u=\left(\hat{S}_{1}+\alpha\right) \underbrace{\left(\hat{S}_{2}+\beta\right) u}_{V}+\hat{V} u+b u=0 \Longleftrightarrow$

$$
\left\{\begin{array}{l}
\left(\hat{S}_{2}+\beta\right) u=v, \\
(\hat{V}+b) u=-\left(\hat{S}_{1}+\alpha\right) v .
\end{array}\right.
$$

So $\left[\left(\hat{S}_{2}+\beta\right),(\hat{V}+b)\right] u=\left(\left(\hat{S}_{2}+\beta\right)\left(\hat{S}_{1}+\alpha\right)+(\hat{V}+b)\right) v$
When $\left[\left(\hat{S}_{2}+\beta\right),(\hat{V}+b)\right] u$ can be transformed into an expression involving only v ?
Answer: when $\left[\left(\hat{S}_{2}+\beta\right),(\hat{V}+b)\right]$ is a linear combination of $\left(\hat{S}_{2}+\beta\right)$ and $(\hat{V}+b)$ alone.

Proof (cont.)

Then $L u=\left(\hat{S}_{1}+\alpha\right) \underbrace{\left(\hat{S}_{2}+\beta\right) u}_{v}+\hat{V} u+b u=0 \Longleftrightarrow$

$$
\left\{\begin{array}{l}
\left(\hat{S}_{2}+\beta\right) u=v, \\
(\hat{V}+b) u=-\left(\hat{S}_{1}+\alpha\right) v .
\end{array}\right.
$$

So $\left[\left(\hat{S}_{2}+\beta\right),(\hat{V}+b)\right] u=\left(\left(\hat{S}_{2}+\beta\right)\left(\hat{S}_{1}+\alpha\right)+(\hat{V}+b)\right) v$
When $\left[\left(\hat{S}_{2}+\beta\right),(\hat{V}+b)\right] u$ can be transformed into an expression involving only v ? Answer: when $\left[\left(\hat{S}_{2}+\beta\right),(\hat{V}+b)\right]$ is a linear combination of $\left(\hat{S}_{2}+\beta\right)$ and $(\hat{V}+b)$ alone.
One can check that this is possible to do choosing $\alpha(x, y, z)$ and $\beta(x, y, z)$ appropriately (for generic \hat{S}_{i}, \hat{V}).
$\operatorname{dim}=3$, ord $=2$: chains of Dini transformations

$$
\ldots \leftarrow L_{(-2)} \leftarrow L_{(-1)} \leftarrow L \rightarrow L_{(1)} \rightarrow L_{(2)} \rightarrow \ldots
$$

Outline

A teaser: $\operatorname{dim}=2$, ord $=2,1773$

$$
\operatorname{dim}=2, \text { ord } \geq 3,2005
$$

refrain: Gröbner bases, Gröbner bases,
dim ≥ 3, ord $=2,1901-2006$
refrain: Gröbner bases, Gröbner bases,
Other interesting partial results
General theory of factorization of an arbitrary single LPDO
General approach: Abelian categories
Algorithmic problems
Acknowledgment

Other interesting partial results:

J. Le Roux. Extensions de la méthode de Laplace aux équations linéaires aux derivées partielles d'ordre supérieur au second. Bull. Soc. Math. de France, 27:237-262, 1899.

Laura Pisati. Sulla estensione del metodo di Laplace alle equazioni differenziali lineari di ordine qualunque con due variabili indipendenti. Rend. Circ. Matem. Palermo, 1905, t. 20, p. 344-374.

Louise Petrén. Extension de la méthode de Laplace aux équations $\sum_{i=0}^{n-1} A_{1 i} \frac{\partial^{i+1} z}{\partial x \partial y^{i}}+\sum_{i=0}^{n} A_{0 i} \frac{\partial^{i} z}{\partial y^{i}}=0$. Lund Univ. Arsskrift. Bd. 7, Nr. 3, pages 1-166, 1911.

$\operatorname{dim}=$ ord >2 :

C. Athorne. $A \mathbf{Z}^{2} \times \mathbf{R}^{3}$ Toda system. Phys. Lett. A, 206:162-166, 1995.

SYSTEMS WITH FINITE-DIMENSIONAL SOLUTION SPACE:
Z. Li, F. Schwarz and S.P. Tsarev. Factoring systems of linear PDEs with finite-dimensional solution spaces. J. Symbolic Computation, 36:443-471, 2003.
Min Wu. On Solutions of Linear Functional Systems and Factorization of Modules over Laurent-Ore Algebras, PhD. thesis, Beijing, 2005.
"Classical" factorization:
D. Grigoriev and F. Schwarz. Factoring and solving linear partial differential equations. Computing, 73:179-197, 2004.
F.Winkler, E.Shemyakova, 2006.

Outline

A teaser: $\operatorname{dim}=2$, ord $=2,1773$
$\operatorname{dim}=2$, ord $\geq 3,2005$

refrain: Gröbner bases, Gröbner bases,

$\operatorname{dim} \geq 3$, ord $=2,1901-2006$

refrain: Gröbner bases, Gröbner bases,

Other interesting partial results
General theory of factorization of an arbitrary single LPDO
General approach: Abelian categories
Algorithmic problems
Acknowledgment

Approach 1: Rings/modules (S.Ts., 1998)

Goals:

Approach 1: Rings/modules (S.Ts., 1998)

Goals:

1) to define a notion of factorization with "good" properties:

Approach 1: Rings/modules (S.Ts., 1998)

Goals:

1) to define a notion of factorization with "good" properties: 1a) \forall LPDO $L \approx L_{1} L_{2} \cdots L_{k}$ with FINITE k. In particular D_{x} should be irreducible ...

Approach 1: Rings/modules (S.Ts., 1998)

Goals:

1) to define a notion of factorization with "good" properties:

1a) \forall LPDO $L \approx L_{1} L_{2} \cdots L_{k}$ with FINITE k.
In particular D_{x} should be irreducible ...
1b) Preserving the property proved by Landau E. (1902) for
LODE: all possible factorizations of a given operator L have the same number of factors in different expansions $L=L_{1} \cdots L_{k}=\bar{L}_{1} \cdots \bar{L}_{r}$ into irreducible factors and the factors
L_{s}, \bar{L}_{p} are pairwise "similar".

Approach 1: Rings/modules (S.Ts., 1998)

Goals:

1) to define a notion of factorization with "good" properties:

1a) \forall LPDO $L \approx L_{1} L_{2} \cdots L_{k}$ with FINITE k.
In particular D_{X} should be irreducible ...
1b) Preserving the property proved by Landau E. (1902) for
LODE: all possible factorizations of a given operator L have the same number of factors in different expansions
$L=L_{1} \cdots L_{k}=\bar{L}_{1} \cdots \bar{L}_{r}$ into irreducible factors and the factors
L_{s}, \bar{L}_{p} are pairwise "similar".
2) Existence of large classes of solutions should be related to factorization.

Approach 1: Rings/modules (S.Ts., 1998)

Goals:

1) to define a notion of factorization with "good" properties:

1a) \forall LPDO $L \approx L_{1} L_{2} \cdots L_{k}$ with FINITE k.
In particular D_{X} should be irreducible ...
1b) Preserving the property proved by Landau E. (1902) for
LODE: all possible factorizations of a given operator L have the same number of factors in different expansions
$L=L_{1} \cdots L_{k}=\bar{L}_{1} \cdots \bar{L}_{r}$ into irreducible factors and the factors
L_{s}, \bar{L}_{p} are pairwise "similar".
2) Existence of large classes of solutions should be related to factorization.
3) Algorithms?

Divisor ideals (S.Ts., 1998)

Divisor ideals (S.Ts., 1998)

Hint 1: if we have $L=L_{1} L_{2} \cdots L_{k} \Longleftrightarrow$ we have a chain of left principal ideals
$|L\rangle \subset\left|L_{2} L_{3} \cdots L_{k}\right\rangle \subset\left|L_{3} \cdots L_{k}\right\rangle \subset \ldots \subset\left|L_{k}\right\rangle \subset|1\rangle$.

Divisor ideals (S.Ts., 1998)

Hint 1: if we have $L=L_{1} L_{2} \cdots L_{k} \Longleftrightarrow$ we have a chain of left principal ideals
$|L\rangle \subset\left|L_{2} L_{3} \cdots L_{k}\right\rangle \subset\left|L_{3} \cdots L_{k}\right\rangle \subset \ldots \subset\left|L_{k}\right\rangle \subset|1\rangle$.
Hint 2: We shall drop the word "principal" (Blumberg's example).

Divisor ideals (S.Ts., 1998)

Hint 1: if we have $L=L_{1} L_{2} \cdots L_{k} \Longleftrightarrow$ we have a chain of left principal ideals
$|L\rangle \subset\left|L_{2} L_{3} \cdots L_{k}\right\rangle \subset\left|L_{3} \cdots L_{k}\right\rangle \subset \ldots \subset\left|L_{k}\right\rangle \subset|1\rangle$.
Hint 2: We shall drop the word "principal" (Blumberg's example).

Hint 3: But we shall take not all left ideals!
Example: $\left|D_{x}\right\rangle \subset\left|D_{x}, D_{y}^{m}\right\rangle \subset\left|D_{x}, D_{y}^{m-1}\right\rangle \subset \ldots\left|D_{x}, D_{y}\right\rangle \subset|1\rangle$.

Divisor ideals (S.Ts., 1998)

Hint 1: if we have $L=L_{1} L_{2} \cdots L_{k} \Longleftrightarrow$ we have a chain of left principal ideals
$|L\rangle \subset\left|L_{2} L_{3} \cdots L_{k}\right\rangle \subset\left|L_{3} \cdots L_{k}\right\rangle \subset \ldots \subset\left|L_{k}\right\rangle \subset|1\rangle$.
Hint 2: We shall drop the word "principal" (Blumberg's example).

Hint 3: But we shall take not all left ideals!
Example: $\left|D_{x}\right\rangle \subset\left|D_{x}, D_{y}^{m}\right\rangle \subset\left|D_{x}, D_{y}^{m-1}\right\rangle \subset \ldots\left|D_{x}, D_{y}\right\rangle \subset|1\rangle$.
(the same even for multivariate polynomials!)

Divisor ideals (cont.)

Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO, such that:

Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO, such that:

1) chains will be finite and for a given L they will have the same length:
if $|L\rangle \subset I_{1} \subset I_{2} \subset \ldots \subset I_{k} \subset|1\rangle,|L\rangle \subset J_{1} \subset J_{2} \subset \ldots \subset J_{m} \subset|1\rangle$ then $k=m$ and I_{s} are similar to J_{p}.

Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO, such that:

1) chains will be finite and for a given L they will have the same length:
if $|L\rangle \subset I_{1} \subset I_{2} \subset \ldots \subset I_{k} \subset|1\rangle,|L\rangle \subset J_{1} \subset J_{2} \subset \ldots \subset J_{m} \subset|1\rangle$ then $k=m$ and I_{s} are similar to J_{p}.
2) Irreducible LODO will be still irreducible as LPDEs.

Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO, such that:

1) chains will be finite and for a given L they will have the same length:
if $|L\rangle \subset I_{1} \subset I_{2} \subset \ldots \subset I_{k} \subset|1\rangle,|L\rangle \subset J_{1} \subset J_{2} \subset \ldots \subset J_{m} \subset|1\rangle$ then $k=m$ and I_{s} are similar to J_{p}.
2) Irreducible LODO will be still irreducible as LPDEs.
3) for $\operatorname{dim}=2$, ord $=2$ LODO, factorizable \Longleftrightarrow integrable (with Laplace transformations).

Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO, such that:

1) chains will be finite and for a given L they will have the same length:
if $|L\rangle \subset I_{1} \subset I_{2} \subset \ldots \subset I_{k} \subset|1\rangle,|L\rangle \subset J_{1} \subset J_{2} \subset \ldots \subset J_{m} \subset|1\rangle$ then $k=m$ and I_{s} are similar to J_{p}.
2) Irreducible LODO will be still irreducible as LPDEs.
3) for $\operatorname{dim}=2$, ord $=2$ LODO, factorizable \Longleftrightarrow integrable (with Laplace transformations).
4) Algebraically, the problem is reduced from $Q(x, y)\left[D_{x}, D_{y}\right]$ to $Q\left(x, y, D_{x}\right)\left[D_{y}\right]$ and/or $Q\left(x, y, D_{y}\right)\left[D_{x}\right]$ (Ore quotients).

Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO, such that:

1) chains will be finite and for a given L they will have the same length:
if $|L\rangle \subset I_{1} \subset I_{2} \subset \ldots \subset I_{k} \subset|1\rangle,|L\rangle \subset J_{1} \subset J_{2} \subset \ldots \subset J_{m} \subset|1\rangle$ then $k=m$ and I_{s} are similar to J_{p}.
2) Irreducible LODO will be still irreducible as LPDEs.
3) for $\operatorname{dim}=2$, ord $=2$ LODO, factorizable \Longleftrightarrow integrable (with Laplace transformations).
4) Algebraically, the problem is reduced from $Q(x, y)\left[D_{x}, D_{y}\right]$ to $Q\left(x, y, D_{x}\right)\left[D_{y}\right]$ and/or $Q\left(x, y, D_{y}\right)\left[D_{x}\right]$ (Ore quotients).
Problems:

Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO, such that:

1) chains will be finite and for a given L they will have the same length:
if $|L\rangle \subset I_{1} \subset I_{2} \subset \ldots \subset I_{k} \subset|1\rangle,|L\rangle \subset J_{1} \subset J_{2} \subset \ldots \subset J_{m} \subset|1\rangle$ then $k=m$ and I_{s} are similar to J_{p}.
2) Irreducible LODO will be still irreducible as LPDEs.
3) for $\operatorname{dim}=2$, ord $=2$ LODO, factorizable \Longleftrightarrow integrable (with Laplace transformations).
4) Algebraically, the problem is reduced from $Q(x, y)\left[D_{x}, D_{y}\right]$ to $Q\left(x, y, D_{x}\right)\left[D_{y}\right]$ and/or $Q\left(x, y, D_{y}\right)\left[D_{x}\right]$ (Ore quotients).
Problems:
5) No idea how to generalize to systems of LPDEs.

Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO, such that:

1) chains will be finite and for a given L they will have the same length:
if $|L\rangle \subset I_{1} \subset I_{2} \subset \ldots \subset I_{k} \subset|1\rangle,|L\rangle \subset J_{1} \subset J_{2} \subset \ldots \subset J_{m} \subset|1\rangle$ then $k=m$ and I_{s} are similar to J_{p}.
2) Irreducible LODO will be still irreducible as LPDEs.
3) for $\operatorname{dim}=2$, ord $=2$ LODO, factorizable \Longleftrightarrow integrable (with Laplace transformations).
4) Algebraically, the problem is reduced from $Q(x, y)\left[D_{x}, D_{y}\right]$ to $Q\left(x, y, D_{x}\right)\left[D_{y}\right]$ and/or $Q\left(x, y, D_{y}\right)\left[D_{x}\right]$ (Ore quotients).
Problems:
5) No idea how to generalize to systems of LPDEs.
6) Technical, not intuitive.

Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO, such that:

1) chains will be finite and for a given L they will have the same length:
if $|L\rangle \subset I_{1} \subset I_{2} \subset \ldots \subset I_{k} \subset|1\rangle,|L\rangle \subset J_{1} \subset J_{2} \subset \ldots \subset J_{m} \subset|1\rangle$ then $k=m$ and I_{s} are similar to J_{p}.
2) Irreducible LODO will be still irreducible as LPDEs.
3) for $\operatorname{dim}=2$, ord $=2$ LODO, factorizable \Longleftrightarrow integrable (with Laplace transformations).
4) Algebraically, the problem is reduced from $Q(x, y)\left[D_{x}, D_{y}\right]$ to $Q\left(x, y, D_{x}\right)\left[D_{y}\right]$ and/or $Q\left(x, y, D_{y}\right)\left[D_{x}\right]$ (Ore quotients).
Problems:
5) No idea how to generalize to systems of LPDEs.
6) Technical, not intuitive.
7) No algorithms known.

Conjectures

[^0]
Conjectures

- If a LPDO is factorizable in this generalized sense, then its principal symbol is factorizable.

Conjectures

- If a LPDO is factorizable in this generalized sense, then its principal symbol is factorizable.
- If a LPDO of order n is solvable then its symbol splits into n linear factors.

Outline

A teaser: $\operatorname{dim}=2$, ord $=2,1773$
$\operatorname{dim}=2$, ord $\geq 3,2005$
refrain: Gröbner bases, Gröbner bases,
$\operatorname{dim} \geq 3$, ard $=2,1901-2006$
refrain: Gröbner bases, Gröbner bases,
Other interesting partial results
General theory of factorization of an arbitrary single LPDO
General approach: Abelian categories
Algorithmic problems
Acknowledgment

Approach 2: Abelian categories (S.Ts., 2003)

Abelian category of L.O.D.O.:

Approach 2: Abelian categories (S.Ts., 2003)

Abelian category of L.O.D.O.: objects are operators $L=a_{0}(x) D^{n}+a_{1}(x) D^{n-1}+\ldots+a_{n}(x)$,

Approach 2: Abelian categories (S.Ts., 2003)

Abelian category of L.O.D.O.:
objects are operators $L=a_{0}(x) D^{n}+a_{1}(x) D^{n-1}+\ldots+a_{n}(x)$,
morphisms are mappings of solutions with auxiliary operators:
$P: L \rightarrow M$ iff for every u such that $L u=0, v=P u$ gives a solution of $M: M v=0$.

Approach 2: Abelian categories (S.Ts., 2003)

Abelian category of L.O.D.O.:
objects are operators $L=a_{0}(x) D^{n}+a_{1}(x) D^{n-1}+\ldots+a_{n}(x)$,
morphisms are mappings of solutions with auxiliary operators:
$P: L \rightarrow M$ iff for every u such that $L u=0, v=P u$ gives a solution of $M: M v=0$.

Algebraically: $M \cdot P=N \cdot L$.

Abelian category \mathcal{S} of systems of L.P.D.E.:

$$
S:\left\{\begin{array}{l}
L_{11} u_{1}+\ldots+L_{1 s} u_{s}=0 \\
\ldots \\
L_{k 1} u_{1}+\ldots+L_{k s} u_{s}=0
\end{array}\right.
$$

Abelian category \mathcal{S} of systems of L.P.D.E.:

$$
S:\left\{\begin{array}{l}
L_{11} u_{1}+\ldots+L_{1 s} u_{s}=0 \\
\ldots \\
L_{k 1} u_{1}+\ldots+L_{k s} u_{s}=0
\end{array}\right.
$$

Morphism $P: S \rightarrow Q$,

$$
P:\left\{\begin{array}{l}
v_{1}=P_{11} u_{1}+\ldots+P_{1 s} u_{s} \\
\cdots \\
v_{m}=P_{m 1} u_{1}+\ldots+P_{m s} u_{s}
\end{array}\right.
$$

Abelian category \mathcal{S} of systems of L.P.D.E.:

$$
S:\left\{\begin{array}{l}
L_{11} u_{1}+\ldots+L_{1 s} u_{s}=0 \\
\ldots \\
L_{k 1} u_{1}+\ldots+L_{k s} u_{s}=0
\end{array}\right.
$$

Morphism $P: S \rightarrow Q$,

$$
P:\left\{\begin{array}{l}
v_{1}=P_{11} u_{1}+\ldots+P_{1 s} u_{s} \\
\cdots \\
v_{m}=P_{m 1} u_{1}+\ldots+P_{m s} u_{s}
\end{array}\right.
$$

Theorem
Any abelian category with finite ascending chains satisfies the Jordan-Hölder property.

Abelian category \mathcal{S} of systems of L.P.D.E.:

$$
S:\left\{\begin{array}{l}
L_{11} u_{1}+\ldots+L_{1 s} u_{s}=0 \\
\ldots \\
L_{k 1} u_{1}+\ldots+L_{k s} u_{s}=0
\end{array}\right.
$$

Morphism $P: S \rightarrow Q$,

$$
P:\left\{\begin{array}{l}
v_{1}=P_{11} u_{1}+\ldots+P_{1 s} u_{s} \\
\cdots \\
v_{m}=P_{m 1} u_{1}+\ldots+P_{m s} u_{s}
\end{array}\right.
$$

Theorem
Any abelian category with finite ascending chains satisfies the Jordan-Hölder property.
Problem: chains are infinite....

The solution: Serre-Grothendieck factorcategory!

The solution: Serre-Grothendieck factorcategory!

For a given (say, determined) system of L.P.D.E. take the subcategory \mathcal{S}_{n-2} of (overdetermined) systems with solution space parameterized by functions of at most $n-2$ variables. Then in the factorcategory $\mathcal{S} / \mathcal{S}_{n-2}$ ascending chains are finite!

Outline

A teaser: $\operatorname{dim}=2$, ord $=2,1773$

$$
\operatorname{dim}=2, \text { ord } \geq 3,2005
$$

refrain: Gröbner bases, Gröbner bases,
$\operatorname{dim} \geq 3$, ord $=2,1901-2006$
refrain: Gröbner bases, Gröbner bases,
Other interesting partial results
General theory of factorization of an arbitrary single LPDO
General approach: Abelian categories
Algorithmic problems
Acknowledgment

Algorithmic problems

Algorithmic problems

1) Laplace transformations and all their generalizations are not (formally) algorithmic: no stopping criteria known.

Algorithmic problems

1) Laplace transformations and all their generalizations are not (formally) algorithmic: no stopping criteria known.
2) Is there an algorithm to factorize in $K\left[D_{y}\right]$ for skew differential fields K, for example in $Q\left(x, y, D_{x}\right)\left[D_{y}\right]$??

Algorithmic problems

1) Laplace transformations and all their generalizations are not (formally) algorithmic: no stopping criteria known.
2) Is there an algorithm to factorize in $K\left[D_{y}\right]$ for skew differential fields K, for example in $Q\left(x, y, D_{x}\right)\left[D_{y}\right]$??
3) Is there an algorithm to solve a first-order linear PDE with rational coefficients in $\operatorname{dim}=3$ ($\mathrm{dim}=2$ seems to be solved)?

Outline

A teaser: $\operatorname{dim}=2$, ord $=2,1773$

$$
\operatorname{dim}=2, \text { ord } \geq 3,2005
$$

refrain: Gröbner bases, Gröbner bases,
$\operatorname{dim} \geq 3$, ord $=2,1901-2006$
refrain: Gröbner bases, Gröbner bases,
Other interesting partial results
General theory of factorization of an arbitrary single LPDO
General approach: Abelian categories
Algorithmic problems
Acknowledgment

Acknowledgment

1) Organizers

Acknowledgment

1) Organizers
2) Anyone who will give comments :-)

[^0]:

