Mechanized Proof of Buchberger’s Algorithm in ACL2

J.L. Ruiz-Reina, I. Medina and F. Palomo

Departamento de Ciencias de la Computación e Inteligencia Artificial
Univ. Sevilla

Departamento de Lenguajes y Sistemas Informáticos
Univ. Cádiz
Summary

- The ACL2 system
- Applying ACL2 to the formal verification of symbolic computation systems
- An example: Buchberger’s algorithm
- Conclusions
The ACL2 system

- ACL2 stands for "A Computational Logic for an Applicative Common Lisp"
- Developed in the University of Texas at Austin by J Moore and Matt Kaufmann, since 1994
- Its predecessor is Nqthm, also (well) known as the Boyer-Moore theorem prover
- Successfully used in the industry: hardware verification
- But also used in the verification of software and in formalization of mathematics
Formal verification of programs

Instead of debugging a program, one should prove that it meets its specifications, and this proof should be checked by a computer program (John McCarthy, “A Basis for a Mathematical Theory of Computation” 1961)
Formal verification of programs

Instead of debugging a program, one should prove that it meets its specifications, and this proof should be checked by a computer program (John McCarthy, “A Basis for a Mathematical Theory of Computation” 1961)

• What do we need to formally verify a program?
Formal verification of programs

Instead of debugging a program, one should prove that it meets its specifications, and this proof should be checked by a computer program (John McCarthy, “A Basis for a Mathematical Theory of Computation” 1961)

- What do we need to formally verify a program?
 - A programming language (for writing the program)
Formal verification of programs

Instead of debugging a program, one should prove that it meets its specifications, and this proof should be checked by a computer program (John McCarthy, “A Basis for a Mathematical Theory of Computation” 1961)

- What do we need to formally verify a program?
 - A programming language (for writing the program)
 - A logic (for stating and proving its specification)
Formal verification of programs

Instead of debugging a program, one should prove that it meets its specifications, and this proof should be checked by a computer program (John McCarthy, “A Basis for a Mathematical Theory of Computation” 1961)

- What do we need to formally verify a program?
 - A programming language (for writing the program)
 - A logic (for stating and proving its specification)
 - A theorem prover (to assist in the proof process)
Formal verification of programs

Instead of debugging a program, one should prove that it meets its specifications, and this proof should be checked by a computer program (John McCarthy, “A Basis for a Mathematical Theory of Computation” 1961)

- What do we need to formally verify a program?
 - A programming language (for writing the program)
 - A logic (for stating and proving its specification)
 - A theorem prover (to assist in the proof process)

We have these three components in ACL2
The ACL2 programming language

Example:

(defun insert (a x)
 (if (consp x)
 (if (<= a (car x))
 (cons a x)
 (cons (car x) (insert a (cdr x))))
 (list a)))

(defun isort (x)
 (if (consp x)
 (insert (car x) (isort (cdr x)))
 nil))
The ACL2 programming language

- An applicative subset of Common Lisp
- Applicative:
 - Functions in the language can be seen as functions in the mathematical sense
 - No global variables, no destructive updates
 - No higher-order programming
- Executable in the system (and in any compliant Common Lisp)

```ACL2
ACL2  !>(isort ' (45 2 34 22/4))
   (2 11/2 34 45)
ACL2  !>(isort ' (9 8 7 6 5 4 3 2 1 0 -1))
   (-1 0 1 2 3 4 5 6 7 8 9)
```
The ACL2 logic

The logic provides the *language* for stating the properties of the defined functions and also a *proof theory* for proving those properties from *axioms* and *definitions*

- **Syntax**
 - Common Lisp syntax (prefix notation)
 - Propositional connectives and equality: *and, or, not, implies, iff, equal*
 - Quantifier-free: variables are implicitly universally quantified
 - Example:
    ```lisp
    (defthm isort-correctness
      (and (perm (isort l) l)
           (ordered (isort l))))
    ```
 - We use *the same language* for both programming and specifying
Axioms and rules of inference

- Axioms:
 - Propositional
 - Equality
 - *Example:* \((\text{equal } x \ x) \)
 - Primitive Common Lisp functions
 - *Example:* \((\text{equal } (\text{car } (\text{cons } x \ y)) \ x) \)
 - Arithmetic

- Inference rules
 - Propositional
 - Instantiation
 - Proof by induction

A formula is a *theorem* if it can be derived using the axioms and the rules of inference.
We can represent in Lisp, by means of dotted pairs and natural numbers, the ordinals below ε_0

<table>
<thead>
<tr>
<th>Ordinal</th>
<th>ACL2 object</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>ω</td>
<td>((1 . 1) . 0)</td>
</tr>
<tr>
<td>$\omega+1$</td>
<td>((1 . 1) . 1)</td>
</tr>
<tr>
<td>$\omega+2$</td>
<td>((1 . 1) . 1)</td>
</tr>
</tbody>
</table>
Ordinals in ACL2

We can represent in Lisp, by means of dotted pairs and natural numbers, the ordinals below ε_0.

<table>
<thead>
<tr>
<th>Ordinal</th>
<th>ACL2 object</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega^2)</td>
<td>(((1 . 2) . 0))</td>
</tr>
<tr>
<td>(\omega^3)</td>
<td>(((3 . 1) . 0))</td>
</tr>
</tbody>
</table>
Ordinals in ACL2

We can represent in Lisp, by means of dotted pairs and natural numbers, the ordinals below ϵ_0

<table>
<thead>
<tr>
<th>Ordinal</th>
<th>ACL2 object</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω^ω</td>
<td>$(((1 . 1) . 0) . 1) . 0)$</td>
</tr>
<tr>
<td>$\omega^\omega + \omega^{99}4 + 3$</td>
<td>$(((1 . 1) . 0) . 1) (99 . 1) . 3)$</td>
</tr>
<tr>
<td>$\omega(\omega^\omega)$</td>
<td>$((((((1 . 1) . 0) . 1) . 0) . 1) . 0) . 1) . 0)$</td>
</tr>
</tbody>
</table>
A built-in notion in ACL2: Well-foundedness

- A relation $<$ on a set A is well-founded if there is no infinitely descending chain $a_1 > a_2 > a_3 \ldots$
- The predefined functions $\circ p$ and $\circ <$, respectively define the ACL2 ordinals and the usual order between ordinals
- (Meta) Assumption: $\circ <$ is well-founded on $\circ p$
- Ordinals are essential to prove properties by induction
- And also in the definition of new functions
Defining new functions

- The logic is not static: a new (definitional) axiom is introduced whenever a new function is defined (either as part of the program or as part of the specification)
 - Example: the definition

\[
\text{(defun isort (x)} \\
\text{\hspace{1em} (if (consp x)} \\
\text{\hspace{2em} (insert (car x) (isort (cdr x))))} \\
\text{\hspace{2em} nil))}
\]

is introduced in the logic as the axiom

\[
\text{(equal (isort x)} \\
\text{\hspace{1em} (if (consp x)} \\
\text{\hspace{2em} (insert (car x) (isort (cdr x))))} \\
\text{\hspace{2em} nil))}
\]
Defining new functions

- In order to avoid inconsistencies, we have to prove termination of recursive definitions, by *showing* an ordinal measure on the arguments and *proving* that this measure decrease in every recursive call
 - Example:
    ```lisp
    (defun isort (x)
      (if (consp x)
          (insert (car x) (isort (cdr x)))
          nil))
    ```
 The (ordinal) measure `(len x)` justifies termination of `isort`, since it can be proved that:
    ```lisp
    (and (o-p (len l))
         (implies (consp l)
                   (o< (len (cdr l)) (len l))))
    ```
- So in the ACL2 logic all functions are *total*
Induction principle in ACL2

- A particular case of well-founded induction
- Roughly speaking, to prove a theorem, we can assume the theorem true for a \textit{finite} number of instances, whenever those instances are proved to be smaller w.r.t. a given ordinal measure
- For example, to prove the property \((\text{ordered } (\text{isort } l))\), it suffices to prove the formulas

\[
(\text{implies } (\neg (\text{consp } l)) \ (\text{ordered } (\text{isort } l)))
\]

\[
(\text{implies } (\text{and } (\text{consp } l) \n\quad (\text{ordered } (\text{isort } (\text{cdr } l)))) \n\quad (\text{ordered } (\text{isort } l)))
\]

- The problem is to find a suitable induction scheme for proving a property
- Recursive definitions “suggest” induction schemes
The ACL2 theorem prover (output example)

ACL2 ⊢ (defthm isort-correctness
 (and (perm (isort l) l)
 (ordered (isort l)))))

By case analysis we reduce the conjecture to the following two conjectures.
...
We will induct according to a scheme suggested by (ISORT L). This suggestion was produced using the :induction rule ISORT.
....
When applied to the goal at hand the above induction scheme produces the following two nontautological subgoals.

Subgoal *1/2
(IMPLIES (NOT (CONSP L))
 (AND (PERM (ISORT L) L)
 (ORDERED (ISORT L)))).
....
The ACL2 theorem prover (output example)

....
Subgoal *1.1/2
(IMPLIES (AND (CONSP IT) (< (CAR IT) L1)
 (NOT (PERM (CDR IT) (DELETE-UNO (CAR IT) L2)))
 (PERM IT L2) (ORDERED IT))
 (PERM (INSERT L1 IT) (CONS L1 L2))).

But simplification reduces this to T, using the :definition PERM.

Subgoal *1.1/1
(IMPLIES (AND (CONSP IT) (<= L1 (CAR IT))
 (PERM IT L2) (ORDERED IT))
 (PERM (INSERT L1 IT) (CONS L1 L2))).

But simplification reduces this to T, using the :definitions DELETE-ONE, INSERT, MEMBER, ORDERED and PERM, primitive type reasoning, the :rewrite rules CAR-CONS and CDR-CONS and the :type-prescription rules MEMBER and PERM.

That completes the proofs of *1.1 and *1.

Q.E.D.
The ACL2 theorem prover

- Supports mechanized reasoning in the logic
- Instead of constructing the proof by elementary steps, it tries larger steps
- Six transformation processes are tried in order for every (sub)goal formula
- Automatic: Once a conjecture is submitted, the user can no longer interact with the system
The role of the user

• Very often, non trivial results fails to be proved in a first attempt
• This means that the prover needs to prove previous lemmas that have to be supplied by the user
• This lemmas are suggested from:
 ◦ A preconceived hand proof
 ◦ Inspection of failed proofs
• Thus, the role of the user is:
 ◦ To formalize the conjectures in the logic
 ◦ Implement a proof strategy, by means of a suitable collection of lemmas
• The result of a proof effort is a file with definitions and theorems
 ◦ A book in the ACL2 terminology
 ◦ This book can be certified and used by other books
The main ACL2 application: hardware verification

An example: formal verification of the microcode of the division algorithm on the AMD-K5 microprocessor

(defun divide (p d mode)

 ;; hundreds of lines faithfully
 ;; describing the microcode

 )

Correctness theorem:

(deftm AMD-K5-division-correct
 (implies (and (floating-point-numberp p 15 64)
 (floating-point-numberp d 15 64)
 (not (equal d 0))
 (rounding-modep mode))
 (equal (divide p d mode)
 (round (/ p d) mode))))
Can we formally verify symbolic computation systems?

- Formal proofs ensuring the correctness of the implemented algorithms are difficult, because:
 - Software systems are much more complicated than hardware systems
 - And in this case the underlying mathematical theory is much richer

- In the Computational Logic Group of the University of Seville, we tried a first step:
 - Verification of basic algorithms of theorem proving and symbolic computation systems

- For example:
 - Equational: rewriting theory, unification, Knuth-Bendix
 - Propositional: tableaux, resolution, Davis-Putnam
 - Polynomials: Gröbner bases computation
Why do we use ACL2 for this task?

- We have computation and deduction in the same system
- And the programming language is Common Lisp
 - A classical language for implementing symbolic computation systems
- The price to pay: a quantifier-free first-order logic
 - Limited expressiveness for stating properties
A naive Common Lisp implementation of Buchberger algorithm

(defun Buchberger (F)
 (Buchberger-aux F (initial-pairs F)))

(defun Buchberger-aux (F C)
 (if (and (k-polynomials F)
 (k-polynomials-pairsp C))
 (if (endp C)
 F
 (let* ((p (first (first C)))
 (q (second (first C)))
 (h (red* (s-poly p q) F)))
 (if (equal h (|0|))
 (Buchberger-aux F (rest C))
 (Buchberger-aux (cons h F)
 (append (pairs h F)
 (rest C))))))
The main theorem proved

\begin{verbatim}
(defthm |Buchberger(F) = <F>|
 (implies (and (k-polynomialp p)
 (k-polynomialsp F))
 (iff (in<> p F)
 (equal (red* p (Buchberger F))
 (|0|))))))
\end{verbatim}

where:

- \textbf{(k-polynomialp p):} \(p\) rational polynomial in \(k\) variables
- \textbf{(k-polynomialsp F):} \(F\) finite set of polynomials in \(k\) variables
- \textbf{(in<> p F):} \(p \in \langle F \rangle\)
- \textbf{(red* p (Buchberger F))}: normal form of \(p\) with respect to \(Buchberger(F)\)
- \textbf{(|0|):} The zero polynomial
A sketch of the ACL2 proof
A sketch of the ACL2 proof

BASIC THEORY

Lists
Multisets

Polynomials
and
Ideals

Abstract
Reductions

Newman’s
Lemma
A sketch of the ACL2 proof

BASIC THEORY
- Lists Multisets
- Polynomials and Ideals
- Abstract Reductions

GROBNER BASIS
- Polynomial Reductions
- Confluence

Newman’s Lemma
S-polynomials and local confluence
A sketch of the ACL2 proof

BASIC THEORY
- Lists Multisets
- Polynomials and Ideals
- Abstract Reductions

GROBNER BASIS
- Polynomial Reductions
- Confluence

BUCHBERGER ALGORITHM
- Dickson’s Lemma
- Termination
- Ideal Preserved
- S–polynomials reduce to 0

Newman’s Lemma
S–polynomials and local confluence
A sketch of the ACL2 proof

- **Basic Theory**
 - Lists Multisets
 - Polynomials and Ideals
 - Abstract Reductions
 - Newman’s Lemma

- **Grobner Basis**
 - Polynomial Reductions
 - Confluence
 - S-polynomials and local confluence

- **Buchberger Algorithm**
 - Dickson’s Lemma
 - Termination
 - Ideal Preserved
 - S-polynomials reduce to 0

Correctness
A sketch of the ACL2 proof

BASIC THEORY
- Lists and Multisets
- Polynomials and Ideals
- Abstract Reductions

GROBNER BASIS
- Polynomial Reductions
- Confluence
- S-polynomials and local confluence

BUCHBERGER ALGORITHM
- Dickson’s Lemma
- Termination
- Ideal Preserved
- S-polynomials reduce to 0

CORRECTNESS

The challenge:
- Formalize this mathematical theory in the ACL2 logic
- Lead the prover to this proof
A sketch of the ACL2 proof

BASIC THEORY
- Lists
- Multisets
- Polynomials and Ideals
- Abstract Reductions

GROBNER BASIS
- Polynomial Reductions
- Confluence
- S-polynomials and local confluence

BUCHBERGER ALGORITHM
- Dickson’s Lemma
- Termination
- Ideal Preserved
- S-polynomials reduce to 0

CORRECTNESS

The challenge:
- Formalize this mathematical theory in the ACL2 logic
- Lead the prover to this proof
The polynomial reduction relation

BASIC THEORY
- Lists
- Multisets
- Polynomials and Ideals
- Abstract Reductions
- Newman’s Lemma

GROBNER BASIS
- Polynomial Reductions
- Confluence
- S–polynomials and local confluence

BUCHBERGER ALGORITHM
- Dickson’s Lemma
- Termination
- Ideal Preserved
- S–polynomials reduce to 0

CORRECTNESS
The polynomial reduction relation

- \(p \rightarrow_F q \) if \(\exists f \in F, m \neq 0 \) monomial in \(p \), and \(c \) monomial, such that
 \[m = -c \cdot lm(f) \quad \text{and} \quad q = p + c \cdot f \]
 - Problem: existential quantification in this definition
 - We have to explicitly deal with \(f, m \) and \(c \)
 - \textit{Operator}: a three element list \((m, c, f)\)

- We can define \(\rightarrow_F \) by means of three ACL2 functions:
 - \((\text{k-polynomialp x})\): defines the domain of the reduction relation
 - \((\text{reduction p o})\): applies an operator \(o \) to a polynomial \(p \)
 - \((\text{validp p o F})\): check if its \textit{valid} apply \(o \) to \(p \)
 - \(f \in F, m \) monomial in \(p \), \(lm(f) \) divides to \(m \) and \(c = -m/lm(f) \)
Equivalence closure

- We call $p \leftrightarrow_F q$ a **proof step**
- It is represented by a (Lisp) structure with four fields, containing p, q, the operator applied and the direction of the step.
- A proof step is **valid** if one of its two polynomials is obtained applying the (valid) operator to the other, in the indicated direction

```
(defun <-> (p q step F)
  (and (valid-proof-stepp step F)
       (equal p (elt1 step))
       (equal q (elt2 step))))
```
Equivalence closure

- A proof is a list of concatenated valid proof steps.
- Proofs allow us to constructively define the relation $p \leftrightarrow^* F q$.

\[
\text{(defun <->* (p q proof F)}
\]
\[
\quad (\text{let ((r (elt2 (first proof)))))}
\]
\[
\quad (\text{and (k-polynomialp p)})
\]
\[
\quad (\text{if (endp proof)}
\]
\[
\quad \quad (\text{equal p q)}
\]
\[
\quad \quad (\text{and (-> p r (first proof) F)}
\]
\[
\quad \quad \quad (\text{and (->* r q (rest proof) F)))})
\]

- \rightarrow^* is similar to \leftrightarrow^*, but with all its steps from left to right.
A key theorem: local confluence and s-polynomials

BASIC THEORY
- Lists
- Multisets
- Polynomials and Ideals
- Abstract Reductions

GROBNER BASIS
- Polynomial Reductions
- Confluence
- Newman’s Lemma

BUCHBERGER ALGORITHM
- Dickson’s Lemma
- Termination
- Ideal Preserved
- S–polynomials reduce to 0

CORRECTNESS
A key theorem: local confluence and s-polynomials

- → is locally confluent if \(\forall p, q, r \) such that \(p \leftarrow r \rightarrow q \) (local peak), \(\exists s \) such that \(p \xrightarrow{*} s \leftarrow q \) (valley)

- \(\Phi(F) \equiv \forall p, q \in F \ spoly(p, q) \xrightarrow{*} F 0 \)

- Theorem: If \(\Phi(F) \) then \(\rightarrow_F \) locally confluent
The key theorem viewed as a “proof shape” transformation

Assumption: \(\forall f, g \in F \)

\[
\text{spol}(f, g)
\]

\[
\ast
\]

\[
F \leftarrow 0
\]

(s-polynomial-proof f g)
The key theorem viewed as a “proof shape” transformation

Assumption: \(\forall f, g \in F \)

\[spol(f, g) \]

\[F \]

\[0 \]

(s–polynomial–proof \(f \ g \))
The key theorem viewed as a “proof shape” transformation

Assumption: $\forall f, g \in F$

Goal: to define a function (transform–local–peak–F proof) obtaining an equivalent valley for every local peak proof (and prove its properties)
Local confluence and s-polynomials: ACL2 formalization

Assumption:

(encapsulate
 ((F () t)
 (s-polynomial-proof (p q) t))

(defthm |k-polynomialsp(F)|
 (k-polynomialsp (F)))

(defthm |Phi(F)|
 (let ((proof (s-polynomial-proof p q)))
 (implies (and (in p (F)) (in q (F)))
 (->* (s-poly p q) (|0|) proof (F))))))
Local confluence and s-polynomials: ACL2 formalization

Conclusion:

(defun |Phi(F) => local-confluence(->F)|
 (let ((valley (transform-local-peak-F proof)))
 (implies (and (polynomialp p) (polynomialp q)
 (local-peakp proof)
 (=><* p q proof (F)))
 (and (=><* p q valley (F))
 (valleyp valley))))
Local confluence and s-polynomials

Three cases, depending on the monomials used for both reductions

(defun transform-local-peak-F (proof)
 (let ((m1 (o-monomial (operator (first proof))))
 (m2 (o-monomial (operator (second proof))))
 (cond ((equal (term m1) (term m2))
 (transform-local-peak-F-= proof))
 ((RAC-TER::< (term m1) (term m2))
 (transform-local-peak-F<- proof))
 (t
 (transform-local-peak-F-> proof))))))
Local confluence and s-polynomials

- **Lemma 1**: Let m be a non-zero monomial, $p, q \in Q[X]$ and $F \subseteq Q[X]$. Then:

 \[p \rightarrow^*_F q \implies m \cdot p \rightarrow^*_F m \cdot q \]

- **Lemma 2**: Let $p, q \in Q[X]$ and $F \subseteq Q[X]$. Then:

 \[p - q \rightarrow^*_F 0 \implies p \downarrow^*_F q \]

In ACL2, functions performing *proof transformations*:

```lisp
(defun proof-|p ->F* q => m * p ->F* m * q|
  (m proof)
  ...)

(defun proof-|p - q ->*F 0 => p ->*F<- q|
  (p q proof)
  ...)
```
Gröbner basis: critical overlap

(defun transform-local-peak-F-= (proof)
 (let* ((fi (o-polynomial (operator (first proof))))
 (fj (o-polynomial (operator (second proof))))
 (m (o-monomial (operator (first proof))))
 (proof-|p - q -> *F 0 => p -> *F<- q|
 (elt1 (first proof)) (elt2 (second proof))
 (proof-|p -> *F* q => m * p -> *F* m * q|
 (coeff-lcm m fj fi)
 (s-polynomial-proof fj fi))))))
Gröbner basis: critical overlap

(defun transform-local-peak-\(F=\) (proof)
 (let* ((fi (o-polynomial (operator (first proof))))
 (fj (o-polynomial (operator (second proof))))
 (m (o-monomial (operator (first proof))))
 (proof-\(|p - q \rightarrow \star F 0 \Rightarrow p \rightarrow \star F \leftarrow q|\)
 (elt1 (first proof)) (elt2 (second proof))
 (proof-\(|p \rightarrow \star F \star q \Rightarrow m \star p \rightarrow \star F \star m \star q|\)
 (coeff-lcm m fj fi)
 (s-polynomial-proof fj fi))))

Local peak (input)
Gröbner basis: critical overlap

\[
\text{(defun transform-local-peak-F-=} \ (proof) \n\) \n\text{(let* ((fi (o-polynomial (operator (first proof)))))} \n\text{(fj (o-polynomial (operator (second proof))))}} \n\text{(m (o-monomial (operator (first proof)))))})) \n\text{(proof-}\mid p \ - \ q \ -\rightarrow \ *F \ 0 \ \Rightarrow \ p \ -\rightarrow \ *F\leftarrow \ q\mid \n\text{(elt1 (first proof))} \ (\text{elt2 (second proof))}} \n\text{(proof-}\mid p \ -\rightarrow \ F* \ q \ \Rightarrow \ m \ * \ p \ -\rightarrow \ F* \ m \ * \ q\mid \n\text{(coeff-lcm m fj fi)} \n\text{(s-polynomial-proof fj fi))})}}
\]
Gröbner basis: critical overlap

(defun transform-local-peak-F-=- (proof)
 (let* ((fi (o-polynomial (operator (first proof))))
 (fj (o-polynomial (operator (second proof))))
 (m (o-monomial (operator (first proof))))
 (proof-|p - q -\rightarrow* F 0 \Rightarrow p -\rightarrow* F<- q|
 (elt1 (first proof)) (elt2 (second proof))
 (proof-|p -\rightarrow F* q \Rightarrow m * p -\rightarrow F* m * q|
 (coeff-lcm m fj fi)
 (s-polynomial-proof fj fi))))

\[\text{spol}(f_i, f_j) \]
Gröbner basis: critical overlap

(defun transform-local-peak-F-- (proof)
 (let* ((fi (o-polynomial (operator (first proof))))
 (fj (o-polynomial (operator (second proof))))
 (m (o-monomial (operator (first proof))))
 (proof-|p - q -> * F 0 => p ->* F<- q|
 (elt1 (first proof)) (elt2 (second proof))
 (proof-|p -> F* q => m * p -> F* m * q|
 (coeff-lcm m fj fi)
 (s-polynomial-proof fj fi))))

\[spol(f_i, f_j) \]

\[\frac{m}{mmcm} spol(f_i, f_j) = p - q \]

Local peak (input)

Hypothesis

By Lemma 1

Automated Proof of Buchberger’s Algorithm in ACL2 – p. 39/47
Gröbner basis: critical overlap

(defun transform-local-peak-F-=(proof)
 (let* ((fi (o-polynomial (operator (first proof))))
 (fj (o-polynomial (operator (second proof))))
 (m (o-monomial (operator (first proof))))
 (proof-|p - q -> * F 0 => p -> * F <- q| (elt1 (first proof)) (elt2 (second proof))
 (proof-|p -> F* q => m * p -> F* m * q| (coeff-lcm m fj fi)
 (s-polynomial-proof fj fi))))

spol(f_i, f_j) \frac{m}{m_{mcm}} spol(f_i, f_j) = p - q

Local peak (input)
A formal proof of Dickson’s Lemma in ACL2

BASIC THEORY
- Lists
- Multisets
- Polynomials and Ideals
- Abstract Reductions

GROBNER BASIS
- Polynomial Reductions
- Confluence
- S-polynomials and local confluence

BUCHBERGER ALGORITHM
- Dickson’s Lemma
- Termination
- Ideal Preserved
- S-polynomials reduce to 0

CORRECTNESS
A formal proof of Dickson’s Lemma in ACL2

- Dickson’s Lemma is the main result needed to prove termination of Buchberger-aux:

 *Let $n \in \mathbb{N}$ and $\{m_k : k \in \mathbb{N}\}$ be an infinite sequence of monomials in the variables $\{X_1, \ldots, X_n\}$. Then, there exist indices $i < j$ such that m_i divides m_j.***

- Formalization in ACL2 is challenging:
 - Classical proofs are non-constructive
 - Absence of existential quantifiers: i and j has to be explicitly given
A formal proof of Dickson’s Lemma in ACL2

• Example: assume that \(m_0 = x^3y^2 \), \(m_1 = xy^5 \) and \(m_2 = x^2y \).
Graphically:

The “free space” (non-shaded region) represents the set of “allowable” tuples at position \(k \)

* This free space decreases in a well-founded way
A formal proof of Dickson’s Lemma in ACL2

- Sketch of the proof carried out in ACL2:
 - Define a function assigning an ordinal (below ϵ_0) to every initial segment of the sequence, measuring (in some sense) the “free space”
 - Show that this ordinal decreases whenever the next tuple is not divisible by any of the previous tuples

Conclusions: on the positive side

- Correctness is an important issue for software development
 - Specially if the software is used in critical applications
- Benefits in using ACL2
 - Computing and deduction in the same system
 - Verifying real Common Lisp code
 - A certain degree of automation
- A formal proof of a mathematical result is interesting in its own
 - Detail, rigor and clarity
 - Deeper understanding
- An interesting by-product: the underlying mathematical theory of Buchberger’s algorithm can be stated and proved in a quantifier-free logic
Conclusions: on the negative side

- Nowadays, a fully verified state-of-the-art symbolic computation system seems unfeasible
 - Only the verification of Buchberger algorithm needed almost 300 definitions and 1000 theorems
 - The underlying mathematical theory is complex
- And that was even taking into account that efficiency has not been our main concern
 - The more sophisticated is the implementation and the data structures used, the more complex is the formal verification
(Long term) Future work

- Verification of programs with more efficient data structures
(Long term) Future work

• Verification of programs with more efficient data structures
• An alternative to program verification: output verification
(Long term) Future work

- Verification of programs with more efficient data structures
- An alternative to program verification: output verification
- Sharing mathematical knowledge
(Long term) Future work

• Verification of programs with more efficient data structures
• An alternative to program verification: output verification
• Sharing mathematical knowledge
 ◦ A verification effort benefits from other verification efforts
(Long term) Future work

- Verification of programs with more efficient data structures
- An alternative to program verification: output verification
- Sharing mathematical knowledge
 - A verification effort benefits from other verification efforts
 - Hopefully, with an increasing library of formalized mathematics, easily accessible and portable, this verification effort would be reduced
(Long term) Future work

- Verification of programs with more efficient data structures
- An alternative to program verification: output verification
- Sharing mathematical knowledge
 - A verification effort benefits from other verification efforts
 - Hopefully, with an increasing library of formalized mathematics, easily accessible and portable, this verification effort would be reduced
 - *Mathematical Knowledge Management*