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A teaser: solvable non-factorizable LPDEs,
dim = 2, ord = 2

Ex 1. uxy = DxDyu = 0 ⇔ u = F (x) + G(y)

Ex 2. uxy − 2
(x+y)2 u =

(
DxDy − 2

(x+y)2

)
u = 0

⇔ u = −2(F (x) + G(y))

x + y
+ F ′(x) + G′(y)

Ex 3. uxy − 6
(x+y)2 u =

(
DxDy − 6

(x+y)2

)
u = 0

⇔ u =
12(F (x) + G(y))

(x + y)2 − 6(F ′(x) + G′(y))

x + y

+ F ′′(x) + G′′(y)
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Question: When uxy − c
(x+y)2 u = 0 is integrable?

Answer: integrable ⇔ c = n(n + 1).
In this case

u = c0F + c1F ′ + . . .+ cnF (n) + d0G + d1G′ + . . .+ dn+1G(n+1)

with definite ci(x , y), di(x , y) and F (x), G(y) — two arbitrary
functions.

Solution technology: Laplace transformations: after a series of
L.t. one may get a naively factorizable LPDE!

The Problem: Can one decide for a given linear PDE (or a
system of linear PDEs) if it has a closed form solution of this
type and (if yes) how one can find such a solution?

How are solutions and factorizations of LPDEs related?



Question: When uxy − c
(x+y)2 u = 0 is integrable?

Answer: integrable ⇔ c = n(n + 1).

In this case

u = c0F + c1F ′ + . . .+ cnF (n) + d0G + d1G′ + . . .+ dn+1G(n+1)

with definite ci(x , y), di(x , y) and F (x), G(y) — two arbitrary
functions.

Solution technology: Laplace transformations: after a series of
L.t. one may get a naively factorizable LPDE!

The Problem: Can one decide for a given linear PDE (or a
system of linear PDEs) if it has a closed form solution of this
type and (if yes) how one can find such a solution?

How are solutions and factorizations of LPDEs related?



Question: When uxy − c
(x+y)2 u = 0 is integrable?

Answer: integrable ⇔ c = n(n + 1).
In this case

u = c0F + c1F ′ + . . .+ cnF (n) + d0G + d1G′ + . . .+ dn+1G(n+1)

with definite ci(x , y), di(x , y) and F (x), G(y) — two arbitrary
functions.

Solution technology: Laplace transformations: after a series of
L.t. one may get a naively factorizable LPDE!

The Problem: Can one decide for a given linear PDE (or a
system of linear PDEs) if it has a closed form solution of this
type and (if yes) how one can find such a solution?

How are solutions and factorizations of LPDEs related?



Question: When uxy − c
(x+y)2 u = 0 is integrable?

Answer: integrable ⇔ c = n(n + 1).
In this case

u = c0F + c1F ′ + . . .+ cnF (n) + d0G + d1G′ + . . .+ dn+1G(n+1)

with definite ci(x , y), di(x , y) and F (x), G(y) — two arbitrary
functions.

Solution technology: Laplace transformations: after a series of
L.t. one may get a naively factorizable LPDE!

The Problem: Can one decide for a given linear PDE (or a
system of linear PDEs) if it has a closed form solution of this
type and (if yes) how one can find such a solution?

How are solutions and factorizations of LPDEs related?



Question: When uxy − c
(x+y)2 u = 0 is integrable?

Answer: integrable ⇔ c = n(n + 1).
In this case

u = c0F + c1F ′ + . . .+ cnF (n) + d0G + d1G′ + . . .+ dn+1G(n+1)

with definite ci(x , y), di(x , y) and F (x), G(y) — two arbitrary
functions.

Solution technology: Laplace transformations: after a series of
L.t. one may get a naively factorizable LPDE!

The Problem: Can one decide for a given linear PDE (or a
system of linear PDEs) if it has a closed form solution of this
type and (if yes) how one can find such a solution?

How are solutions and factorizations of LPDEs related?



Question: When uxy − c
(x+y)2 u = 0 is integrable?

Answer: integrable ⇔ c = n(n + 1).
In this case

u = c0F + c1F ′ + . . .+ cnF (n) + d0G + d1G′ + . . .+ dn+1G(n+1)

with definite ci(x , y), di(x , y) and F (x), G(y) — two arbitrary
functions.

Solution technology: Laplace transformations: after a series of
L.t. one may get a naively factorizable LPDE!

The Problem: Can one decide for a given linear PDE (or a
system of linear PDEs) if it has a closed form solution of this
type and (if yes) how one can find such a solution?

How are solutions and factorizations of LPDEs related?



Outline

A teaser: dim = 2, ord = 2, 1773

dim = 2, ord ≥ 3, 2005
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dim = 2, ord ≥ 3, 2005


Dxu1 = u1 + 2u2 + u3,
Dyu2 = −6u1 + u2 + 2u3,
(Dx + Dy )u3 = 12u1 + 6u2 + u3.

It has the complete explicit solution (S.Ts., ISSAC’2005):
u1 = 2eyG(x) + ex(3F (y) + F ′(y)) + exp x+y

2 H(x − y),

u2 = eyG′(x) + 2exF ′(y)− 2u1,

u3 = Dxu1 + 3u1 − 2(eyG′(x) + 2exF ′(y)),

where F (y), G(x) and H(x − y) are three arbitrary functions of
one variable each.



dim = 2, ord ≥ 3, 2005


Dxu1 = u1 + 2u2 + u3,
Dyu2 = −6u1 + u2 + 2u3,
(Dx + Dy )u3 = 12u1 + 6u2 + u3.

It has the complete explicit solution (S.Ts., ISSAC’2005):
u1 = 2eyG(x) + ex(3F (y) + F ′(y)) + exp x+y

2 H(x − y),

u2 = eyG′(x) + 2exF ′(y)− 2u1,

u3 = Dxu1 + 3u1 − 2(eyG′(x) + 2exF ′(y)),

where F (y), G(x) and H(x − y) are three arbitrary functions of
one variable each.



Technology (Ts., ISSAC’2005):
generalized Laplace transformations

For this system the transformation is:
u1 = u1,
u2 = u2 + 2u1,
u3 = ((Dx + Dy )u1 − u1 − 2u2 − 4u1).

The transformed system:
Dxu3 = u3,
Dyu2 = 2u3 + u2,
(Dx + Dy )u1 = u3 + 2u2 + u1.
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Alternative technology (F.Schwarz, 2005):
Transform the system into Janet (Gröbner) base, with term
order: LEX, u3 > u2 > u1, x > y :

u1,xxy − u1,xx + u1,xyy − 3u1,xy + 2u1,x − u1,yy + 2u1,y − u1 = 0,
u2,y + 3u2 − 2u1,x + 8u1 = 0,
u2,x − u2 − 1

2u1,xx − 1
2u1,xy + 3u1,x + 1

2u1,y − 5
2u1 = 0,

u3 + 2u2 − u1,x + u1 = 0.

The first equation factors (!!):

D2
x Dy − D2

x + DxD2
y − 3DxDy + 2Dx − D2

y + 2Dy − 1

= (Dx + Dy − 1)(Dy − 1)(Dx − 1).

So one can find u1 easily and then the other two functions u2
and u3 are obtained from the remaining equations of the Janet
base.

Conjecture: For constant-coefficient systems this Gröbner
basis technology is equivalent to the generalized Laplace
technology.
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dim = 3, ord = 2, 1901–2006

U.Dini. Sopra una classe di equazioni a derivate parziali di
second’ordine con un numero qualunque di variabli. Atti Acc.
Lincei. Mem. Classe fis., mat., nat. (5) 4, 1901, p. 121–178.

2nd paper: 1902, p. 431–467.

An example:

Lu = (DxDy + xDxDz − Dz)u = 0.

It has a complete solution, obtained using Dini’s procedures:

u =

∫ (
v dx + (Dy + xDz)v dz

)
+ θ(y),

where v =
∫
φ(x , xy − z) dx + ψ(y , z).

Can be used to solve initial value problems!
How this solution was obtained?
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Dini transformation:

L = DxDy + xDxDz − Dz = (Dy + xDz)Dx − Dz =
Dx(Dy + xDz)− 2Dz .

Lu = 0⇐⇒ (Dy + xDz) Dxu︸︷︷︸
v

−Dzu = 0,

⇐⇒
{

Dxu = v ,
Dzu = (Dy + xDz)v .

(1)

⇐⇒ Dx(Dy + xDz)v = Dzv ⇐⇒ 0 = Dx(Dy + xDz)v − Dzv =
(DxDy + xDxDz)v = (Dy + xDz)Dxv

SO NOW THE OPERATOR FACTORS (after the Dini
transformation)!!

Now we can find v , and the u from (1).
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dim = 3, ord = 2: general result

Theorem
Let L =

∑
i+j+k≤2 aijk (x , y , z)Di

xDj
yDk

z have factorizable principal

symbol:
∑

i+j+k=2 aijk (x , y , z)Di
xDj

yDk
z = Ŝ1Ŝ2 (mod lower-order

terms) with generic (non-commuting) first-order LPDO Ŝ1, Ŝ2.
Then there exist two Dini transformations L(1), L(−1) of L.

Proof.
One can represent L in two possible ways:
L = Ŝ1Ŝ2 + T̂ + a(x , y , z) = Ŝ2Ŝ1 + Û + a(x , y , z)

with some first-order LPDO T̂ , Û. We will consider the first one
obtaining a transformation of L into L(1).
Let L = (Ŝ1 + α)(Ŝ2 + β) + V̂ + b(x , y , z)
with some indefinite α = α(x , y , z), β = β(x , y , z),
and V̂ = T̂ − βŜ2 − αŜ1, b = a− αβ − Ŝ1(β).
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Then Lu = (Ŝ1 + α) (Ŝ2 + β)u︸ ︷︷ ︸
v

+V̂u + bu = 0⇐⇒

{
(Ŝ2 + β)u = v ,
(V̂ + b)u = −(Ŝ1 + α)v .

So [(Ŝ2 + β), (V̂ + b)]u =
(
(Ŝ2 + β)(Ŝ1 + α) + (V̂ + b)

)
v

When [(Ŝ2 + β), (V̂ + b)]u can be transformed into an
expression involving only v?
Answer: when [(Ŝ2 + β), (V̂ + b)] is a linear combination of
(Ŝ2 + β) and(V̂ + b) alone.
One can check that this is possible to do choosing α(x , y , z)
and β(x , y , z) appropriately (for generic Ŝi , V̂ ).
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(Ŝ2 + β) and(V̂ + b) alone.
One can check that this is possible to do choosing α(x , y , z)
and β(x , y , z) appropriately (for generic Ŝi , V̂ ).
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When [(Ŝ2 + β), (V̂ + b)]u can be transformed into an
expression involving only v?
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(Ŝ2 + β)(Ŝ1 + α) + (V̂ + b)

)
v
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So [(Ŝ2 + β), (V̂ + b)]u =
(
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Other interesting partial results

General theory of factorization of an arbitrary single LPDO

General approach: Abelian categories

Algorithmic problems

Acknowledgment



Other interesting partial results:

J. Le Roux. Extensions de la méthode de Laplace aux
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Approach 1: Rings/modules (S.Ts., 1998)

Goals:

1) to define a notion of factorization with “good” properties:
1a) ∀ LPDO L ≈ L1L2 · · ·Lk with FINITE k .
In particular Dx should be irreducible . . .
1b) Preserving the property proved by Landau E. (1902) for
LODE: all possible factorizations of a given operator L have the
same number of factors in different expansions
L = L1 · · ·Lk = L1 · · ·Lr into irreducible factors and the factors
Ls, Lp are pairwise “similar”.

2) Existence of large classes of solutions should be related to
factorization.

3) Algorithms?
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Divisor ideals (S.Ts., 1998)

Hint 1: if we have L = L1L2 · · ·Lk ⇐⇒ we have a chain of left
principal ideals
|L〉 ⊂ |L2L3 · · ·Lk 〉 ⊂ |L3 · · ·Lk 〉 ⊂ . . . ⊂ |Lk 〉 ⊂ |1〉.

Hint 2: We shall drop the word “principal” (Blumberg’s
example).

Hint 3: But we shall take not all left ideals!
Example: |Dx〉 ⊂ |Dx ,Dm

y 〉 ⊂ |Dx ,Dm−1
y 〉 ⊂ . . . |Dx ,Dy 〉 ⊂ |1〉.

(the same even for multivariate polynomials!)
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Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO,
such that:
1) chains will be finite and for a given L they will have the same
length:
if |L〉 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ |1〉, |L〉 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jm ⊂ |1〉
then k = m and Is are similar to Jp.
2) Irreducible LODO will be still irreducible as LPDEs.
3) for dim = 2, ord = 2 LODO, factorizable⇐⇒ integrable
(with Laplace transformations).
4) Algebraically, the problem is reduced from Q(x , y)[Dx ,Dy ] to
Q(x , y ,Dx)[Dy ] and/or Q(x , y ,Dy )[Dx ] (Ore quotients).

Problems:

1) No idea how to generalize to systems of LPDEs.
2) Technical, not intuitive.
3) No algorithms known.



Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO,
such that:

1) chains will be finite and for a given L they will have the same
length:
if |L〉 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ |1〉, |L〉 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jm ⊂ |1〉
then k = m and Is are similar to Jp.
2) Irreducible LODO will be still irreducible as LPDEs.
3) for dim = 2, ord = 2 LODO, factorizable⇐⇒ integrable
(with Laplace transformations).
4) Algebraically, the problem is reduced from Q(x , y)[Dx ,Dy ] to
Q(x , y ,Dx)[Dy ] and/or Q(x , y ,Dy )[Dx ] (Ore quotients).

Problems:

1) No idea how to generalize to systems of LPDEs.
2) Technical, not intuitive.
3) No algorithms known.



Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO,
such that:
1) chains will be finite and for a given L they will have the same
length:
if |L〉 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ |1〉, |L〉 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jm ⊂ |1〉
then k = m and Is are similar to Jp.

2) Irreducible LODO will be still irreducible as LPDEs.
3) for dim = 2, ord = 2 LODO, factorizable⇐⇒ integrable
(with Laplace transformations).
4) Algebraically, the problem is reduced from Q(x , y)[Dx ,Dy ] to
Q(x , y ,Dx)[Dy ] and/or Q(x , y ,Dy )[Dx ] (Ore quotients).

Problems:

1) No idea how to generalize to systems of LPDEs.
2) Technical, not intuitive.
3) No algorithms known.



Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO,
such that:
1) chains will be finite and for a given L they will have the same
length:
if |L〉 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ |1〉, |L〉 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jm ⊂ |1〉
then k = m and Is are similar to Jp.
2) Irreducible LODO will be still irreducible as LPDEs.

3) for dim = 2, ord = 2 LODO, factorizable⇐⇒ integrable
(with Laplace transformations).
4) Algebraically, the problem is reduced from Q(x , y)[Dx ,Dy ] to
Q(x , y ,Dx)[Dy ] and/or Q(x , y ,Dy )[Dx ] (Ore quotients).

Problems:

1) No idea how to generalize to systems of LPDEs.
2) Technical, not intuitive.
3) No algorithms known.



Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO,
such that:
1) chains will be finite and for a given L they will have the same
length:
if |L〉 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ |1〉, |L〉 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jm ⊂ |1〉
then k = m and Is are similar to Jp.
2) Irreducible LODO will be still irreducible as LPDEs.
3) for dim = 2, ord = 2 LODO, factorizable⇐⇒ integrable
(with Laplace transformations).

4) Algebraically, the problem is reduced from Q(x , y)[Dx ,Dy ] to
Q(x , y ,Dx)[Dy ] and/or Q(x , y ,Dy )[Dx ] (Ore quotients).

Problems:

1) No idea how to generalize to systems of LPDEs.
2) Technical, not intuitive.
3) No algorithms known.



Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO,
such that:
1) chains will be finite and for a given L they will have the same
length:
if |L〉 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ |1〉, |L〉 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jm ⊂ |1〉
then k = m and Is are similar to Jp.
2) Irreducible LODO will be still irreducible as LPDEs.
3) for dim = 2, ord = 2 LODO, factorizable⇐⇒ integrable
(with Laplace transformations).
4) Algebraically, the problem is reduced from Q(x , y)[Dx ,Dy ] to
Q(x , y ,Dx)[Dy ] and/or Q(x , y ,Dy )[Dx ] (Ore quotients).

Problems:

1) No idea how to generalize to systems of LPDEs.
2) Technical, not intuitive.
3) No algorithms known.



Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO,
such that:
1) chains will be finite and for a given L they will have the same
length:
if |L〉 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ |1〉, |L〉 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jm ⊂ |1〉
then k = m and Is are similar to Jp.
2) Irreducible LODO will be still irreducible as LPDEs.
3) for dim = 2, ord = 2 LODO, factorizable⇐⇒ integrable
(with Laplace transformations).
4) Algebraically, the problem is reduced from Q(x , y)[Dx ,Dy ] to
Q(x , y ,Dx)[Dy ] and/or Q(x , y ,Dy )[Dx ] (Ore quotients).

Problems:

1) No idea how to generalize to systems of LPDEs.
2) Technical, not intuitive.
3) No algorithms known.



Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO,
such that:
1) chains will be finite and for a given L they will have the same
length:
if |L〉 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ |1〉, |L〉 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jm ⊂ |1〉
then k = m and Is are similar to Jp.
2) Irreducible LODO will be still irreducible as LPDEs.
3) for dim = 2, ord = 2 LODO, factorizable⇐⇒ integrable
(with Laplace transformations).
4) Algebraically, the problem is reduced from Q(x , y)[Dx ,Dy ] to
Q(x , y ,Dx)[Dy ] and/or Q(x , y ,Dy )[Dx ] (Ore quotients).

Problems:

1) No idea how to generalize to systems of LPDEs.

2) Technical, not intuitive.
3) No algorithms known.



Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO,
such that:
1) chains will be finite and for a given L they will have the same
length:
if |L〉 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ |1〉, |L〉 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jm ⊂ |1〉
then k = m and Is are similar to Jp.
2) Irreducible LODO will be still irreducible as LPDEs.
3) for dim = 2, ord = 2 LODO, factorizable⇐⇒ integrable
(with Laplace transformations).
4) Algebraically, the problem is reduced from Q(x , y)[Dx ,Dy ] to
Q(x , y ,Dx)[Dy ] and/or Q(x , y ,Dy )[Dx ] (Ore quotients).

Problems:

1) No idea how to generalize to systems of LPDEs.
2) Technical, not intuitive.

3) No algorithms known.



Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO,
such that:
1) chains will be finite and for a given L they will have the same
length:
if |L〉 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ |1〉, |L〉 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jm ⊂ |1〉
then k = m and Is are similar to Jp.
2) Irreducible LODO will be still irreducible as LPDEs.
3) for dim = 2, ord = 2 LODO, factorizable⇐⇒ integrable
(with Laplace transformations).
4) Algebraically, the problem is reduced from Q(x , y)[Dx ,Dy ] to
Q(x , y ,Dx)[Dy ] and/or Q(x , y ,Dy )[Dx ] (Ore quotients).

Problems:

1) No idea how to generalize to systems of LPDEs.
2) Technical, not intuitive.
3) No algorithms known.



Conjectures

I If a LPDO is factorizable in this generalized sense, then its
principal symbol is factorizable.

I If a LPDO of order n is solvable then its symbol splits into n
linear factors.
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Approach 2: Abelian categories (S.Ts., 2003)

Abelian category of L.O.D.O.:

objects are operators L = a0(x)Dn + a1(x)Dn−1 + . . .+ an(x),

morphisms are mappings of solutions with auxiliary operators:
P : L→ M iff for every u such that Lu = 0, v = Pu gives a
solution of M: Mv = 0.

Algebraically: M · P = N · L.
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Abelian category S of systems of L.P.D.E.:

S :


L11u1 + . . .+ L1sus = 0,
· · ·
Lk1u1 + . . .+ Lksus = 0,

Morphism P : S → Q,

P :


v1 = P11u1 + . . .+ P1sus,
· · ·
vm = Pm1u1 + . . .+ Pmsus,

Theorem
Any abelian category with finite ascending chains satisfies the
Jordan-Hölder property.

Problem: chains are infinite....
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The solution: Serre-Grothendieck
factorcategory!

For a given (say, determined) system of L.P.D.E. take the
subcategory Sn−2 of (overdetermined) systems with solution
space parameterized by functions of at most n − 2 variables.
Then in the factorcategory S/Sn−2 ascending chains are finite!
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Algorithmic problems

1) Laplace transformations and all their generalizations are not
(formally) algorithmic: no stopping criteria known.

2) Is there an algorithm to factorize in K [Dy ] for skew differential
fields K , for example in Q(x , y ,Dx)[Dy ]??

3) Is there an algorithm to solve a first-order linear PDE with
rational coefficients in dim = 3 (dim = 2 seems to be solved)?
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