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Solving ???

E = {p1,� , pr},F = {f1,� , fl}, with pi, fi∈ Q[U , X]

U = U1,� , Ud⇒parameters

X = Xd+1,� , Xn⇒ indeterminates

C = {x∈Cn, p1 = 0,� , pr = 0, f1� 0,� , fs� 0}

S = {x∈Rn, p1 = 0,� , pr = 0, f1 > 0,� , fs > 0}

ΠU: Cn� Cd the canonical projection onto the parameters’ space

• Exists parameters values u s.t. C |U=u
� ∅ or S |U=u

� ∅ ?

• Number of complex (resp. real) points of C |U=u
or S |U=u

?

• ”Simple” description of C or S wrt ΠU ?



The study of C={x∈Cn, p = 0, f � 0, p∈E , f ∈F}

If one wants (at least) to discuss the number of roots, one needs to charac-

terize parameter’s subsets U ⊂ΠU(C) st #
(

ΠU
−1(u)∩C

)

is constant on U .

”bad” parameters (U ∩{bad parameters}= ∅) :

Discriminant variety

X

U



Points “going” to infinity :

No roots over this point

X

U

roots over this point
Infinite number of

One needs to consider ΠU(C) ...

O∞ = {u ∈ ΠU(C), for any compact neightborhood V ∋ u, ΠU
−1(V) ∩ C is not

compact}.

Remark : ΠU(C) \ΠU(C)⊂O∞.

U can not intersect properly O∞ : U ∩O∞ = ∅ orU



Critical points of the projection and singular points :

Critical points of the projection

X

U

Projections of singular points

X

U

Oc = {critical points ofΠU onReg(C)}∪ {singular points of C}

U can not intersect Oc : U ∩Oc = ∅



Components of small dimension

Projection of a component of small dimension

X

U

Osd = {projection - by ΠU - of the components of ”small” dimension}

U can not intersect Osd : U ∩Osd = ∅



Singular locus of ΠU(C)

U

X1

X2

Singular locus of the projection

Osing = Singular locus of ΠU(C)

U can not intersect Osing : U ∩Osing = ∅



Inequations !

A "proper" intersection

Projections of the points removed by the inequations

X

U

Points removed by the inequations

A non "proper" intersection

X

U

A component "removed" by an inequation

Study C̄ = V (〈E 〉: (
∏

f∈F f)∞) = V (〈E 〉) \V (
∏

f∈F f).

OF = {u∈ΠU(C), ΠU
−1(u)∩V (

∏

f∈F f)∩ C̄}

U can not intersect properly Of : U ∩OF = ∅ or U



Solving ???

Summary : if U is s.t. u� #ΠU
−1(u) is constant on U , then U can not

intersect properly O∞∪Oc∪Osd ∪OF with

O∞ = {u ∈ ΠU(C̄), for any compact neightborhood V ∋ u, ΠU
−1(V) ∩ C̄ is not

compact}

Oc = {critical values of ΠU} ∪ {singular points of C}

Oc = singular points of ΠU(C)

Osd= projection of the components of C of dimension less than dim(ΠU(C))

OF={u∈ΠU(C̄), ΠU
−1(u)∩ C̄ ∩V (

∏

f∈F f)

Proposition : If U ⊂ ΠU(C) is any submanifold which do not meet O∞ ∪

Oc∪Osd ∪OF, then ΠU: C ∩ΠU
−1(U)� U is a (analytic) covering.

In particular, the number of roots of C is constant over U and we have
a “simple” description of C over U .

⇒Definition of “solving” a parametric system independent from any compu-
tational strategy.



With a computational point of view

Proposition WD = O∞∪Oc∪Osd ∪OF is Zariski closed.

1)
Cd ×Cn−d canonical Cd ×Pn−d canonical Cd

C̄
z � C̄

p

C̄
p
∩H∞ � O∞= O∞

2) ΠU(C) = ΠU(C)∪O∞

3) Oxx ⊂Oxx ⊂Oxx ∪O∞

Remarks :

• ΠU
−1(ΠU(C) \ WD) ∩ C is the set of “generic” resolution of C (the pro-

jection is a submanifold of dimension δ = dim(ΠU(C))).

• “non generic parameters” (submanifolds of dimension < δ) belong to
WD. They can be separately studied : C ∩WD is ”smaller’ parametric
system.



Complex Discriminant Varieties

Definition 1. WD = O∞ ∪ Oc ∪ Osd ∪ OF ∪ Osing is the minimal discrimi-
nant variety of C w.r.t. ΠU.

An algebraic variety W is a (large) discriminant variety of C w.r.t. ΠU iff:

• WD ⊂W $ ΠU(C)

• W = ΠU(C) iff C |U=u is infinite or empty for almost all u∈ΠU(C);

A D.V. is an algebraic variety W such that :

• ΠU(C) \ W = ∪i=1
k Ui is a finite union of submanifolds of dimension

dim(ΠU(C)).

• ΠU: ΠU
−1(U i)∩C� Ui is a (analytic) cover ∀i.



Discriminant Varieties in the Real case

If WD is a minimal discriminant variety for C wrt ΠU, then either WD ∩ Rd

is a (non necessarilly minimal) discriminant variety for S wrt ΠU or WD

contains ΠU(S).

In the second case, we simply replace S by S ∩ WD and compute again (the
dimension of the projection then decreases).

Note that this correspond tho the case where the dimension of the real
counterpart of the main components (those of dimension δ whose projection
is not contained in WD) differ from the “complex” dimension.

To detect this : S |U=u has no solutions ∀u∈ΠU(C)∩Rd \WD

The “real” version of the minimal discriminant variety is a semi-algebraic
set.



Discriminant Varieties in the Real case

Over each connected component of ΠU(S) \WD :

• the number of real roots is constant;

• the sheets are locally diffeomorphic to the connected components;

For “solving“ the initial problem, one needs to describe the connected com-
ponents of ΠU(C)∩Rd \WD (we “eliminated“ n− d variables).

• Compute one point on each C.C. (Roy, Safey, TERA,..) + solving a
zero-dimensional system : qualitative information.

• Compute a Cylindrical Algebraic Decomposition adapted to the poly-
nomials defining the discriminant variety : full description.

• In practice : we use a “partial” CAD - avoid most projections as well
as computations with algebraic numbers. In short : do not decom-
pose WD.

[optional] : For a full description : apply the algorithm on S ∩WD.



Examples of Large Discriminant Varieties

• Rational parametrizations : discriminant + leading coefficient of the uni-
variate polynomial - depends on the choice of a generic change of variables;

• Cylindrical Algebraic decomposition (eliminate the indeterminates first) :
the polynomials obtained after n − d projections - depends on the order in
which the projections are computed + consequences of the elimination vari-
able by variable.

• Regular and separable triangular sets : leading coefficients in the main +
discriminants in the main variable.

• (*) Vectors of multiplicities (Grigoriev and Vorobjov) : partition with much
more elements (decomposes also the non generic solutions).

(*) ⇒ ∃ a single exponential algorithm computing a large discriminant

variety.

A challenge : compute a minimal discriminant variety



Remark

When n − d = 1, the discriminant variety coincides with the zero set of the
polynomials obtained after the first projection step in a CAD when starting
with Xn. For n− d > 1 it is smaller :

Oinfty

U

X1

X2

Discriminant variety of a 3−D curve

Oc Osd



Well-behaved systems

Most systems comming from applications (outside mathematics) are s.t. :

• for almost all u ∈ Rd, the real roots of E |U=u = 0 can be computed

(real roots) by a basic version of Newton’s method

Most of them verify the following conditions (well-behaved systems)

• #E = n− d;

• ΠU(V (〈E 〉)) = Cd;

• 〈E |U=u
〉⊂C[X ] is radical and zero-dimensional for allmost all u∈Cd.



An example : cuspidal serial manipulators
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End-user query : for which design parameters these kind of robot can
change of posture without crossing a singularity ?



Cuspidal serial robots

Robotician query :

one can eliminate 2 angles θ1 and θ2, assume that d2 = 1 without lost of gen-
eralty and show that the problem is equivalent to deciding if a uni-

variate polynomial p of degree 4 in tan(
θ3

2
) has or not triple real

roots, its coefficients depending on 2 indeterminates ρ, z (ρ2 = x2 + y2, x,

y, z being the coordinates of the end-effector) and on 3 parameters d4, d3, r2

(design parameters).

Our problem : decide for which values of d4 > 0, d3 > 0 and r2 > 0 a system

of 3 equations {p(d4, d3, r2, z, ρ, T ) = 0,
∂

∂T
p(d4, d3, r2, z, ρ, T ) = 0,

∂2

∂T 2
p(d4, d3,

r2, z, ρ, T )= 0} has real admissible solutions (ρ > 0).



ΠU(C̄) and OF

• 〈E 〉: (
∏

f∈F f)∞ =
(

〈E 〉+ 〈T
(

∏

f∈F f
)

− 1〉
)

∩ Q[U , X]

• C̄ = V (〈E 〉: (
∏

f∈F f)∞)= V (〈E 〉) \ (∪f∈F V (f))

Known result : If G is a Gröbner basis for any product of orderings
<U,X = ( <U , <X ) with Ui <U,X Xj , ∀i, j, then G∩ Q[U ] is a Gröbner basis
for <U of 〈G〉 ∩ Q[U ].

In particular ΠU(V (G)) = V (〈G ∩ Q[U ]〉) so that we can “efficiently” com-

pute ideals IΠ and IF such that V (IΠ) = ΠU(C̄) and V (IF)= OF.

In practice : <U and <X can be DRL orderings

Remark : valid for any parametric systems !



O∞

G a Gröbner basis of 〈E 〉 wrt a DRL-block ordering <U,X .

Theorem 2. if E0 = G
⋂

Q[U ]. Then:

• E0 is a Gröbner basis of I
⋂

Q[U ] w.r.t. <U ;

• Set Ei
∞ = E0∪E i

∞ for i = d + 1�n

• E i
∞ is a Gröbner basis of some ideal Ii

∞⊂ Q[U ] w.r.t. <U ;

• W∞=
⋃

i=d+1

n
V (Ii

∞)

Nothing to “compute“ when G is known !

Remark : valid for any parametric systems



Computing Oc and Osd

The main computational problems :

• Jacobian criteria are independant from the equations in the case of
radical and equi-dimensional ideals.

In such cases Oc = V (〈E 〉 + JacX
n−δ(E)) ∩ Q[U ])(〈E 〉 + JacX

n−δ(E)) ∩
Q[U ]).

• In the general case, V (〈E 〉+ JacX
n−δ(E))∩ Q[U ])∩ Q[U ])

→ may give too much points (non radical ideals, embeeded components)

→ may miss some points (components of small dimension)

→ may be of same dimension than ΠU(C) (non radical ideals)

• We want to avoid as most as possible to compute a decomposition of the ideal

into radical and/or equi-dimensional components (avoid also primary decomposi-

tions)



In the case of well-behaved systems

One can not suppose, even in practice, that 〈E 〉 is radical or

equidimensional

artefacts from modelizations (from fractions to polynomials, changes of coordinates like

t = tan(α/2), etc.) often introduce primary but not prime components of arbitrary dimen-

sions.

BUT in the case of well-behaved systems :

• the components of dimension < n − d are ”embeeded” components
since #E = n− d (in particular Osd = ∅).

• the projection of the zero set of components of dimension > n− d are
in O∞

Theorem 3. (Well-behaved systems) Osd = Osing = ∅ and :

WD = O∞∪OF ∪V (〈E 〉+ JacX
n−δ(E))∩ Q[U ]) = O∞∪OF ∪Oc

(use Krull’s principal theorem and the hypothesis “〈E 〉 ⊂ Q(U)[X] is zero-
dimensional”)



Remarks

Let ∩i=1
k Qi∩i=k+1

k ′

Qi
′∩i=k ′+1

k ′′

Qi

′′

be a minimal primary decomposition of I

with V (I) = C̄ such that

• dim(Qi)= dim(Qi∩ Q[U ]) = dim(ΠU(C));

• dim(Qi
′)< dim(ΠU(C)) and dim(Qi

′∩ Q[U ]) = dim(Qi
′);

• Qi

′′

: all the other components;

Remark : ∪i=k ′+1
k ′′

ΠU(V (Qi
′′))⊂O∞;

Remark : for many applications one can ignore the Qi
′;

ex : dim(ΠU(V (I + JacX
n−δ(E))) < dim(ΠU(C)), W = Osd ∪Oc ∪OF ∪Osing ∪

ΠU(V (I + JacX
n−δ(E))) is a discriminant variety of V (C) \∪i=k+1

k ′

V (Qi
′).



In practice

Assume the system is “well-behaved” and start the computation ”as if”.

Can test the hypothesis during the algorithm (avoids to perform a lot of
costly operations before trying to solve the problem) : number of equations,
I zero-dimensional in Q(U)[X] (generically zero-dim ?), dimension of the
elimination ideal of the Jacobian ideal (radical ?).

In any case, OF, O∞, ΠU(C) are definitively computed.

If Osd is not detected to be empty (bad number of equations) : let the
choice to the end-user, he can obtain a large discriminant variety of
the ”main” components of the system.

When dim(ΠU(V (I + JacX

n−δ(E))) < dim(ΠU(C)) we get a large dis-

criminant variety by replacing Oc by ΠU(V (I + JacX
n−δ(E))) which is strict

in the case of “well-behaved“ systems.



When we can not avoid the decomposition

Let ∩i=1
k Qi ∩i=k+1

k
′

Qi
′ ∩i=k′+1

k
′′

Qi

′′

be a minimal primary decomposition of I with
V (I) = C̄ such that

• dim(Qi)= dim(Qi∩ Q[U ])= dim(ΠU(C));

• dim(Qi
′) < dim(ΠU(C)) and dim(Qi

′∩ Q[U ]) = dim(Qi
′);

• Qi

′′

: all the other components;

We only need to compute Osd \ O∞ and Oc \ O∞ for the primary non prime

components Qi of I of dimension δ = dim(ΠU(C)) with dim(ΠU(Qi)) =
dim(Qi).

One challenge : computing efficiently ∩i=1
k Qi

√

and
(

∩i=k+1
k ′

Qi
′
)

∩ Q[U ]

One idea : “extension”(Q(U)[X])+localization by I∞+”contraction”

(A new strategy for primary decomposition ?)



Back to the application

Number of real roots over the 2-D cells between two sheets

(d3, r2) : 2-D cells \ d4(sheets) 1 2 3 4 5 6 7

(1,1) 0 0 4 4 2 0 0
(1,2) 0 4 4 4 2 0 0

(1,3) 0 4 4 4 2 0 0

(1,4) 0 4 4 2 2 0 0
(1,5) 0 4 4 2 0 0 0

(2,1) 0 0 4 4 2 2 0

(2,2) 0 4 4 4 2 2 0
(2,3) 0 4 4 4 2 2 0

(2,4) 0 4 4 2 2 2 0

(3,1) 0 4 4 4 2 2 4
(3,2) 0 4 4 4 2 2 4

(3,3) 0 4 4 2 2 2 4

(4,1) 0 4 4 4 2 2 4
(4,2) 0 4 4 2 2 2 4

(5,1) 0 4 4 2 2 2 4



Conclusion

Discriminant Variety

Optimal object (at least in the complex case);

Efficiently computable for a large class of systems with existing tools;

Easy to implement : few basic black boxes - elimination of a block of vari-
ables, saturation of an ideal by one polynomial, zero-dimensional solving.

New : the complexity is simple exponential (algorithm + objects) for well-
bahaved systems (G. Moroz - 2006).

Challenges :

• lazy decompositions of ideals knowing “I∞” ??;

• other specifications than CAD for describing the cells of the comple-
mentary of an hypersurface ??;

• recusrsive use to describe the “non” generic solutions ??;

• back boxes for quantifier elimination (see D. Lazard’s talk) : cell
decomposition of basic semi-algebraic sets, ... ??


