Gröbner Computations for the Ring of Proper Stable Rational Multivariate Functions

Martin Scheicher

Department of Mathematics
University of Innsbruck

Special Semester on Gröbner Bases, Linz 2006

Joint Work

- with my thesis-advisor Ulrich Oberst
- in the framework of the FWF-project

Constructive Multidimensional System Theory

Outline

Introduction

The Ring S of Proper Stable Rational Functions

Proper Stabilization

Gröbner Bases Computations in S

History

since 1985: stabilization of discrete multidimensional transfer matrices: N.K. Bose, J.P. Guiver, Z. Lin, A. Quadrat, S. Shankar, V.R. Sule, L. Xu, J.-Q. Ying, E. Zerz, et. al.

History

since 1985: stabilization of discrete multidimensional transfer matrices: N.K. Bose, J.P. Guiver, Z. Lin, A. Quadrat, S. Shankar, V.R. Sule, L. Xu, J.-Q. Ying, E. Zerz, et. al.
since 2005: stabilization of discrete and continuous IO behaviours: U. Oberst

History

since 1985: stabilization of discrete multidimensional transfer matrices: N.K. Bose, J.P. Guiver, Z. Lin, A. Quadrat, S. Shankar, V.R. Sule, L. Xu, J.-Q. Ying, E. Zerz, et. al.
since 2005: stabilization of discrete and continuous IO behaviours: U. Oberst
Synthesis: proper stabilization of discrete and continuous IO behaviours

Basic Data

- an \mathbb{C}-algebra of operators $\mathbb{C}[s]=\mathbb{C}\left[s_{1}, \ldots, s_{r}\right]$
- a function space \mathcal{F} with $\mathbb{C}[s]$-module structure

Basic Data

- an \mathbb{C}-algebra of operators $\mathbb{C}[s]=\mathbb{C}\left[s_{1}, \ldots, s_{r}\right]$
- a function space \mathcal{F} with $\mathbb{C}[s]$-module structure

Example: partial differential equations with constant coefficients

- $\mathcal{F}=\mathcal{C}^{\infty}\left(\mathbb{R}^{r}, \mathbb{C}\right)$
- $\mathbb{C}[s]$-module structure on \mathcal{F} defined by $s_{\rho} \circ y:=\frac{\partial y}{\partial z_{\rho}}$

Input/Output System

- matrices $P \in \mathbb{C}[s]^{k \times p}, Q \in \mathbb{C}[s]^{k \times m}$ with
$p=\operatorname{rank}(P)=\operatorname{rank}(P,-Q)$
$\Longrightarrow \exists_{1} H \in \mathbb{C}(s)^{p \times m}$ with $P H=Q$
$H=$ transfer matrix

Input/Output System

- matrices $P \in \mathbb{C}[s]^{k \times p}, Q \in \mathbb{C}[s]^{k \times m}$ with
$p=\operatorname{rank}(P)=\operatorname{rank}(P,-Q)$
$\Longrightarrow \exists_{1} H \in \mathbb{C}(s)^{p \times m}$ with $P H=Q$
$H=$ transfer matrix
- IO behaviour $\mathcal{B}:=\left\{\binom{y}{u} \in \mathcal{F}^{(p+m)}, P \circ y=Q \circ u\right\}$ with input u and output y

Feedback System

IO systems $\mathcal{B}_{i}=\left\{\binom{y_{i}}{u_{i}} \in \mathcal{F}^{p+m}, P_{i} \circ y_{i}=Q_{i} \circ u_{i}\right\}, i=1,2$ feedback $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right):=\left\{\left(\begin{array}{l}y_{1} \\ u_{1} \\ u_{2} \\ y_{2}\end{array}\right) \in \mathcal{F}^{2(p+m)}, \begin{array}{l}P_{1} \circ y_{1}=Q_{1} \circ\left(u_{1}+y_{2}\right) \\ P_{2} \circ y_{2}=Q_{2} \circ\left(u_{2}+y_{1}\right)\end{array}\right\}$

Feedback System

IO systems $\mathcal{B}_{i}=\left\{\binom{y_{i}}{u_{i}} \in \mathcal{F}^{p+m}, P_{i} \circ y_{i}=Q_{i} \circ u_{i}\right\}, i=1,2$
feedback $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right):=\left\{\left(\begin{array}{l}y_{1} \\ u_{1} \\ u_{2} \\ y_{2}\end{array}\right) \in \mathcal{F}^{2(p+m)}, \begin{array}{l}P_{1} \circ y_{1}=Q_{1} \circ\left(u_{1}+y_{2}\right) \\ P_{2} \circ y_{2}=Q_{2} \circ\left(u_{2}+y_{1}\right)\end{array}\right\}$
When does a compensator \mathcal{B}_{2} exist, such that the feedback system

- is a stable IO system with input $\binom{u_{2}}{u_{1}}$ and output $\binom{y_{1}}{y_{2}}$ and
- has a proper transfer matrix $H \in \mathbb{C}(s)^{(p+m) \times(p+m)}$?

The Multidimensional Degree - Definition

- $f \in \mathbb{C}[s]$
- $\operatorname{deg}_{s_{\rho}}:=$ Degree of f in $\mathbb{C}\left[s_{1}, \ldots, s_{\rho-1}, s_{\rho+1}, \ldots, s_{r}\right]\left[s_{\rho}\right]$ for $\rho=1, \ldots, r$
- $\operatorname{deg}(f):=\left(\operatorname{deg}_{s_{1}}(f), \ldots, \operatorname{deg}_{s_{r}}(f)\right) \in \mathbb{N}^{r}$ the multidimensional degree of f
- Extension to rational functions: $\mathbb{C}(s) \backslash\{0\} \longrightarrow \mathbb{Z}^{r}, \operatorname{deg}\left(\frac{a}{b}\right):=\operatorname{deg}(a)-\operatorname{deg}(b)$

The Multidimensional Degree - Definition

- $f \in \mathbb{C}[s]$
- $\operatorname{deg}_{s_{\rho}}:=$ Degree of f in $\mathbb{C}\left[s_{1}, \ldots, s_{\rho-1}, s_{\rho+1}, \ldots, s_{r}\right]\left[s_{\rho}\right]$ for $\rho=1, \ldots, r$
- $\operatorname{deg}(f):=\left(\operatorname{deg}_{s_{1}}(f), \ldots, \operatorname{deg}_{s_{r}}(f)\right) \in \mathbb{N}^{r}$ the multidimensional degree of f
- Extension to rational functions: $\mathbb{C}(s) \backslash\{0\} \longrightarrow \mathbb{Z}^{r}, \operatorname{deg}\left(\frac{a}{b}\right):=\operatorname{deg}(a)-\operatorname{deg}(b)$
Important: deg not induced by monomial ordering \Longrightarrow not suitable for Gröbner computations

The Multidimensional Degree - $1^{\text {st }}$ Example

$$
f=1+s_{1}+10 s_{1} s_{2}^{2}+7 s_{1}^{3} s_{2}-19 s_{1}^{2} s_{2}^{4} \in \mathbb{C}\left[s_{1}, s_{2}\right]
$$

The Multidimensional Degree $-1^{\text {st }}$ Example

$$
f=1+s_{1}+10 s_{1} s_{2}^{2}+7 s_{1}^{3} s_{2}-19 s_{1}^{2} s_{2}^{4} \in \mathbb{C}\left[s_{1}, s_{2}\right]
$$

Possibility: $\operatorname{deg}(f) \notin \operatorname{supp}(f):=\left\{\mu\right.$, coeff $\left.\left(f, s^{\mu}\right) \neq 0\right\}$

The Multidimensional Degree $-2^{\text {nd }}$ Example

$$
f=1+s_{1}+10 s_{1} s_{2}^{2}+7 s_{1}{ }^{3} s_{2}-19 s_{1}{ }^{2} s_{2}^{4}+3 s_{1}^{4} s_{2}^{5} \in \mathbb{C}\left[s_{1}, s_{2}\right]
$$

The Multidimensional Degree $-2^{\text {nd }}$ Example

$$
f=1+s_{1}+10 s_{1} s_{2}{ }^{2}+7 s_{1}{ }^{3} s_{2}-19 s_{1}{ }^{2} s_{2}{ }^{4}+3 s_{1}{ }^{4} s_{2}{ }^{5} \in \mathbb{C}\left[s_{1}, s_{2}\right]
$$

$f \in \mathbb{C}[s]$ component-wise unital (cw-unital) $: \Longleftrightarrow \operatorname{deg}(f) \in \operatorname{supp}(f)$

The Ring of Proper Rational Functions

Definition: The ring of proper rational functions

$$
P:=\mathbb{C}(s) \cap \mathbb{C}\left[\left[s^{-1}\right]\right]
$$

where $\mathbb{C}\left[\left[s^{-1}\right]\right]=$ power series in $\left(s_{1}^{-1}, \ldots, s_{r}^{-1}\right)$.

The Ring of Proper Rational Functions

Definition: The ring of proper rational functions

$$
P:=\mathbb{C}(s) \cap \mathbb{C}\left[\left[s^{-1}\right]\right]
$$

where $\mathbb{C}\left[\left[s^{-1}\right]\right]=$ power series in $\left(s_{1}^{-1}, \ldots, s_{r}^{-1}\right)$.
Theorem: $P=\left\{\frac{a}{t} \in \mathbb{C}(s), t\right.$ cw-unital, $\left.\operatorname{deg}\left(\frac{a}{t}\right) \leqslant 0\right\}$.

The Ring of Proper Rational Functions

Definition: The ring of proper rational functions

$$
P:=\mathbb{C}(s) \cap \mathbb{C}\left[\left[s^{-1}\right]\right]
$$

where $\mathbb{C}\left[\left[s^{-1}\right]\right]=$ power series in $\left(s_{1}^{-1}, \ldots, s_{r}^{-1}\right)$.
Theorem: $P=\left\{\frac{a}{t} \in \mathbb{C}(s), t\right.$ cw-unital, $\left.\operatorname{deg}\left(\frac{a}{t}\right) \leqslant 0\right\}$.
Example: $\frac{1}{s_{1}-\alpha} \in P$ for $\alpha \in \mathbb{C}$.

The Ring of Stable Rational Functions

Given: a decomposition $\mathbb{C}^{r}=\Lambda_{1} \uplus \Lambda_{2}$, where

- $\Lambda_{1}=$ region of stability,
- $\Lambda_{2}=$ region of instability.

The Ring of Stable Rational Functions

Given: a decomposition $\mathbb{C}^{r}=\Lambda_{1} \uplus \Lambda_{2}$, where

- $\Lambda_{1}=$ region of stability,
- $\Lambda_{2}=$ region of instability.

Examples: partial differential equations:

$$
\Lambda_{2}=\left\{\lambda \in \mathbb{C}^{r}, \forall \rho=1, \ldots, r: \Re\left(\lambda_{\rho}\right) \geqslant 0\right\}
$$

The Ring of Stable Rational Functions

Given: a decomposition $\mathbb{C}^{r}=\Lambda_{1} \uplus \Lambda_{2}$, where

- $\Lambda_{1}=$ region of stability,
- $\Lambda_{2}=$ region of instability.

Examples: partial differential equations:

$$
\Lambda_{2}=\left\{\lambda \in \mathbb{C}^{r}, \forall \rho=1, \ldots, r: \Re\left(\lambda_{\rho}\right) \geqslant 0\right\}
$$

- partial difference equations:

$$
\Lambda_{2}=\left\{\lambda \in \mathbb{C}^{r}, \forall \rho=1, \ldots, r:\left|\lambda_{\rho}\right| \geqslant 1\right\}
$$

The Ring of Stable Rational Functions

Given: a decomposition $\mathbb{C}^{r}=\Lambda_{1} \uplus \Lambda_{2}$, where

- $\Lambda_{1}=$ region of stability,
- $\Lambda_{2}=$ region of instability.

Examples: partial differential equations:

$$
\Lambda_{2}=\left\{\lambda \in \mathbb{C}^{r}, \forall \rho=1, \ldots, r: \Re\left(\lambda_{\rho}\right) \geqslant 0\right\}
$$

- partial difference equations:

$$
\Lambda_{2}=\left\{\lambda \in \mathbb{C}^{r}, \forall \rho=1, \ldots, r:\left|\lambda_{\rho}\right| \geqslant 1\right\}
$$

Definition: $T:=\left\{t \in \mathbb{C}[s], \forall \lambda \in \Lambda_{2}: t(\lambda) \neq 0\right\}=$
$\left\{t \in \mathbb{C}[s], V(t) \subseteq \Lambda_{1}\right\}=$
set of stable polynomials

$$
V(t)=\left\{\lambda \in \mathbb{C}^{r}, t(\lambda)=0\right\}
$$

The Ring of Stable Rational Functions

Given: a decomposition $\mathbb{C}^{r}=\Lambda_{1} \uplus \Lambda_{2}$, where

- $\Lambda_{1}=$ region of stability,
- $\Lambda_{2}=$ region of instability.

Examples: partial differential equations: $\Lambda_{2}=\left\{\lambda \in \mathbb{C}^{r}, \forall \rho=1, \ldots, r: \Re\left(\lambda_{\rho}\right) \geqslant 0\right\}$

- partial difference equations:

$$
\Lambda_{2}=\left\{\lambda \in \mathbb{C}^{r}, \forall \rho=1, \ldots, r:\left|\lambda_{\rho}\right| \geqslant 1\right\}
$$

Definition:

- $T:=\left\{t \in \mathbb{C}[s], \forall \lambda \in \Lambda_{2}: t(\lambda) \neq 0\right\}=$ $\left\{t \in \mathbb{C}[s], V(t) \subseteq \Lambda_{1}\right\}=$
set of stable polynomials $V(t)=\left\{\lambda \in \mathbb{C}^{r}, t(\lambda)=0\right\}$
- $\mathbb{C}[s]_{T}=\left\{\frac{a}{t} \in \mathbb{C}(s), t \in T\right\}=$ ring of stable rational functions

The Ring of Proper Stable Rational Functions

Definition: The ring of proper stable rational functions

$$
\begin{aligned}
S & :=\mathbb{C}[s]_{T} \cap P=\mathbb{C}[s]_{T} \cap \mathbb{C}\left[\left[s^{-1}\right]\right] \\
& =\left\{\frac{a}{t} \in \mathbb{C}(s), \quad V(t) \subseteq \Lambda_{1}, t \text { cw-unital, } \operatorname{deg}\left(\frac{a}{t}\right) \leqslant 0\right\}
\end{aligned}
$$

The Ring of Proper Stable Rational Functions

Definition: The ring of proper stable rational functions

$$
\begin{aligned}
S & :=\mathbb{C}[s]_{T} \cap P=\mathbb{C}[s]_{T} \cap \mathbb{C}\left[\left[s^{-1}\right]\right] \\
& =\left\{\frac{a}{t} \in \mathbb{C}(s), \quad V(t) \subseteq \Lambda_{1}, t \text { cw-unital, } \operatorname{deg}\left(\frac{a}{t}\right) \leqslant 0\right\}
\end{aligned}
$$

Assumption: $\forall \rho=1, \ldots, r: \operatorname{proj}_{\rho}\left(\Lambda_{2}\right) \neq \mathbb{C}$, where

$$
\operatorname{proj}_{\rho}: \mathbb{C}^{r} \longrightarrow \mathbb{C}, \lambda \longmapsto \lambda_{\rho}
$$

Choose: $\alpha_{\rho} \in \mathbb{C} \backslash \operatorname{proj}_{\rho}\left(\Lambda_{2}\right)$ define $p_{\rho}:=s_{\rho}-\alpha_{\rho} \in \mathbb{C}[s]$.

The Ring of Proper Stable Rational Functions

Definition: The ring of proper stable rational functions

$$
\begin{aligned}
S & :=\mathbb{C}[s]_{T} \cap P=\mathbb{C}[s]_{T} \cap \mathbb{C}\left[\left[s^{-1}\right]\right] \\
& =\left\{\frac{a}{t} \in \mathbb{C}(s), \quad V(t) \subseteq \Lambda_{1}, t \text { cw-unital, } \operatorname{deg}\left(\frac{a}{t}\right) \leqslant 0\right\}
\end{aligned}
$$

Assumption: $\forall \rho=1, \ldots, r: \operatorname{proj}_{\rho}\left(\Lambda_{2}\right) \neq \mathbb{C}$, where

$$
\operatorname{proj}_{\rho}: \mathbb{C}^{r} \longrightarrow \mathbb{C}, \lambda \longmapsto \lambda_{\rho}
$$

Choose: $\alpha_{\rho} \in \mathbb{C} \backslash \operatorname{proj}_{\rho}\left(\Lambda_{2}\right)$ define $p_{\rho}:=s_{\rho}-\alpha_{\rho} \in \mathbb{C}[s]$.
Corollary: $\downarrow p_{\rho}$ stable, cw-unital $\Longrightarrow \frac{1}{p_{\rho}} \in S$

- $p:=\left(p_{1}, \ldots, p_{r}\right) \Longrightarrow \frac{1}{p^{\mu}}=\frac{1}{p_{1}^{\mu_{1}} \ldots p_{r}^{\mu_{r}}} \in S$

$$
\forall \mu \in \mathbb{N}^{r}
$$

The Ring S_{1} and the Noetherianess of S

$$
S_{1}:=\left\{\frac{a}{p^{\mu}}, a \in \mathbb{C}[s], \operatorname{deg}(a) \leqslant \mu\right\} \subseteq S \text { subring }
$$

The Ring S_{1} and the Noetherianess of S

$$
\begin{aligned}
S_{1} & :=\left\{\frac{a}{p^{\mu}}, a \in \mathbb{C}[s], \operatorname{deg}(a) \leqslant \mu\right\} \subseteq S \text { subring } \\
& =\left\{\frac{a}{p^{\mu}}, a \in \mathbb{C}[p], \operatorname{deg}(a) \leqslant \mu\right\}
\end{aligned}
$$

The Ring S_{1} and the Noetherianess of S

$$
\begin{aligned}
\mathcal{S}_{1} & :=\left\{\frac{a}{\rho^{\mu}}, a \in \mathbb{C}[s], \operatorname{deg}(a) \leqslant \mu\right\} \subseteq S_{\text {s subring }} \\
& =\left\{\frac{a}{p^{\mu}}, a \in \mathbb{C}[p], \operatorname{deg}(a) \leqslant \mu\right\} \\
& =\mathbb{C}\left[p^{-1}\right]=\mathbb{C}\left[\frac{1}{s_{1}-\alpha_{1}}, \ldots, \frac{1}{s_{r}-\alpha_{r}}\right]
\end{aligned}
$$

polynomial ring in r variables

The Ring S_{1} and the Noetherianess of S

$$
\begin{aligned}
\mathcal{S}_{1} & :=\left\{\frac{a}{\rho^{\mu}}, a \in \mathbb{C}[s], \operatorname{deg}(a) \leqslant \mu\right\} \subseteq S_{\text {s subring }} \\
& =\left\{\frac{a}{p^{\mu}}, a \in \mathbb{C}[p], \operatorname{deg}(a) \leqslant \mu\right\} \\
& =\mathbb{C}\left[p^{-1}\right]=\mathbb{C}\left[\frac{1}{s_{1}-\alpha_{1}}, \ldots, \frac{1}{s_{r}-\alpha_{r}}\right]
\end{aligned}
$$

polynomial ring in r variables
$\Longrightarrow S_{1}$ is noetherian ring with Gröbner bases theory

The Ring S_{1} and the Noetherianess of S

$$
\begin{aligned}
S_{1} & :=\left\{\frac{a}{p^{\mu}}, a \in \mathbb{C}[s], \operatorname{deg}(a) \leqslant \mu\right\} \subseteq S \text { subring } \\
& =\left\{\frac{a}{p^{\mu}}, a \in \mathbb{C}[p], \operatorname{deg}(a) \leqslant \mu\right\} \\
& =\mathbb{C}\left[p^{-1}\right]=\mathbb{C}\left[\frac{1}{s_{1}-\alpha_{1}}, \ldots, \frac{1}{s_{r}-\alpha_{r}}\right]
\end{aligned}
$$

polynomial ring in r variables
$\Longrightarrow S_{1}$ is noetherian ring with Gröbner bases theory

- $T_{1}:=\left\{\frac{t}{p^{\text {teg }(t)}}, t\right.$ stable, cw -unital $\} \subseteq S_{1}$

The Ring S_{1} and the Noetherianess of S

$$
\begin{aligned}
S_{1} & :=\left\{\frac{a}{p^{\mu}}, a \in \mathbb{C}[s], \operatorname{deg}(a) \leqslant \mu\right\} \subseteq S \text { subring } \\
& =\left\{\frac{a}{p^{\mu}}, a \in \mathbb{C}[p], \operatorname{deg}(a) \leqslant \mu\right\} \\
& =\mathbb{C}\left[p^{-1}\right]=\mathbb{C}\left[\frac{1}{s_{1}-\alpha_{1}}, \ldots, \frac{1}{s_{r}-\alpha_{r}}\right]
\end{aligned}
$$

polynomial ring in r variables
$\Longrightarrow S_{1}$ is noetherian ring with Gröbner bases theory

- $T_{1}:=\left\{\frac{t}{p^{\operatorname{deg}(t)}}, t\right.$ stable, cw-unital $\} \subseteq S_{1}$
- $S=S_{1 T_{1}}$ quotient ring $\Longrightarrow S$ is noetherian ring

Proper Stabilization Theorem

Given: IO system

$$
\mathcal{B}_{1}=\left\{\binom{y_{1}}{u_{1}} \in \mathcal{F}^{(p+m)}, P_{1} \circ y_{1}=Q_{1} \circ u_{1}\right\} \text { with }
$$

$$
\text { associated row-module } W_{1}:=\mathbb{C}[s]^{1 \times k_{1}}\left(P_{1},-Q_{1}\right)
$$

Equivalent: 1. \exists compensator \mathcal{B}_{2}, such that feedback $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ is stable and has a proper transfer matrix

Proper Stabilization Theorem

Given: IO system

$$
\mathcal{B}_{1}=\left\{\binom{y_{1}}{u_{1}} \in \mathcal{F}^{(p+m)}, P_{1} \circ y_{1}=Q_{1} \circ u_{1}\right\} \text { with }
$$

$$
\text { associated row-module } W_{1}:=\mathbb{C}[s]^{1 \times k_{1}}\left(P_{1},-Q_{1}\right)
$$

Equivalent: 1. \exists compensator \mathcal{B}_{2}, such that feedback $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ is stable and has a proper transfer matrix

2. $\left(\mathbb{C}[s]^{1 \times(p+m)} \cap \bigcap_{\lambda \in \Lambda_{2}} W_{1 \mathfrak{m}_{\lambda}}\right)_{T} \cap S^{1 \times(p+m)}$ is a direct summand of $S^{1 \times(p+m)}$, where $\mathfrak{m}_{\lambda}=\{f \in \mathbb{C}[s], f(\lambda)=0\}$

How to Check 2

$$
\left(\mathbb{C}[S]^{1 \times(p+m)} \cap \bigcap_{\lambda \in \Lambda_{2}} W_{1 \mathfrak{m}_{\lambda}}\right)_{T} \cap S^{1 \times(p+m)}
$$

Given: Generating system of W_{1}

How to Check 2

$$
\left(\mathbb{C}[S]^{1 \times(p+m)} \cap \bigcap_{\lambda \in \Lambda_{2}} W_{1 \mathfrak{m}_{\lambda}}\right)_{T} \cap S^{1 \times(p+m)}
$$

Given: Generating system of W_{1}

1. compute $\mathbb{C}[s]$-generators of
$\mathbb{C}[s]^{1 \times(p+m)} \cap \bigcap_{\lambda \in \Lambda_{2}} W_{1 \mathfrak{m}_{\lambda}}=: U$
2. compute S-generators of $U_{T} \cap S^{1 \times(p+m)}$
3. check, if direct summand (talk Oberst)

How to Check 2

$$
\left(\mathbb{C}[S]^{1 \times(p+m)} \cap \bigcap_{\lambda \in \Lambda_{2}} W_{1 \mathfrak{m}_{\lambda}}\right)_{T} \cap S^{1 \times(p+m)}
$$

Given: Generating system of W_{1}

1. compute $\mathbb{C}[s]$-generators of
$\mathbb{C}[s]^{1 \times(p+m)} \cap \bigcap_{\lambda \in \Lambda_{2}} W_{1 \mathfrak{m}_{\lambda}}=: U$
2. compute S-generators of $U_{T} \cap S^{1 \times(p+m)}$
3. check, if direct summand (talk Oberst)

Gröbner Bases Computations in S, part 1

Given: $\mathbb{C}[s]$-generating system of $U \subseteq \mathbb{C}[s]^{1 \times 1}$ submodule Assumption: U is T-closed, i. e.

$$
t u \in U, t \in T, u \in \mathbb{C}[s]^{1 \times I} \Longrightarrow u \in U
$$

Goal: S-generating system of $U_{T} \cap S^{1 \times I}$

Compute via S_{1} :

$$
\begin{aligned}
U_{1} & :=S_{1}^{1 \times I} \cap \mathbb{C}\left[p, p^{-1}\right] U \\
& =\mathbb{C}\left[p^{-1}\right]^{1 \times I} \cap \mathbb{C}\left[p, p^{-1}\right] U \\
& \subseteq \mathbb{C}\left[p^{-1}\right]^{1 \times I} \text { submodule }
\end{aligned}
$$

Gröbner Bases Computations in $\mathbb{C}\left[p, p^{-1}\right]$

Let $q=\left(q_{1}, \ldots, q_{r}\right)$ be additional variables,

$$
\mathcal{I}:=\sum_{\rho=1}^{r} \mathbb{C}[p, q]\left(p_{\rho} q_{\rho}-1\right) \subset \mathbb{C}[p, q] \text { ideal }
$$

Then

$$
\begin{aligned}
\mathbb{C}\left[p, p^{-1}\right] & \cong \mathbb{C}[p, q] / \mathcal{I} \\
p_{\rho} & \longleftrightarrow \frac{\overline{p_{\rho}}}{p_{\rho}^{-1}}
\end{aligned} \longleftrightarrow \longleftrightarrow \frac{q_{\rho}}{l}
$$

Gröbner Bases Computations in $\mathbb{C}\left[p, p^{-1}\right]$

Let $q=\left(q_{1}, \ldots, q_{r}\right)$ be additional variables,

$$
\mathcal{I}:=\sum_{\rho=1}^{r} \mathbb{C}[p, q]\left(p_{\rho} q_{\rho}-1\right) \subset \mathbb{C}[p, q] \text { ideal }
$$

Then

$$
\begin{aligned}
\mathbb{C}\left[p, p^{-1}\right] & \cong \mathbb{C}[p, q] / \mathcal{I} \\
p_{\rho} & \longleftrightarrow \overline{p_{\rho}} \\
p_{\rho}^{-1} & \longleftrightarrow \frac{q_{\rho}}{l}
\end{aligned}
$$

Use an elimination-termorder for p to construct a Gröbner basis for $\mathbb{C}\left[p^{-1}\right]^{1 \times I} \cap \mathbb{C}\left[p, p^{-1}\right] U=U_{1}$

Gröbner Bases Computations in S, part 2

U is T-closed
$\Longrightarrow U_{1 T_{1}}=U_{T} \cap S^{1 \times I}$

Gröbner Bases Computations in S, part 2

U is T-closed
$\Longrightarrow U_{1 T_{1}}=U_{T} \cap S^{1 \times I}$
S_{1}-generating system of $U_{1}=$
S-generating system of $U_{T} \cap S^{1 \times I}$

Summary

- short proof that S is noetherian

Summary

- short proof that S is noetherian
- important step in checking the existence of a proper stable feedback system

