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Outline of Talk:
e Difference equations and their solution for one-loop integrals

e Solution of difference equation for two-loop sunrise diagram
(arXiv:hep-ph/0603227)

e Concluding remarks
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We consider scalar one-loop integrals depending on n — 1 external momenta:

dlqg +— 1
7(d) _ /
" [17rd/2] H (¢ —pj)? —m? +ie.’

j=1

The convention for the momenta are given in Fig.
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)

: : . d) .. :
A generalized recurrence relation connecting integrals Lg with different space-time

dimensions is:

n

(d—n+1)Gpy I — 28I =) (0pAn)k™

k=1

0; = 0/0m,

(p1 —pn)(P1—pn) - (P1— Pn)(Pr—1— Pn)
(p1 —pn)@2 —Pn) - (P2 = DPn)Pn—1 — Pn)

(p1 = Pn)(Pn=1 —Pn) -+ (Pn=1 —Pn)(Pn—1 — Dn)

Yij = —(pi —p;)* +mi +mj.

In the sum k£~ means that the k-th factor (propagator) is removed from the integral.
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Assuming that we know expressions for n — 1 point functions then the above equation is

inhomogeneous first order difference equation with respect to d.

d
e
1

By the redefinition

we obtain the simpler equation

TEICH_Q)

— d
We can parameterize d as

where [ is integer and € small.
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, , ~(d :
Then the solution of the equation for [7(1 ) can be written as

2l 2€) l QT L 26 n) — 7(2r—2—2 7
Z ( D (OpA)KTIET2) 4 by (e),

k=1

o

By shifting the summation index r — r + [ + 1, changing the solution can be rewritten in a

- akA > d—n+1 G_l " _
L . k[t
> () % () (%) o

‘covariant’ w.r.t. d form:

r=0

where (a), = I'(r + a)/I'(a) is the Pochhammer symbol.

d)

b,, can be determined from the asymptotic behavior of Lg for d — 00 or by setting up a

differential equation for it. This term depends on the kinematic domain.
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Example: 2-point function

Expression for IQ(d)

e

with lines labeled by 7, 7 includes two one-fold sums over tadpole integrals

ﬁwmgz—r(1——

Substituting /; into general expression gives
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and the infinite series can be represented as hypergeometric functions, i.e.

- (ﬂ)r r 1’@

Z—Q 2 = oF 2 7 2
r=0 (%l)r e %l7

Boundary constant by can be obtained from the asymptotic behavior of /5 at d — oo or from
differential equation.

d —
r(1-9) (m3)'~ Jag )]

J
mf G1 )
Aij )

O. Tarasov RICAM, Linz, Austria — May 8, 2006 —



Solution of Difference Equations for ...

3-point function

In complete analogy to [2(d)

the 3-point function can be evaluated. We have to sum over
2-point functions, which are represented in terms of hypergeometric functions 5 7. The result

for /. éd) reads

Nijk

y Iéd) = b3 + 01 OpAijk + Okij OjNiji + Ojii O \iji,
r'2-3)

d—2

3
_ 95 2
by = 227 \/_gijk Tijk >

provided an extremum of h3 (Go < 0) occurs inside the integration region of the Feynman

parameters. Otherwise b3 = 0. For \;; # 0 we have
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To our knowledge there exists no simpler hypergeometric representation of the 3—point
function for d dimensions in the literature.
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Difference and differential equations for the sunrise integral

N

The generic two-loop self-energy type diagram in d dimensional Minkowski space with three
equal mass propagators is given by the integral:

ICIo / / ddklddkg 1

3 y V2, 3 ’L7Td/2 m2)y1<<k.1 _ k2)2 _ m2)1/2<<k2 _ q)2 . m2)’/3 J
For integer values of v; the integrals (11) can be expressed in terms of only three basis
integrals J\” (1,1, 1), J\?(2,1,1) and J?(0,1,1) = (T\” (m?))? where

d
@2y [ &k 1 AT
T <m)_/[m§]k2—m2__r<1_§>m .
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The relation connecting d — 2 and d dimensional integrals Jéd)(m, Vo, U3):

B (v, va,v8) = iy + 1,15 + 1, 1)

+ V1V3J§d)(V1 + 1,0, v34+ 1) + V2V3J3(d)(ul, o+ 1,v3+1).
Aty =1, =13 = 1and vy = 2, 1, = v3 = 1 we obtain two equations. Use the
recurrence relations to simplify their r.h.s. Shifting d — d + 2 give two more relations.
They are used to exclude Jéd) (2,1, 1) from one of the relations, so that we obtain a difference
equation for the master integral J?Ed)(l, 1,1) = J?Ed):
12:*(d+1)(d — 1)(3d + 4)(3d +2)  J{*Y
—4m*(1 — 32)(1 — 422 + 92%)z(d — 1)d
—4mP(1 — 2)*(1 — 92)?

= 32[(2 + 1)(272% + 182 — 1)d® — 42(1 + 92)d — 482%|m>**?

where
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The integral Jg(d) satisfies also a second order differential equation. Taking the second

derivative of Jéd) with respect to mass gives
d2
dm? dm?

By using recurrence relations integrals on the r.h.s can be reduced to the same three basis

J9(1,1,1) = 6J89(2,2,1) + 6J59(3,1,1).

integrals. Using

J57(2,1,1) = Ji0(1,1,1)

d
dm?
we obtain:
dJsY

dz

d
N

2(1 — 2)(1 —92)z T3

— 2[92°(d — 4) + 10z(d — 2) + 8 — 3d]

d
F(d=3)[(d+4) + d— 4JD = 12:m =0T (2 - 5) |

The differential equation were used to find the momentum dependence of arbitrary periodic
constants in the solution of the difference equation.
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Solution of the dimensional recurrency

Difference equation is a second order inhomogeneous equation with polynomial coefficients in
d. The full solution of this equation is given by:

I = B9+ @ (d) 5D + @y(d) TSy,

3p

where Jéz) is a particular solution of the equation, J?EZ), Jég) is a fundamental system of

solutions of the associated homogeneous equation and w, (d), w,(d) are arbitrary periodic
functions of d satisfying relations:

Wo(d + 2) = We(d), wy(d + 2) = wy(d).

The order of the polynomials in d of the associated homogeneous difference equation can be
reduced by making the substitution

%) j(d)

&)
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—(d
The homogeneous equation for J; ) takes the simpler form

162° F(d+4)
2Tm8(1 — 2)2(1 — 92)2 ~*?
2(1 —32)(1 — 422 + 92*)2d —(442y (3d —2)(3d — 4) =)

O 2TmA(1 — 2)2(1 — 92)2 Ts 36 fa =0

Putting

d=2k—2, y®=p* 7é2k_25),

we transform equation to a standard form

Ap* Y™ 1 (B + C k)py™™ — (a + k)(8 + k)y™ = 0.

1623 B 4e (1 —32)(1 — 422 + 92%)z
27Tm8(1 — 2)2(1 — 92)2’ 27 mA(l—2)2(1 —92)2
1

A

C

and p is for the time being, an arbitrary constant.
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In order to get homogeneous equation into a more convenient form, we will define three
parameters p, x and 7y by the equations

Ap* =z(1—2x), Bp=v—(a+B+ 1)z, Cp=1-2z.

These have the solution

1-2Cp (1—92)° q*(q° — 9m?)?
T e e p—
2 (1+32)3 (g% 4+ 3m?2)3

1 2Tmf(1-2)%(1-92)°  27m*(¢® — m?)%(¢® — 9m?)?
VIA+CZ 4 (14323 4 (¢ + 3m?)? |

v Bp+(a+8+1)z=—¢,
and the equation can accordingly be written in the form

2(1 = 2)y® + [(1 = 20)k + 7 — (a + B+ Daly®™ — (a + k)(B+ k)y™ = 0.
it can be transformed to the equation with linear in k coefficients by rescaling y(’“)

y® =T(a+k)F®  or y® =T1(3+ k)",
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The fundamental system of solutions of homogeneous equation consist of two functions. In the
case when |1 — x| < 1 (large q*) the solutions are

(—1)* l(a+ k)3 + k)
MNa+B8—-—v+k+1)

I = k
(Oﬁ(rf_az)vk+ )zFM—Oz,v—ﬁﬁ—@—ﬁ“_’“51_5’3)'

oFila+k,B+kat+B-—v+k+1;1—2x),

Once we know the solutions of the homogeneous equation a particular solution Jéz) can be

obtained by using Lagrange’s method of variation of parameters.

The argument of the Gauss’ hypergeometric function is related to the maximum of the Kibble
cubic form:

d(s,t,u) = stu — (s +t +uw)m?*(m? + ¢*) + 2m*(m* + 3¢?),

provided that s + ¢ + u = ¢* 4+ 3m?. The maximal value @y, = 5 ¢*(¢* — 9Im?)? occurs
ats =t =u = % (g% + 3m?) and we see that the kinematical variable (1 ) can be written as

O(s,t,u)

‘CE: :::l 2 2y -
- s=t=u=3 (¢*+3m?)

This observation may be useful in finding the characteristic variable in the general mass case.
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Explicit analytic expression for J?Ed)

To find the full solution we assume that q2 is large. The solution of the associated
homogeneous difference equation will be of the form

L= DT (E-2)r ()

2 3 2 3 2

2

GOy

2

The arbitrary periodic functions w1 (2) and ws(2) can be determined either from the d — o
asymptotics or using the differential equation. From differential equation we obtain two simple

equations

dwi(2)
dz

2(1432)(1 — 92) + 3(1 — 2)ws(z) = 0.

2(1 — 2)(1 4+ 32)(1 — 92) —2(1+ 62 — 392%)w;(2) = 0,
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Solutions of equations
k12%(1 + 32)? KoZ
T— 02— ¥ T Trsya—one
Integ(;z)ation constants k1, Ko we fix from the first two terms of the large momentum expansion
of J5

wy(z) = (

D(-14+2)%(1—g), ., 6I%(—g)
T+ I3 20 2 TTE-29 ¥ ] +O(2).

The application of Lagrange’s method of finding a particular solution gives

J?Ed) — m2—45F2(1 4+ E:‘) [

2d=6 d 1 d—1 d
J?E;l): SZm >2F2 (1__) F2 (17_ —7§7d_17\/2R7R)7

(1++/2 2 2" 2
R = vz

(1+v2)?*

and F5 is the Appell function:

(0. @)

by e (@en(B)k(8)i 2t Y
F2<&7ﬁ7677777x7y)_k’lz:0 <7)k(7/)l Ll )

x| + |y| < 1.
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Collecting all contributions, setting d = 4 — 2¢, applying Euler transformation for the first o[}
function we obtain

g _ 612 (—e)[?(1 +¢e)(—2)%(1 — 2)*~% nl 25 27(1 — 2)?%2
3 mA—2T(3 — 2¢)(1 + 3z) o (1+32)3

F@4+2@Wu—fx—@%u—9@%%_F 3,25 27(1 — 2)22
m4=2T(3 — 3e)z(1 + 32) e (1+32)8

32m2—4€

1 3
+ QFQ(—1—|—€)FQ(17575—572—573—25;\/2R,R>.

(1+v/2)

The use of dimensional recurrences was essential to obtain this result!
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Integral representation convenient for the € expansion of 5 F] :

F : % ; 27(1 — z)Qz]

2—g; (1+32)°

(1432 TI'(2-¢) Y du
S TG b Vo

Integral representation for Appell’s F5 function

(1 — w)(1 — wu)(1 — zu)]2

3 1
F, (1,——5,—,3—25,2—57}%,\/2}%)

2 2
21°(3 —25) Lode[t(1 =)z e l,e; 4tz+1—2—1L
Se >2F1[

(——5) dzt+1—2+ L 2—¢: Mz+1—2z+1L

L=+/(42t — 1 —2)2 — 4z.

This integral representation can be used for the € expansion of the F5 function.
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)

: : d :
The imaginary part of J?S on the cut comes from the two o F} functions:

1 . 2
29 29 1-9
ImJéd) — : ( Z)

—4z w2\/3mm?2 % [(1 — 92)2] e =
T(2—e)T(2—¢)(1+32) | 10822 o

5 2—¢; (1+32)°

At d = 4 for the imaginary part we verify the known result.

Using explicit formula we find the on-threshold value of the integral:

T +¢e2—¢; 3

) B T2 (e) 1,-14+2,2—¢; 1
3o lgmomr  (1—e)(1—2e)° °

"1 +¢) { 3+5’+%_8”+0U}.

1—-e)(1—2) | 22 4 8 /3

The analytic expression was not known. The first several terms in the € expansion are in
agreement with the result of Davydychev and Smirnov.
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Several remarks about solution of dimensional recurrency
e For the fi rst time analytic expression for the sunrise diagram was found

e The differential equation is Heun equation with four regular singular points,
located at q2 = 0, m2, 9m2, 00. In general reduction of the Heun equation

to the hypergeometric equation is a complicated mathematical problem

e The associated homogeneous difference eqguation for Jéd) IS simple, and

admits reduction to a hypergeometric type of equation with linear

coeffi cients.

e This is a general situation. Kinematical singularities of Feynman integrals
are located on complicated manifolds. In the case when the differential
equations are of the first order there are no problems to solve them.
However, to solve a second or higher order differential equations in general

will be a problem because of complicated structure of the kinematical
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singularities.

e Singularities of Feynman integrals are poles in 1/(d — n) with integer n.

This has been used for an evident rescaling of the integral by ratios of I
functions which allowed us to reduce the order of the polynomial coeffi cients

In the difference equation.
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Concluding remarks

e Calculating Feynman integrals by solving difference equations w.r.t. d

provides new powerful tool for fi nding analytical representation of the

integral.

e Dimensional recurrences can be used for analytical as well as numerical

evaluation of master integrals.

e Techniques for analytical solution of the higher order difference equations

are needed!

e Classifi cation of solvable cases analogous to differential equations i.e.
analog of Kamke’s book on differential equations is needed also for

difference equations!

O. Tarasov RICAM, Linz, Austria — May 8, 2006 —



