
On solving zero-dimensional and
parametric systems

Fabrice Rouillier
Fabrice.Rouillier@inria.fr - http://fgbrs.lip6.fr/~rouillie

SALSA (INRIA) project and CALFOR (LIP6) team

Paris, France

General Objectives

E = {p1,� , pr},F = {f1,� , fl}, with pi, fi ∈Q[U , X]

U = U1,� , Ud⇒parameters

X = Xd+1,� , Xn⇒ indeterminates

C = {x∈Cn, p1 = 0,� , pr = 0, f1� 0,� , fs� 0}

S = {x∈Rn, p1 =0,� , pr =0, f1 > 0,� , fs > 0}

In part 1 : we suppose that d = 0 (no parameter) and that the
ideal 〈p1, � , pr〉 is zero-dimensional (finite number of complex
zeroes).

In part 2 : we suppose that d� 0 and that the ideal 〈p1,� , pr〉U=u

is zero-dimensional for almost all u ∈ Cd (general results will be
described but only this case will be detailed).

General Objectives (2)

The goal is to propose mathematical objects and algorithms to SOLVE such
systems. The end-user queries we are interested in are (see G.-M. Greuel’s
talk):

• Zero-dimensional systems :

◦ count the real / complex roots ;

◦ detect multiple points and compute multiplicities ;

◦ provide an acurate and certified approximation of the roots ;

◦ signs of polynomials at the real roots of a system ;

• Parametric systems :

◦ count the real / complex roots wrt parameter’s values ;

◦ describe geometrically the solutions set ;

◦ provide formal expressions of the roots ;

◦ provide numerically stable solutions.

General Objectives (3)

Constraints :

• Exact/certified results : a real root is not a complex root with a
small imaginary part ... A numerical approximation must be certified
with respect to a precision given by the end-user, etc.

• Universal algorithms : being able to check the assumptions (for
example zero-dimensional) and the mathematical arbitrary choices
(so called “generic” choices).

• Efficiency : computation time (bit operations) but also memory con-
summing.

Part 1 : Zero-dimensional Systems

Univariate case

We assume that we know how to solve the univariate case (at least in the
real case) :

Counting/isolating real roots : Descarte’s based methods, Sturm sequences
etc.

Evaluating polynomials (or their signs) at the roots of a univariate polyno-
mial.

More details / examples will be given in workshop B2 (Feb 27 - March 3)

A reference book :

Algorithms in Real Algebraic Geometry - Basu Pollack and Roy (Springer)

Notations

• E = {p1,� ps}⊂Q[X1,� , Xn], 〈E 〉 is the ideal generated by E ;

• V (E) ⊂ Cn is the zero set of 〈E 〉 or equivalently the set of complex
solutions of {x∈Cn, p1(x) = 0,� , pn(x) = 0};

• x∈Cn, xi denotes its i-th coordinate.

Using Gröbner bases (see C. Traverso’s talk)

Theorem 1. Let G = {g1, � , gl} be a Gröbner basis for any ordering < of E =
{p1,� , ps}∈Q[X1,� , Xn]s. The following properties are equivalent:

• For all index i, i = 1�n, there exists a polynomial gj ∈ G and a positive
integer nj such that Xi

nj =LM (gj , <);

• The system {p1 = 0,� , ps =0} has a finite number of solutions in Cn.

•
Q [X1,� , Xn]

〈G〉
is a finite dimensional Q-vector space

Proof. According to Theorem 3, the 2nd and 3rd items are equivalent;

First item implies that ∀i = 1�n, ∃mi s.t. 1, � , Xi
mi are lineary dependent

(modulo I) and thus implies 3rd item.

3rd item implies that ∀i = 1�n, ∃mi s.t. 1, � , Xi
mi are lineary dependent (modulo

I) so that ∃pi ∈Q[Xi], pi ∈ 〈G〉. Thus, normalForm(pi, G, < 0) = 0 ⇒ ∃gi ∈G such
that LM(gi, <) divides LM(pi, <)= Xi

αmi , α∈N. �

Corollary 2. B = {t = X1
e1 ·Xn

en , (e1, � , en) ∈Nn| normalForm(t, G, <) =
t}= {w1,� , wD} is a basis of Q[X1,� , Xn]/〈E 〉 as a Q-vector space;

Counting the solutions (C. Traverso’s talk)

Definition 3. The multiplicity µ(α) of α ∈ V (〈E 〉) is the dimension of the

localization of
C [X1,� , Xn]

〈E〉
at α (denoted by

(

C[X1,� , Xn]

〈E〉

)

α
).

Theorem 4.
C[X1,� , Xn]

〈E〉

< ∏

α∈V (〈E〉)

(

C[X1,� , Xn]

〈E〉

)

α
.

Proof.

• ∀α ∈ V (〈E 〉), ∃eα ∈
C [X1,� , Xn]

〈E〉
such that

∑

α∈V (〈E〉)
eα = 1, eα eα′ = 0 if α � α′,

eα
2 = eα. (consequence : eα(α) = 1 and eα(β) = 0 if β � α∈V (〈E 〉))

◦ sα =
∏

β�α

X1 − β1

α1 − β1
: ∃nα ∈N s.t. tα = sα

nα : tα(α) = 1 and tαtβ = 0;

◦ 〈tα, α∈V (〈E 〉)〉= 〈1〉 ⇒∃rα,
∑

α∈V (〈E〉)
rαtα = 1. Set eα = rαtα.

• eα

(

C [X1,� , Xn]

〈E〉

)< (

C [X1,� , Xn]

〈E〉

)

α
�

Corollary 5. The dimension of
Q [X1,� , Xn]

〈E〉
equals the number of complex

zeroes of 〈E 〉 counted with multiplicities.

Stickelberger’s theorem (C. Traverso’s talk)

Definition 6. Let h∈C[X1,� , Xn];

mh:
C[X1,� , Xn]

〈E〉
� C[X1,� , Xn]

〈E〉

u � hu

Theorem 7. The eigenvalues of mh are the h(α), α ∈ V (〈E 〉)with multi-
plicity µ(α).

Proof.

• eα(f − f(α))(β)= 0, ∀β ∈V (〈E 〉)⇒∃nα∈N, eα(f − f(α))nα∈ 〈E 〉

• ⇒ the restriction of meα(f−f(α)) to
(

C [X1,� , Xn]

〈E〉

)

α
is thus nilpotent

so that 0 is its unique eigenvalue (of multiplicity µ(α) =

dim
((

C[X1,� , Xn]

〈E〉

)

α

)

).

• ⇒ conclude using Theorem 4 : eα

(

C[X1,� , Xn]

〈E〉

)< (

C[X1,� , Xn]

〈E〉

)

α
and

C[X1,� , Xn]

〈E〉

< ∏

α∈V (〈E〉)

(

C[X1,� , Xn]

〈E〉

)

α
. �

Application of Stickelberger’s theorem

Corollary 8. (Stickelberger)

• Trace(mh) =
∑

α∈V (〈E〉)
µ(α)h(α);

• Charpol(mh, T) =
∏

α∈V (〈E〉) (T −h(α))
µ(α)

• Det(mh) =
∏

α∈V (〈E〉)
h(α)µ(α)

Examples of use :

• h = 1 : Trace(m1)= dim
(

C [X1,� , Xn]

〈E〉

)

• h = Xi : Charpol(mXi
, T) =

∏

α∈V (〈E〉) (T − αi)
µ(α)

, and thus

V (Charpol(mXi
, T)) = {αi, α∈V (〈E 〉)}

C. Traverso’s talk : A first objective is to COMPUTE explicitly the
matrices mXi

, i = 1�n.

Computing in the quotient algebra

(C. Traverso’s talk)

For computing a matrix of mXi
, we need :

• A (monomial) basis B = {w1, � , wD} of
Q [X1,� , Xn]

〈E〉
(or equivalently

of
C [X1,� , Xn]

〈E〉
) : can be deduced from a Gröbner basis for any

ordering

• A way for computing the class h of h ∈ Q[X1, � , Xn] in
Q [X1,� , Xn]

〈E〉

as a vector wrt B (denoted by hG B
from now) : for example the “nor-

malForm”.

For example, the colums of the matrix of mh wrt B are the coordinates of

h wi
B
.

Counting distinct roots

The matrix of MXi
wrt B has Xiw1, � , XiwD as columns. If E has rational

coefficients, then G⊂Q[X1,� , Xn] and MXi
has also rational entries.

One can compute its characteristic polynomial and apply any univariate
solver to isolate all the possible real i-th coordinates of the zeroes of 〈E 〉.

Definition 9. (Separating element) Let t ∈ Q[X1, � , Xn]. t separates
V (〈E 〉) if ∀(α, β)∈V (〈E 〉)2, α� β⇒ t(α)� t(β).

Lemma 10. t separates V (〈E 〉)⇒ ♯V (charpol(Mt))(∩Rn)= #V (〈E 〉)(∩Rn)

Lemma 11. Almost all polynomials separate V (〈E 〉) $Cn.

⇒Probabilistic algorithm for computing ♯V (〈E 〉) or ♯V (〈E 〉)∩Rn

Lemma 12. charpol(Mt) squarefree ⇒ t separates V (〈E 〉).

⇒Deterministic filter

A (naïve) deterministic algorithm

Lemma 13. if d = ♯V (〈E 〉) < D, ∃t ∈ {
∑

i=1
n

ji−1Xi, j = 0�n
d (d − 1)

2
} such

that t separates V (〈E 〉).

Proof. Let (α, β)∈V (〈E 〉), α� β.

• pα,β(T) =
∑

i=1
n

T i−1(αi − βi) � 0. Thus ♯V (pα,β) < ∞ and there
exists at most n integers j such that pα,β(j) = 0.

• the number of distinct couples (α, β) ∈ V (〈E 〉)2 is
d(d − 1)

2
, so there

exists at most n
d (d − 1)

2
intergers j such that there exists (α, β) ∈

V (〈E 〉)2, α� β with pα,β(j) = 0 �

Lemma 14. t separates V (〈E 〉) iff

♯V (charpol(mt)) =max (♯V (charpol(m∑

i=1
n ji−1Xi

)), j = 0�n
d (d − 1)

2
)

Hermite’s quadratic form

Double goal : count the distinct complex/real roots - decrease the number
of operations for searching a separating element.

Definition 15. (Hermite’s quadratic form). For f ∈Q[X1,� , Xn] :

qf:
Q [X1,� , Xn]

〈E〉

� Q

hG � Trace(mfh2)

Theorem 16. For f ∈Q[X1,� , Xn],

• rank(qf)= #{x∈V (〈E 〉), f(x)� 0}

• signature(qf)= #{x∈V (〈E 〉)∩Rn, f(x) > 0}−#{x∈V (〈E 〉)∩Rn, f(x) < 0}

Corollary 17. Taking f = 1 :

• rank(q1) = #V (〈E 〉)

• signature(q1)= #(V (〈E 〉)∩Rn)

Hermite’s quadratic form

Set d = #V (〈E 〉), t a separating element of V (〈E 〉).

• ∃wd
′ ,� , wD

′ st {wi
′}i=1

D = {1, t,� , td−1, wd
′ ,� , wD

′ } is a basis of
Q [X1,� , Xn]

〈E〉
;

• qf(hG) =
∑

α∈V (〈E〉)
µ(α)f(α)

(

∑

i=1

D
hiwi

′(α)
)2

for hG =
∑

i=1

D
hiwi;

• qf(hG) = (h1,� , hD)Γt









µ(α1) f1 0 � 0
0 �

 � 0
0 � � µ(αd) fd









Γ









h1

hD









with Γ =





1 t(α1) � t(α1)
d−1

1 t(αd) � t(αd)
d−1

wd(α1) � wD(α1)

wd(αd) � wD(αd)





• qf(hG) =
∑

α∈V (〈E〉)
µ(α)f(α)(lα(h))

2

• if α� α, µ(α)f(α)(lα(h))
2
+ µ(α)f(α)(lᾱ(h))

2
= l1,α(hG)2− l2,α(hG)2, l1,α, l2,α

being linar forms with real coefficients.

• lα, l1,α, l2,α linearly indep ⇒ hG � ∑

α∈V (〈E〉)∩Rn µ(α)f(α)(l(α, h))
2
has

the same signature as qf.

Variable’s elimination

An easy example :

• compute G a Gröbner basis of 〈E 〉;

• compute D = dimQ
Q [X1,� , Xn]

〈E〉
and {w1,� , wD} from G;

• compute 1G , X1, � , X1
D−1 (normalForm) and check they are lineary

independant;

• if so, solve the linear system
[

1G , X1,� , X1
D−1

]

β =
[

X1
D , X2,� , Xn

]

and get a system equivalent to E :























X1
D−

∑

i=0
D−1

β1,i+1X1
i = 0

X2−
∑

i=0
D−1

β2,i+1X1
i = 0

Xn−
∑

i=0
D−1

βn,i+1X1
i = 0

• ELSE ??

Lexicographic Gröbner bases

By change of ordering (FGLM algorithm - see C. Traverso’s talk)

Suppose that
Q [X1,� , Xn]

〈E〉
is computed (Gröbner basis G wrt any monomial

ordering < and a monomial basis B= {w1,� , wD}).

Strategy : compute the image mG Bof monomials m in increasing order wrt
the lexicographic ordering until getting a set D = #B Q-linearly indepen-

dant vectors w1
′ ,� , wD

′ } (w1
′ = 1 and wi−1

′ <lex wi
′, i = 2�D).

Solve
[

w1
′ ,�wD

′
]

β =
[

Xiwj
′
]

i=1� n,j=1�D
, set gi,j = Xiwj

′ −
∑

k=1
D

βi,j,kwk
′

Theorem 18. G′ = {gi,j , i = 1�n, j = 1�D} is a Gröbner basis wrt <lex

of 〈E 〉.

Proof. ∀p ∈ 〈E 〉, ∃g ∈ G′ s.t. LM(g, <lex) divides LM(p, <lex) since other

else p =
∑

i=1
D

aiwi
′ (and thus do not belongs to 〈E 〉) �

Remarks on lexicographic Gröbner bases

General shape in the zero-dimen-
sional case for <lex :






















































f1(X1)
f2(X1, X2)

fk3−1(X1, X2)
fk3

(X1, X2, X3)

fkn
(X1,� , Xn)

fkn +1(X1,� , Xn)

Case of ideals in “Shape position
ideals for <lex ” (degree(f1)= D) :














f1(X1)
X2− f2(X1, X2)

Xn− fn(X1,� , Xn)

This occurs for example when X1 is

separating and 〈E 〉= 〈E 〉
√

.

Triangular sets (lexicographic Gröbner bases in the zero-dimensional case) :














f1(XI)= 0
X2

n2 + f2(X1)= 0

Xn
nn + fn(X1,� , Xn−1)= 0

The case of radical ideals

Main remark : if t ∈ Q[X1, � , Xn] separates V (〈E 〉) and if 〈E 〉 = 〈E 〉
√

, then assuming
that T is a new variable, 〈E ∪ {T − t}〉 is in shape position for <lex with
T <lex X1 <lex � <lex Xn.

Proof : charpol(mt) =
∏

α∈V (〈E〉)
(T − t(α)) =minpol(mt) is squarefree.

An algorithm :

• compute G a Gröbner basis of 〈E 〉 for <DRL , B = {w1, � , wD} a basis of
Q [X1,� , Xn]

〈E〉
and d = #V (〈E 〉) (Hermite’s quadratic form);

• compute pt = minpol(mt) for t ∈ {
∑

i=1
n

ji−1Xi, j = 0�n
D(D − 1)

2
} until

degree(squarefree(pt)) = d;

• if degree(pt) = D solve
[

1G , tG ,� , tD−1
]

β =
[

tD , X1,� , Xn

]

and return

E ′= {T1
D −

∑

i=0
D−1

β1,i+1T
i,Xj −

∑

i=0
D−1

β2,i+1T
i, j = 1�n}

(

x = (x0, x1,� , xn)∈V (〈E ′〉)⇔x = (x1,� , xn)∈V (〈E 〉)
)

• ELSE ?

Remarks

There exists algorithms to compute the radical of an ideal but they are inef-
ficient for large problems. They require the computation of several Gröbner
bases ;

For some problems, one would also like to compute the multiplicities of the
solutions ...

Note that the above algorithm may compute O(n D2) minimal polynomials
before concluding with a failure !

At this stage : we do not know how to reduce the problem (efficiently) to an
easy univariate one when the ideal is not in “shape position”;

Numerical instability : the polynomials in a lexicographic Gröbner basis
have HUGE coefficients (excepted the first one) : this often forbids to plug
numerical approximations of the roots of the first polynomial into the basis
to get an accurate approximation of the coordinates for large examples.

The Rational Univariate Representation (RUR)

Definition 19. For t∈Q[X1,� , Xn]:

• ft =
∑

i=0

D
aiT

D−i = charpol(mt), ft̃ square-free part.

• ∀v ∈Q[X1,� , Xn], gt,v(T)=
∑

i=0

d−1
Trace(mvti)Hd−i−1(ft̃ , T), where

d = degree(ft̃) and Hj(ft̃ , T) =
∑

i=0

j
aiT

j−i

Theorem 20. If t separates V (〈E 〉), then

V (〈E 〉)(∩Rn) ≈ V (ft)(∩R)
α = (α1,� , αn) → t(α)

Rt(β)= (
gt,X1(β)

gt,1(β)
,� ,

gt,Xn(β)

gt,1(β)
) ← β

and :

• ft∈Q[T] and ∀v ∈Q[X1,� , Xn], gt,v ∈Q[T];

• µ(α)= µ(t(α)) = µ(Rt(t(α)))=
(ft

′)(t(α))

(ft)
′
(t(α))

This generalizes the “elimination process” to the case of non radical ideals

The RUR : Proof

By construction, ft∈Q[T] and ∀v ∈Q[X1,� , Xn], gt,v ∈Q[T];

Thus V (〈E 〉)≈V (ft)⇒V (〈E 〉)(∩Rn)≈V (ft)(∩Rn).

By Stickelberger’s theorem, ft(T)=
∏

α∈V (〈E〉)
(T − t(α))µ(α).

Thus ft(T)=
∏

α∈V (〈E〉)
(T − t(α))

Consider gv,t =
∑

α∈V (〈E〉)
µ(α)v(α)

(

∏

β∈V (〈E〉),β�α
(T − t(β))

)

if t separates V (〈E 〉)

• gt,v(t(α))= µ(α)v(α)
(

∏

β∈V (〈E〉),β�α
(t(α)− t(β))

)

• (ft(T)′) = gv,1(T) =
∑

α∈V (〈E〉)
µ(α)

(

∏

β∈V (〈E〉),β�α
(T − t(β))

)

• (ft(T))′ =
∑

α∈V (〈E〉)

(

∏

β∈V (〈E〉),β�α
(T − t(β))

)

so that v(α) =
gt,v(t(α))

gt,1(t(α))
and µ(α) =

(ft
′)(t(α))

gt,1(t(α))
=

(ft
′)(t(α))

(ft)
′
(t(α))

The RUR : Proof

To prove the theorem, we finally need to show :

gv,t(T)=
∑

α∈V (〈E〉)
µ(α)v(α)

(

∏

β∈V (〈E〉),β�α
(T − t(β))

)

=
∑

i=0
d−1 trace(mvti)Hd−i−1(ft̃ , T)

with ft̃ =
∑

i=0
D

aiT
D−i =

∏

α∈V (〈E〉)
(T − t(α))

and Hj(ft̃ , T)=
∑

i=0
j

aiT
j−i

gv,t(T)

ft̃(T)
=

∑

α∈V (〈E〉)

µ(α)v(α)

T − t(α)
=

∑

i≥0

∑

α∈V (〈E〉)
µ(α)v(α)t(α)i

T i+1 =

∑

i≥0

trace(mvti)

T i+1

gv,t(T) =
∑

i=0
d−1 ∑

j=0
d−i−1

trace(mvti)ajT
d−i−j−1 =

∑

i=0
d−1

trace(mvti)Hd−i−1(ft̃ , T)

The RUR : a naïve algorithm

Algorithm :

• compute G a Gröbner basis of 〈E 〉 for <DRL , B = {w1, � , wD} a basis of
Q [X1,� , Xn]

〈E〉
and d = #V (〈E 〉) (Hermite’s quadratic form);

• compute ft = charpol(mt) for t ∈ {
∑

i=1

n
ji−1Xi, j = 0�n

D(D − 1)

2
} until

degree(ft̃)= d;

• compute Trace(mXi tj), i = 1�n, j = 1� d; and deduce;

• return gt,v(T)=
∑

i=0

d−1
trace(mvti)Hd−i−1(ft̃ , T) for v = 1, X1,� , Xn

Remarks :

• Trace(mXi tj)⇒ normalForm(Xit
jwk), i = 1�n, j = 1�D, k = 1�D

⇒O(n D2 N), N ≫D = cost of normalForm

• Hermite’s quadratic form Trace(wiwj)⇒ normalForm(wiwjwk), k =1�D

⇒O(D3 N), N ≫D= cost of normalForm

• charpol(mt)⇒O(D4) (with a naïve algorithm)

• Theoretical complexity : ≫ O(n D6) arithm. operations, ”Practical” complexity :
≫O(D4 + n D3) arithm. operations

The RUR : remarks

For computing RUR, we only need

• a monomial basis B = {w1, � , wD} of
Q [X1,� , Xn]

I
; Suppose that w1 =

1 and ∀i > 1, ∃k, wi = Xkwj
′

• the matrices MXi
of mXi

wrt B;

This input can be provided by Gröbner bases but also by some new alterna-
tives (B. Mourrain and P. Trebuchet’s work).

From now we suppose we only have these data as input and that
the rational numbers in the MXi

are of binary size t.

The goal is now to design an efficient algorithm (binary complexity) for
computing the RUR.

Objectives

RUR = separating element t AND a RUR-Candidate {ft(T), gt,1(T),
gt,X1(T),� , gt,Xn

(T)} : if t separates V (I),

V (〈E 〉)(∩R) ≈ V (ft)(∩R)
α = (α1,� , αn) → t(α)

(X1(α) =
gt,X1(t(α))

gt,1(t(α))
,� , Xn(α)=

gt,Xn(t(α))

gt,1(t(α))
) ← t(α)

preserving multiplicities and real roots.

Many variants for computing a RUR-Candidate - few solutions for com-
puting a RUR. This difference is critical for “decision” algorithms.

Can be computed as a lexicographic Gröbner basis when I is radical and X1

separates V (〈E 〉)(Faugère, Yokoyama, ... multi-mod. or p-adic methods).

A major problem is to check that a RUR-Candidate is a RUR or equiva-
lently that t separates V (〈E 〉) for non radical ideals.

From “few” traces

Theorem 21. Given q1[1] = [Trace(mw1),� ,Trace(mwD
)] (first line of Her-

mite’s quadratic form), a RUR-Candidate can be computed in O(D3 +
n D2) arithmetic operations.

Proof. See algorithms below �

The first polynomial

According to Stickelberger’s theorem, Trace(mti) =
∑

i=1
D

αi is the i-th

Newton’s sum of ft = charpol(mt) =
∑

i=0
D

aiT
D−i. One can thus deduce

the coefficients of ft from the scalars Trace(mti), i = 0�D by solving the tri-

angular linear system :
{

(D− i) ai =
∑

j=0
i−1

ai−jTrace(mtj)
}

i=0�D

Algorithm charpol :

Input = q1[1] = [Trace(mwi
)]i=1�D, + B + MXi

, i = 1�n

yG = [1, 0,� , 0]; Mt =
∑

i=1
D

tiMXi
;

For i = 0�D do

• Trace(mti) = yG · q1[1]

• yG = Mt · yG /* at the i-th step yG = tiG
Solve (D− i) ai =

∑

j=0
i−1

ai−jTrace(mtj)

O(D3) operations (note this is a general algorithm for computing the char-

acteristic polynomial of any element in
Q [X1,� , Xn]

I
.

The coordinates

Algorithm coordinates :

Input = data from algorithm charpol + ft

ft̃ =
∑

i=0

j
aiT

d−i the squarefree part of ft

For i = 0� d Hi(ft̃ , t) =
∑

j=0

i
aj ti−j�

already computed

For v ∈{1, X1,� , Xn}

• [Trace(mvw1
),� ,Trace(mvwD

)] = Mv · q1[1]t

• For i =� d− 1

Trace(mvHi(t))= Hi(t) · [Trace(mvw1
),� ,Trace(mvwD

)]t

gt,v(T)=
∑

i=0

d−1
Trace(mvHi(ft ,t))T

d−i−1 =
∑

i=0

d−1
Trace(mXjti)Hd−i−1(ft̃ , T)

O(n D2) arithmetic operations

Computing Hermite’s quadratic form

q1 = [Trace(mwiwj
)]i=1�D

j=1�D

Remark :

• Trace(wiwj) = wiwj · q1[1];

Proposition 22. Hermite’s quadratic form can be computed from q1[1] per-
forming O(#TD) arithmetic operations where T = {wiwj , i = 1�D, j =
1�D}.

RUR from “few” traces

Algorithm RUR-Classic :

Input = q1[1] = [Trace(mwi
)]i=1�D, + B + MXi

, i = 1�n

• d = #V (〈E 〉) (Hermite’s quadratic form); O(D3)

• compute ft = charpol(mt) for t ∈ {
∑

i=1
n

ji−1Xi, j = 0�n
D(D − 1)

2
}

until degree(ft̃)= d; O(D3)− practical / O(n D5)− theoretical

• compute gt,v, v = 1, X1,� , Xn O(n D2)

• return ft, gt,v, v = 1, X1,� , Xn

The theoretical complexity is a worst case : all the possible separating ele-
ments excepted the last one are not separating.

In practice, I haven’t any example with more than two tries ...

RUR from a multiplication table

Definition 23. T = {wjwj , i = 1�D, j = 1�D}

Remark : #T < D2

Examples :

• from a lexicographic G. basis in ”Shape position” : #T = O(D2)

• If D = δn (Bezout), #T = O(2nD2) (ex. when #G = n)

Computing T

Computing wiwj : ∃i′, k, wiwj = Xkwi′wj ⇒wiwj = MXk
wi′wj

Requires O(#TD2) arithmetic operations

Computing q1 from T : for i = 1�D, Trace(mwi
) =

∑

i=1
D

wiwj [j]
(O(D2))

Theorem 24. Computing a RUR from T requires O(#TD2 + D3 + n D2)
arithmetic operations.

Complexity : remarks

Remark :

• up to now we have counted O(1) each arithmetical operation; This is
fine for data of fixed sizes (Z/pZ, floating point numbers, etc.) but
not for integers, rationals, polynomials, series, etc.

For integers :

• The addition is linear in the size of its operands;

• The naïve multiplication is quadratic in the size of its operands; (fast
fft-based versions are “close” to be linear (forget the log) for very
large integers.

• Data are growing at each operation : a + b has size O(max (log2(a),
log2(b))+ 1), a b has size O(log(a)+ log(b))

Funny example : “fast” exponentiation may not be so fast ... (m(a, b)=
binary cost of the mult. of and integer of size a by an integer of size b)

X2n

= x ·� . ·x : arithmetic cost O(2n) - binary cost O
(

∑

i=1
2n

m(i, 1)
)

X2n

=
(� (x2)2�)2

arithmetic cost O(n) - binary cost O
(

∑

i=1
n

m(2i, 2i)
)

Complexity : choosing the right model

We are working with rationals !

• The (bound on the) growth of coefficients in an addition is greater
than in a multiplication !

An example : [a1,� , aD] · [b1,� , bD] ai, bi of size t

• with integers, result of size O(2 t + D)

• with rationals, result of size O(2 Dt)

k iterations v = M · v , v (resp. M) a vector (resp. a matrix) of dimension D

with entries of size t :

• with integers, result with scalars of size O(k(t + D))

• with rationals, result of size O(Dk t)

A more precise model :
1

u
[a1, � , aD] ·

1

v
[b1, � , bD] u, v, ai, bi of size t ⇒

result of size O(2 t + D)

For our problem we can assume that the scalars are integers !

Complexity : choosing the right model

Suppose that t is the binary size of the integers in MXi
=

1

dX i

MXi

′

The multiplication table : at most δ =max (deg(wiwj)) iterations v = M · v.

Growth of coefficients : t→ δ (t + D)

Bound on the binary cost : O(#TD2δ(t + D))

Hermite’s quadratic form :

• Trace(wiwj) = wiwj · q1[1]; size O(δ (t + D)) bin. cost : O(#TDδ (t + D))

Reduction of Hermite’s quadratic form : growth of coefficients t′ → D t′

(Rouillier’s fraction-free algorithm) binary cost : O(D4δ (t + D))

First polynomial of the RUR : it is the characteristic polynomial of Mt thus
its coefficients are of size O(D t) (see G. Villard’s survey).

The intermediate iteration : ti+1 = Mt ti induces a growth t→D(t + D)

(thus the resolution of the triangular system do not induce any growth)

The binary cost is bounded by O(D4(t + D)).

Coordinates : no significant growth (compared with the computation of
the first polynomial) ⇒O(n D3(t + D))

Complexity : First remarks

The computation of the multiplication table is not so costly compared to
the rest since the data are not growing too much.

The reduction of Hermite’s quadratic form is the main operation.

Algorithm RUR-Classic:

Input = q1[1] = [Trace(mwi
)]i=1�D, + B + MXi

, i = 1�n

• d = #V (〈E 〉) (Hermite’s quadratic form); O(D3)

• compute ft = charpol(mt) for t ∈ {
∑

i=1
n

ji−1Xi, j = 0�n
D(D − 1)

2
}

until degree(ft̃)= d; O(D3)− practical /O(n D5)− theoretical

• compute gt,v, v = 1, X1,� , Xn O(n D2)

• return ft, gt,v, v = 1, X1,� , Xn

We need to change again our strategy !

Computing faster

The strategy :

• compute d and t using modular arithmetic (modulo a prime number).
The result will be correct excepted for a finite number of primes.

• check that the RUR-Candidate is a RUR after the computation to
get a deterministic algorithm.

Advantages :

• fast computations (fixed precision) for “predicting“ t

• if the prime numbers are big enough : very few are ”bad”;

• take t = Xi when possible (smaller results due to the sparsity of MXi
)

• t may be given by the user.

Checking a RUR-Candidate

There exists a filter : checking that ft is squarefree

For the general case :

Proposition 25. A RUR-Candidate Rt(〈E 〉) = {ft, gt,1, gt,X1,� , gt,Xn
} is a

RUR iff Trace(mpiwj
) = 0, ∀i = 1�n, j = 1�D with pi = Xigt,1(t)− gt,Xi

(t);

Proof. Rt(〈E 〉) is a RUR iff pi(α) = 0, ∀i = 1�n, ∀α ∈ V (〈E 〉) since
#V (ft)≤V (〈E 〉).

Hermite’s quadratic form must be of rank 0:

rank(qpi
) = rank(

[

Trace(mpiwjwk
)
]

j=1�D

k=1�D
) = #{α∈V (〈E 〉), pi(α)� 0}

⇔ its first line is null ⇔Trace(mpiwj
) = 0, j = 1�D �

Checking a RUR-Candidate

Corollary 26. A RUR-Candidate Rt(〈E 〉) = {ft, gt,1, gt,X1, � , gt,Xn
} is a

RUR iff q1piG = 0, ∀i = 1�n, j = 1�D with pi = Xigt,1(t)− gt,Xi
(t);

Proposition 27. One can check that a RUR-Candidate is a RUR in
O(D3 + n D2) arithmetic operations (if the RUR-Candidate has been com-
puted using RUR-Classic).

Algorithm CheckRUR-Classic

• H0 = a0[1, 0,� , 0]; for i = 1�D Hi(t) = MtHi−1(t) + aiHi−1(t);

• if q1 HD(t)� [0,� , 0] then return(FALSE)

• for i = 1�n gt,Xi
(t) =

∑

i=1
D Trace(Xit

j)�
already computed

HD−i−1(t)

• gt,1(t) =
∑

i=1
D Trace(tj)HD−i−1(t)

• for i = 1�n if q1(gt,Xi
(t) + MXi

gt,1(t))� [0,� , 0] then return(FALSE)

• return(TRUE)

O(D3 + n D2) arithmetic operations - no significant growth of coefficients
(compared to the other sub-algorithms)

RUR vs Lexicographic Gröbner bases in the shape position case

When X1 separates V (〈E 〉) + 〈E 〉 is radical

RUR Lex. G.B.






















f(X1) = 0

X2 =
h2(X1)

f ′(X1)

Xn =

hn(X1)

f ′(X1)















f(X1) = 0
X2 = f2(X1)

Xn = fn(X1)

(same number of arithmetic operations in the “shape position” case)

Proposition : f ′(X1)Xi−hi(X1)= Xi− fi(X1) mod I

Equivalently : fi = f ′−1(X1)hn(X1)mod I

Remarks :

all the coefficients of the RUR have the “same” size (O(D t))

In a Lex. G. B. the coefficients of f appear to be “small” (O(D t)) com-
pared to those of fi.

Adding inequations/inequalities

E = {p1,� , pr},F = {f1,� , fl}, with pi, fi ∈Q[X1,� , Xn]

C = {x∈Cn, p1 = 0,� , pr = 0, f1� 0,� , fs� 0}

S = {x∈Rn, p1 =0,� , pr =0, f1 > 0,� , fs > 0}

A straightforward method :

Compute fi(
gt,X1

gt,1
, � ,

gt,Xn

gt,1
), i = 1� s and study the signs of these univariate

polynomials at the roots of ft.

Drawback : terrible computations (substitutions+reduction modulo ft)

A less straightforward method :

E ′ = {p1,� , pr, T1− f1,� , Ts− fs}⊂Q[X1,� , Xn]

Compute the RUR of 〈E ′〉 : {ft, gt,1, gt,X1, � , gt,Xn
, gt,T1, � , gt,Ts

} and
study the signs of gt,1, gt,T1,� , gt,Ts

at the roots of ft (univariate problem).

Drawback : can not study fi, i = 1� s without re-computing an ideal

Adding inequations/inequalities

A solution : “simulating” Gröbner bases

Definition 28. Given two monomial orderings <U (w.r.t. the variables U1,� , Ud)
and <X (w.r.t. the variables Xd+1, � , Xn) one can define a “block“ ordering
<U,X : m <U,X m′ if and only if

m|U1=1,� , U d =1
<X m|U1=1,� , Ud =1

′ or

(m|U1=1,� , U d =1
= m|U1=1,� , U d =1

′ and m|X d +1=1,� , X n =1
<U m|X d +1=1,� , X n =1

′).

Lemma 29. If G is a Gröbner basis of 〈E 〉 = 〈p1, � , pr, T1 − f1, � , Ts − fs〉 for
<X , then G ∪ {Ti − normalform(fi), i = 1� s} is a Gröbner basis of 〈E ′〉 = 〈p1, � ,

pr, T1− f1,� , Ts − fs〉 for <T ,X where T is any admissible monomial ordering wrt
T = [T1,� , Tn];

Remark :
Q [X1,� , Xn]

〈E〉

< Q [X1,� , Xn , T1,� , Tn]

〈E ′〉
so that the only extraneous computa-

tions needed to extend the RUR are the construction of the MTi
and the compu-

tations of the Trace(mTit
j).

Complexity : O(D3 + n D2�

RUR

+ s D2)

Software

http://fgbrs.lip6.fr/Software

SALSA library containing

• FGb (F4 algorithm implemented by J.C. Faugère) - Dynamic library
written in C

• RS (RUR + real root isolation by F. Rouillier) - Dynamic library
written in C

• An interface with Maple Software (version >9.5)

• ... (see next lecture).

Will be linked with Maple 11 (official distribution)

Conclusion

We have seen how to “solve” in a certified way any kind of zero-dimensional
system : counting complex/real roots, certified isolation (by the way or
interval arithmetic + symbolic resolution of univariate polynomials), com-
putation of the multiplicities, certified evaluation of polynomials at the
roots of a zero-dimensional system (easy to certify the sign for example).

Recent progress have been made using “baby step/giant step technics”
(Rouillier 2005) decreasing the number of bit operations required to com-
pute a RUR-Candidate and using specific multiplication tables (only par-
tially stored) decreasing the memory consummed.

The RUR can be used jointly with splitting technics like triangular sets.

Systems with 100/200 complex roots are “easy” in general (seconds)

Systems with up to 1000 complex solutions are (in general) reachable by the
current versions of the software (minutes/hours)

Systems with >10000 solutions have been solved by the beta versions.

Important remark : only few solvers are able to provide the required uni-
variate “black-boxes” able to “solve” such large polynomials (first polynomial
of a RUR)...

