____и____________1 of 27

Using Gröbner Bases for Solving Linear 2Pt Boundary Value Problems

Special Semester on Gröbner Bases Workshop on Symbolic Analysis Castle of Hagenberg / Austria 11 May 2006

Markus.Rosenkranz@oeaw.ac.at

Radon Institute for Computational and Applied Mathematics
Austrian Academy of Sciences
A–4040 Linz. Austria

Copyright Markus Rosenkranz 2004.

COPYRIGHT NOTE. Copying and storing is granted under the following conditions:

- The file is kept unchanged (including the copyright note).
- A message is sent to markus rosenkranz@oeaw.ac.at.
- If the material in this talk is used in publications or talks, please, cite the talk appropriately.

Outline of the Talk

Cooperation Prof. Buchberger—Prof. Engl within SFB F013.

Importance of boundary conditions for practical usage of differential equations:

Lions: «God made the differential equations, but the devil made the boundary conditions.»

Simple starting point: Linear two-point boundary value problems (briefly BVPs).

- How to **see** them. (On the operators level.)
- How to solve them. (By Gröbner bases.)
- How to factor them. (Through Stieltjes conditions.)
- How to **divide** them. (In the Mikusiński style.)

Parts (1) and (2): Doctoral thesis \rightarrow JSC.

Parts (3) and (4): Ongoing joint research with Georg Regensburger.

Two-Point Boundary Value Problems

Given $f \in C^{\infty}[a, b]$, find $u \in C^{\infty}[a, b]$ such that:

(#)
$$\begin{bmatrix} T u = f \\ B_1 u = \dots = B_n u = \mathbf{0} \end{bmatrix}$$

For simplicity, we assume <u>constant coefficients</u> in *T*:

$$T : C^{\infty}[a,b] \to C^{\infty}[a,b]$$

$$u \mapsto c_0 u + c_1 u' + c_2 u'' + \dots + c_{n-1} u^{(n-1)} + u^{(n)}$$

Two-point boundary operators:

$$B_{i} : C^{\infty}[a, b] \to \mathbb{C}$$

$$u \mapsto p_{i,0} u^{(n-1)}(a) + \dots + p_{i,n-1} u'(a) + p_{i,n} u(a) + \dots + p_{i,n-1} u'(a) + \dots + p_{i,n-1} u$$

Traditional Solution by the Green's Function

We assume regularity:

Then every linear two-point BVP admits to write the solution as:

$$u(x) = \int_a^b g(x, \xi) \ f(\xi) \ d\xi$$

<u>Traditional solution method</u> (see e.g. Kamke): Matrix inversion based on a fundamental system for *T*.

Importance of Green's function: Response to "point sources".

An Example: Beam Deflection

Beam deflected under a loading σ :

$$-u^{"}(x) + \underbrace{\sigma(x)/EI}_{f(x)}u(x) = 0 \qquad \longrightarrow \qquad u^{"}(x) = f(x)$$

Fixed at both ends, but allowed to bend:

$$u''''(x) = f(x)$$

$$u(0) = 0 u''(0) = 0$$

$$u(1) = 0 u''(1) = 0$$

Green's function:

$$g(x,\,\xi) = \begin{cases} \frac{1}{3}\,x\,\xi - \frac{1}{6}\,\xi^3 - \frac{1}{2}\,x^2\,\xi + \frac{1}{6}\,x\,\xi^3 + \frac{1}{6}\,x^3\,\xi & \text{if} \quad 0 \le \xi \le x \le 1\\ \frac{1}{3}\,x\,\xi - \frac{1}{2}\,x\,\xi^2 - \frac{1}{6}\,x^3 + \frac{1}{6}\,x\,\xi^3 + \frac{1}{6}\,x^3\,\xi & \text{if} \quad 0 \le x \le \xi \le 1 \end{cases}$$

6 of 27

The Operator Perspective of BVPs

Everything seems to be on the <u>functional level</u>:

- Problem statement: For every **function** f, find the **function** u such that ...
- Solution method: Linear algebra over function fields.
- Final solution: The Green's function.

But actually, everything happens on the operator level:

- What we really want is the Green's **operator** G mapping forcing functions to solutions (via g or not).
- In some sense, it is the inverse of the given differential **operator** *T*.
- We will present a new method that works directly on (an algebraic model of) the **operators**.

и (→) н | 7 of 27

Integro-Differential Algebras

A complex algebra \mathcal{F} with basis $\mathcal{F}^{\#}$, plus 5 linear operations fulfilling these <u>axioms</u>:

Boundary operators as abbreviations: $f^{\leftarrow} \equiv f - \int_{-\infty}^{\infty} f'$ and $f^{\rightarrow} \equiv \int_{-\infty}^{\infty} f' - f$.

Differentiation ..., $: \mathcal{F} \to \mathcal{F}$ (fg)' = f'g + fg'Integral $\int^* ... : \mathcal{F} \to \mathcal{F}$ $\int^* f' = f - f^{\leftarrow}, (\int^* f)' = f$ Cointegral $\int_* ... : \mathcal{F} \to \mathcal{F}$ $\int_* f' = f \to -f, (\int_* f)' = -f$ Left Boundary Value ..., $: \mathcal{F} \to \mathbb{C}$ $(fg)^{\leftarrow} = f^{\leftarrow}g^{\leftarrow}$ Right Boundary Value ..., $: \mathcal{F} \to \mathbb{C}$ $(fg)^{\rightarrow} = f \to g \to g$

Standard example: $\mathcal{F} = C^{\infty}[0, 1]$ with:

$$f' = \frac{\partial f}{\partial x}$$

$$\int_{-\pi}^{\pi} f = \int_{0}^{x} f(\xi) \ d\xi$$

$$\int_{\pi}^{\pi} f = \int_{x}^{1} f(\xi) \ d\xi$$

$$f^{\leftarrow} = f(0)$$

$$f^{\rightarrow} = f(1)$$

Common subalgebra: Exponential polynomials

$$\mathcal{E}xp^{\#} = \{x^k \ e^{\lambda x} \mid k \in \mathbb{N} \land \lambda \in \mathbb{C}\}$$

Other example: $\mathcal{F} = C^{\infty}(\mathbb{R}^2)$ with:

$$f' = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$$

$$\int_{-\infty}^{\infty} f = \int_{0}^{x} f(t, t - x + y) dt$$

$$\int_{\infty}^{\infty} f = \int_{x}^{1} f(t, t - x + y) dt$$

$$f^{\leftarrow} = f(0, -x + y)$$

$$f^{\rightarrow} = f(1, 1 - x + y)$$

__н ___ н ___ 8 of 27

Integro-Differential Polynomials

Analogous to differential algebra → differential polynomials:

<u>Idea:</u> Integral / differential / boundary / multiplication operators

~ "formal linear expressions" of \mathcal{F} containing an indeterminate u.

Introduce abbreviations for <u>basic operators</u>:

```
Differential operator u' \rightarrow D
Integral Operator \int_{*}^{*} u \rightarrow A
Cointegral Operator \int_{*}^{} u \rightarrow B
Left Boundary Operator u^{\leftarrow} \rightarrow L
Right Boundary Operator u^{\rightarrow} \rightarrow R
Multiplication Operator f \rightarrow \lceil f \rceil
```

Hence we construct the noncommutative algebra of integro-differential polynomials:

```
\mathcal{A}n(\mathcal{F}) = \mathbb{C} \langle \{D, A, B, L, R\} \cup \{\lceil f \rceil \mid f \in \mathcal{F}^{\#} \} \rangle / \mathcal{G}rn
```

Here *Grn* is the ideal generated by a set of polynomial identities ("Green's system").

Somehow mirroring integro-differential axioms.

```
__н ___ н ___ 9 of 27
```

The Green's System 1, 2

```
System["2. Equalities for Isolating Boundary Operators", any[f],
 LA = 0
                                                        "LA"
 RA = A + B
                                                        "RA"
 LB = A + B
                                                        "LB"
 RB = 0
                                                        "RB"
 \overline{L \lceil f \rceil} = f^{\leftarrow} L
                                                        "LM"
 R \lceil f \rceil = f^{\rightarrow} R
                                                        "RM"
 LL = L
                                                        "LL"
                                                        "LR"
 LR = R
 RL = L
                                                        "RL"
                                                        "RR"
 RR = R
                                                                                 10 of 27
```

The Green's System 0, 3

```
System["Equalities for Algebraic Simplication", any[f, g], [f][g] = [fg] "MM"
 [f][g] = [fg]
System["3. Equalities for Contracting Integration Operators", any[f],
 A \lceil f \rceil A = \lceil \int^* f \rceil A - A \lceil \int^* f \rceil
                                                                                                 "AMA"
 A \lceil f \rceil B = \lceil \lceil f \rceil B + A \lceil \lceil f \rceil \rceil
                                                                                                 "AMB"
 B \lceil f \rceil A = \left[ \int_{A} f \right] A + B \left[ \int_{A} f \right]
                                                                                                 "BMA"
 B \lceil f \rceil B = \left\lceil \int_{\star} f \right\rceil B - B \left\lceil \int_{\star} f \right\rceil
                                                                                                 "BMB"
 \overline{AA = \lceil \lceil^* 1 \rceil A - A \lceil \lceil^* 1 \rceil}
                                                                                                 "AA"
 AB = \lceil \lceil^* 1 \rceil B + A \lceil \int^* 1 \rceil
                                                                                                 "AB"
 BA = \left[\int_{+} 1\right]A + B\left[\int_{+} 1\right]
                                                                                                 "BA"
 BB = \left[ \int_{a} 1 \right] B - B \left[ \int_{a} 1 \right]
                                                                                                 "BB"
                                                                                                                                             11 of 27
```

The Green's System 4

System["4. Equalities for Absorbing Integration Operators", any[f],

$A \lceil f \rceil D = -f^{\leftarrow} L + \lceil f \rceil - A \lceil f' \rceil$	"AMD"
$B \lceil f \rceil D = f^{\rightarrow} R - \lceil f \rceil - B \lceil f' \rceil$	"BMD"
$\overline{AD = -L + 1}$	"AD"
BD = R - 1	"BD"
$\mathbf{A} \lceil \mathbf{f} \rceil L = \lceil \int^* \mathbf{f} \rceil L$	"AML"
$B \lceil f \rceil L = \left\lceil \int_{\star} f \right\rceil L$	"BML"
$A \lceil f \rceil R = \lceil \int^* f \rceil R$	"AMR"
$B \lceil f \rceil R = \left\lceil \int_{\star} f \right\rceil R$	"BMR"
$A L = \lceil \int^* 1 \rceil L$	"AL"
$BL = \left\lceil \int_{\star} 1 \right\rceil L$	"BL"
$AR = \lceil \int^* 1 \rceil R$	"AR"
$BR = \left\lceil \int_{*} 1 \right\rceil R$	"BR"

и (→) н (12 of 27

New Formulation of BVPs

Remember: Given $f \in C^{\infty}[a, b]$, find $u \in C^{\infty}[a, b]$ such that Tu = f and $B_1 u = \dots = B_n u = 0$.

$$G : C^{\infty}[a,b] \longrightarrow C^{\infty}[a,b]$$

$$f \longmapsto u$$

Hence, for every $f \in C^{\infty}[a, b]$ we must have:

$$TGf = f$$

$$B_1 Gf = \dots = B_n Gf = 0$$

Or purely on the level of operators:

$$TG = 1$$

$$B_1 G = \dots = B_n G = 0$$

So we search an operator G that is a right inverse of T and annihilated by $\langle B_1, ..., B_n \rangle$.

Characteristic data of BVP: Differential operator T and boundary (vector) operator $\langle B_1, ..., B_n \rangle$.

Beam Deflection Again

Functional formulation from before:

$$\frac{u''''(x) = f(x)}{u(0) = 0 \quad u''(0) = 0}$$

$$u(1) = 0 \quad u''(1) = 0$$

$$g(x, \xi) = \begin{cases} \frac{1}{3} x \xi - \frac{1}{6} \xi^3 - \frac{1}{2} x^2 \xi + \frac{1}{6} x \xi^3 + \frac{1}{6} x^3 \xi & \text{if } 0 \le \xi \le x \le 1 \\ \frac{1}{3} x \xi - \frac{1}{2} x \xi^2 - \frac{1}{6} x^3 + \frac{1}{6} x \xi^3 + \frac{1}{6} x^3 \xi & \text{if } 0 \le x \le \xi \le 1 \end{cases}$$

New operator formulation:

<u>Characteristic data</u>: $T = D^4$ and $\langle B_1, B_2, B_3, B_4 \rangle = \langle LG, RG, LD^2G, RD^2G \rangle$.

Computation within the Theorema system:

Compute [Green [D^4 , $\langle L, R, LD^2, RD^2 \rangle$], by \rightarrow GreenEvaluator] $-\frac{1}{6} A [x^3] - \frac{1}{6} [x^3] B + \frac{1}{3} [x] A [x] + \frac{1}{6} [x] A [x^3] + \frac{1}{3} [x] B [x] - \frac{1}{2} [x] B [x^2] + \frac{1}{6} [x] A [x^3] + \frac{1}{6} [x] A [x] + \frac{1}{6} [x$

6 6 3 6 3

$$\frac{1}{6} [x] B [x^3] - \frac{1}{2} [x^2] A [x] + \frac{1}{6} [x^3] A [x] + \frac{1}{6} [x^3] B [x]$$

14 of 27

Solving BVPs—A Primitive Approach

Heuristic strategy:

For every concrete problem characterized by T and $\langle B_1, ..., B_n \rangle$ throw together

the equations
$$TG = 1$$
, $B_1G = ... = B_nG = 0$

and an appropriate segment of the above "Green's system" identities.

Then solve the resulting system for G by using noncommutative Gröbner bases.

Problematic points in the above strategy:

- In the noncommutative case, (finite) Gröbner bases need not exist.
- If it exists, how do we know that G always gets isolated as above?
- Computing a noncommutative Gröbner basis for each example is expensive!

Observe:

- The n + 1 equations TG = 1, $B_1G = ... = B_nG = 0$ are the only ones changing in each computation.
- Replacing them by a single equation, $\mathcal{E}(G)$, might yield an expression for G by a uniform method.
- Then we could use the Green's system only for normalizing this expression.

$$TG = 1, B_1G = \dots = B_nG = 0 \iff \mathcal{E}(G)$$
 ??

Solving BVPs—A Refined Approach

Sketch of Solution Algorithm

$$TG = 1$$

$$B_1 G = \dots = B_n G = 0$$

$$\mathcal{E}(G)$$
: $GT = 1 - P$

- Compute the solution space N of the homogeneous equation Tu = 0.
- Determine a projector P onto N such that $M = (1 P) C^{\infty}[a, b]$ fulfills the boundary conditions.

$$P = \text{Compute}[\text{Proj}[D^4, \langle L, R, LD^2, RD^2 \rangle], \text{ by } \rightarrow \text{GreenEvaluator}]$$

$$L - \lceil \mathbf{x} \rceil L + \lceil \mathbf{x} \rceil R - \frac{1}{3} \lceil \mathbf{x} \rceil LD^2 - \frac{1}{6} \lceil \mathbf{x} \rceil RD^2 + \frac{1}{2} \lceil \mathbf{x}^2 \rceil LD^2 - \frac{1}{6} \lceil \mathbf{x}^3 \rceil LD^2 + \frac{1}{6} \lceil \mathbf{x}^3 \rceil RD^2$$

• Find the right inverse T^{\bullet} of T as specified above.

$$-\frac{1}{6} \mathbf{A} \lceil \mathbf{x}^3 \rceil + \frac{1}{6} \lceil \mathbf{x}^3 \rceil \mathbf{A} + \frac{1}{2} \lceil \mathbf{x} \rceil \mathbf{A} \lceil \mathbf{x}^2 \rceil - \frac{1}{2} \lceil \mathbf{x}^2 \rceil \mathbf{A} \lceil \mathbf{x} \rceil$$

• Build up $G = (1 - P) T^{\bullet}$ as the crude Green's operator.

• Reduce G with respect to the Green's system for obtaining a standard representation.

The Role of Noncommutative Gröbner Bases

Crucial Properties of the Green's System:

- *Noetherianity*: Every reduction terminates → finitary basis.
- Confluence: It provides a unique normal form for each polynomial → Gröbner basis!
- Adequacy: Enough reductions for algebraizing relevant analytic knowledge → correctness claim.
- Standardization: Normal forms correspond exactly to the Green's functions → extraction algorithm.

But there are 233 such S-polynomials! → Proof automated in *Theorema* (approximately 2000 lines).

Proof is relative to the axioms of integro-differential algebras.

The Problem Monoid—Ideas

Additive Structure on Boundary Conditions:

Encoding of Boundary Value Problems:

$$(T, B_1 \oplus \ldots \oplus B_n)$$
 :=
$$\begin{bmatrix} Tu = f \\ (B_1 \oplus \ldots \oplus B_n) u = 0 \end{bmatrix}$$

Identifying Boundary Value Problems

$$(T, B) \sim (\tilde{T}, \tilde{B}) : \Leftrightarrow T = \tilde{T} \wedge \operatorname{Ker}(B) = \operatorname{Ker}(\tilde{B})$$

Noncommutative Multiplicative Structure on Boundary Value Problems:

$$B = \{(T, \underline{B}) \mid \text{regular}\} / \sim$$

$$[T, B] \cdot [\tilde{T}, \tilde{B}] = [T\tilde{T}, B\tilde{T} \oplus \tilde{B}]$$
17 of 27

Example of Multiplication / Factorization

Decomposing Boundary Value Problems:

$$\begin{bmatrix} u' = f \\ \int_0^1 u(\xi) \ d\xi = 0 \end{bmatrix} \cdot \begin{bmatrix} u' = f \\ u(0) = 0 \end{bmatrix} = \begin{bmatrix} u'' = f \\ u(0) = u(1) = 0 \end{bmatrix}$$

In the Problem Monoid:

$$[D, \mathbf{F}] \cdot [D, L] = [D^2, L \oplus R]$$

Abbreviation:

$$F \equiv A + B = \int_0^x + \int_x^1 = \int_0^1$$

$$F = RA = LB$$
18 of 27

The Problem Monoid—Exact Definition

Stieltjes Boundary Conditions:

$$\beta u = \sum_{i=0}^{n-1} (a_i u^{(i)}(0) + b_i u^{(i)}(1)) + \int_0^1 \varphi(\xi) u(\xi) d\xi$$

$$\beta = \sum_{i=0}^{n-1} (a_i LD^i + b_i RD^i) + F[\varphi]$$

$$\land \dots \text{ for any } a_0, \dots, a_{n-1}, b_0, \dots, b_{n-1} \in \mathbb{C} \text{ and } \varphi \in \mathcal{E}xp:$$

Formulation in the Language of Green's Algebra:

$$Stj = \{L, R\} \cdot \mathcal{A}n(\mathcal{F})$$

$$Stj_n = \{B_1 \oplus \dots \oplus B_n \mid B_1, \dots, B_n \in Stj\}$$

Recognizing Regularity of BVPs:

$$[T, B] \text{ regular } :\Leftrightarrow \bigvee_{f \in C^{\infty}[0,1]} \exists ! (Tu = f \land Bu = 0)$$

$$[T, B] \text{ regular } \Leftrightarrow \text{ Ker}(T) \dotplus \text{Ker}(B) = \mathcal{F} \Leftrightarrow \begin{pmatrix} B_1 \varphi_1 & \cdots & B_1 \varphi_n \\ \vdots & \ddots & \vdots \\ B_n \varphi_1 & \cdots & B_n \varphi_n \end{pmatrix} \text{ regular}$$

$$\dots \text{ where } B = B_1 \oplus \dots \oplus B_n \text{ and } \{\varphi_1, \dots, \varphi_n\} \text{ is any basis for Ker}(T) \nearrow B_n \text{ and } \{\varphi_1, \dots, \varphi_n\} \text{ is any basis for Ker}(T)$$

Problem Monoid Revisited

$$\mathcal{B} = \{ [T, B] \mid T \in \mathbb{C}[\partial]_n \land B \in Stj_n \land \operatorname{Ker}(T) \dotplus \operatorname{Ker}(B) = \mathcal{F} \} / \sim$$

$$19 \text{ of } 27$$

Problem Factorization versus Operator Factorization

Easy to check:

Notation:

$$[T,B]^{-1} := G \qquad \qquad \left[\tilde{T},\tilde{B}\right]^{-1} := \tilde{G} \qquad \longrightarrow \qquad \left([T,B] \cdot \left[\tilde{T},\tilde{B}\right]\right)^{-1} = \left[\tilde{T},\tilde{B}\right]^{-1} \cdot [T,B]^{-1}$$

Example from before:

$$[D, F] \cdot [D, L] = [D^{2}, L \oplus R] = [D, F] \cdot [D, R]$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$(A - AF) \qquad A \qquad \underbrace{XAX + XBX - AX - XB}_{G_{2}} \qquad \underbrace{A - AF}_{C} \qquad -B$$

20 of 27

The Factorization Lemma

Every factorization of the differential operator can be lifted to the level of problems:

For every regular problem [T, B] and for every factorization

$$T = T_1 T_2$$

there are boundary conditions B_1 , B_2 with $Ker(B) \subseteq Ker(B_1)$ such that

$$[T, B] = [T_1, B_1] \cdot [T_2, B_2]$$

and both $[T_1, B_1]$ and $[T_2, B_2]$ are regular.

Iteration yields:

$$[T, B] = [D - \lambda_1, \beta_1] \cdot ... \cdot [D - \lambda_n, \beta_n]$$

 $[T, B]^{-1} = [D - \lambda_n, \beta_n]^{-1} \cdot ... \cdot [D - \lambda_1, \beta_1]^{-1}$

First-Order Green's Operators

$$[D-\lambda,\,\beta]^{-1} = (1-P_{\lambda,\beta}) \lceil e^{\lambda x} \rceil A \lceil e^{-\lambda x} \rceil \qquad \text{with} \qquad P_{\lambda,\beta} \equiv \beta (e^{\lambda x})^{-1} \lceil e^{\lambda x} \rceil \beta$$

Solving Inhomogeneous Initial Value Problems à la Mikusiński

Recall Duhamel Convolution:

$$u * \tilde{u}(x) = \int_0^x u(x-t) \, \tilde{u}(t) \, dt$$

Note:

- Makes $\mathcal{L} \equiv C(0, \infty)$ into a commutative(!) ring.
- Tichmarsh's Theorem: No zero divisors!
- Field of fractions M introduced by Mikusiński in 1959.
- Integral operator $l \equiv 1 \in \mathcal{L}$, so $l * u(x) = \int_0^x u(t) dt = Au(x)$.
- Differential operator $s \equiv l^{-1} \in \mathbb{M}$

How to Solve Inhomogeneous Initial Value Problems (Constant Coefficients):

Fundamental Formula: $s * u = u' + u(0) \delta_0$

Iteration: $s * s * u = u'' + u'(0) \delta_0 + u(0) \delta_0'$

Dirac Distribution : $\delta_0 \equiv s * 1 = f // f \longrightarrow \delta_0 * u = u, l * \delta_0 = 1$

Example:

$$\begin{bmatrix} u'' = f \\ u(0) = a, u'(0) = b \end{bmatrix} \qquad s * s * u = f + a \delta_0 + b \delta_0' \\ \longrightarrow u = (l * l) * f + a (l * 1) + b = x * f + ax + b$$

Solution:

$$u(x) = a + bx + \int_0^x t f(t) dt$$

How about Boundary Value Problems?

We need both A and B for representing Green's operators for boundary value problems.

Since AB \(\neq BA, Mikusi\(\tilde{n} \) ski cannot do this!

Returning to Green's Operators—on the Functional Level à la Mikusiński

Recall Green's Functions:

$$Gf(x) = \int_0^1 g(x, \xi) f(\xi) d\xi$$

$$G = \text{Fred}(g)$$

Introduce Multiplication on Collection G of all Green's Functions of Regular Problems in B:

$$g * \tilde{g}(x, y) = \int_0^1 g(x, t) \, \tilde{g}(t, y) \, dt$$

Note:

• Introduced by Volterra in 1913.

- Makes $K \equiv L^2(I \times I) \supseteq G$ into a noncommutative ring.
- Key property is $Fred(g * \tilde{g}) = Fred(g) \circ Fred(\tilde{g})$.
- We will often identify g with Fred(g) and drop *.

Factorization on Three Levels:

$$[D^{2}, L \oplus R] = [D, F] \cdot$$

$$XAX + XBX - AX - XB = A \circ$$

$$-h(\xi - x) x - h(x - \xi) x + h(\xi - x) x\xi + h(x - \xi) x\xi = h(\xi - x) * (-h(x - \xi) x)$$
Anti-Isomorphism: $G \simeq B^{op}$

Localization in Noncommutative Rings

Necessary and Sufficient Condition for Constructing a «Ring of Fractions»:

For localizing R at $S \subseteq R$ into RS^{-1} we require:

Multiplicativity: $\forall S\widetilde{S} \in S$ Ore Condition: $\forall V \exists \exists r\widetilde{S} = S\widetilde{r}$ $r \in R \ S \in S \ \widetilde{r} \in R \ \widetilde{S} \in S$ Reversibility: $\forall \left(\exists Sr = 0 \Rightarrow \exists r\widetilde{S} = 0\right)$ $S \in S = 0$

Even if R has no zero divisors, it may not have a ring of fractions, i.e. a quotient (skew) field!

Failing Attempts at Localizing in K:

- First Attempt: Take $R = \mathbb{K}$ and $S = \mathbb{K}^{\diamond}$. Too many denominators!
- Second Attempt: Take $R = \mathbb{K}$ and $S = \langle A, B \rangle$. Too few denominators!
- Third Attempt: Take R = K and S = G. More balanced, but still fails!

The Ore condition turns out to be very tough!

Winning Idea:

Let R be any ring and $S \subseteq R$ a multiplicative subset fulfilling the Ore condition just within S.

Then the ring S^+ generated by S in R fulfills the Ore condition when localized at S.

Successful choice: $R = G^+$ and S = G:

- Hence it suffices to prove the Ore condition within G.
- Since $G \simeq \mathcal{B}^{op}$, we may as well prove it within \mathcal{B} .

The Ore Condition in the Problem Monoid

Regularization Lemma:

For every $T \in \mathbb{C}[\partial]_m$ and every $B = Stj_m$ there is a regular $[\tilde{T}, \tilde{B}]$ with $T \mid \tilde{T}$ and $Ker(B) \supseteq Ker(\tilde{B})$.

Division Lemma:

For regular problems [T, B] and $[T_1, B_1]$ with $T_1 \mid T$ and $Ker(B_1) \supseteq Ker(B)$ there is exactly one regular problem $[T_2, B_2]$ with $[T_1, B_1] \cdot [T_2, B_2] = [T, B]$.

Ore Condition:

Given regular problems $[T_1, B_1]$ and $[T_2, B_2]$, there are regular problems $[\tilde{T}_1, \tilde{B}_1]$ and $[\tilde{T}_2, \tilde{B}_2]$ such that $[T_1, B_1] \cdot [\tilde{T}_1, \tilde{B}_1] = [T_2, B_2] \cdot [\tilde{T}_2, \tilde{B}_2]$.

Proof of the Ore Condition:

- Regularization Lemma $\longrightarrow [T, B]$ with $T_1 T_2 \mid T$ and $Ker(B_1 \oplus B_2) \supseteq Ker(B)$.
- Division Lemma $\longrightarrow [\tilde{T}_1, \tilde{B}_1]$ and $[\tilde{T}_2, \tilde{B}_2]$.

Lots of Fundamental Formulae

The Fundamental Formulae à la Mikusiński:

$$AD = 1 - L
Au' = u - u(0)
u' = A^{-1}u - u(0) A^{-1} 1
A^{-1}u = u' + u(0) \delta_0
\delta_0 \equiv A^{-1} 1 \nearrow$$

$$-BD = 1 - R
-Bu' = u - u(1)
u' = -B^{-1}u + u(1) B^{-1} 1$$

$$B^{-1}u = -u' + u(1) \delta_1$$

$$\delta_1 \equiv B^{-1} 1 \nearrow$$

Example of a Different Fundamental Formula:

$$CD = 1 - F$$

$$Cu' = u - \int_0^1 u(\xi) \, d\xi$$

$$u' = C^{-1}u - \left(\int_0^1 u(\xi) \, d\xi\right) C^{-1} \, 1$$

$$C^{-1}u = u' + \left(\int_0^1 u(\xi) \, d\xi\right) \varepsilon$$

$$\varepsilon \equiv C^{-1} \, 1 \nearrow$$

<u>Recall:</u> $C = [D, F]^{-1} = A - AF$

| N | N | N | 26 of 27

Solving Inhomogeneous Boundary Value Problems à la Mikusiński

Recall the Factorization:

$$[D, F]^{-1} \cdot [D, L]^{-1} = [D^{2}, L \oplus R]^{-1}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$(A - AF) \cdot A = \underbrace{XAX + XBX - AX - XB}$$

$$C \qquad G_{2}$$

A Custom-Tailored Fundamental Formula:

$$G_2^{-1}u = u^{"} + u(0)\delta_0' + u(1)\varepsilon$$

$$\delta_0' \equiv A^{-2} \ 1 \nearrow$$

Example:

$$\begin{bmatrix} u'' = f \\ u(0) = a, u(1) = b \end{bmatrix} \qquad G_2^{-1}u = f + a \delta_0' + b \varepsilon \\ \longrightarrow u \stackrel{*}{=} G_2 f + a A (\delta_0 - 1) + b A 1 = G_2 f + a (1 - x) + b x$$

Solution:

$$u(x) = a(1-x) + bx + \int_0^1 g_2(x,\xi) f(\xi) dt$$
27 of 27

Conclusion

Computer algebra tools (noncommutative polynomials) for handling

- Problem and solution of
- Differential equation and boundary conditions.

Two new recent achievements:

- Factorization of any regular BVP into irreducibles.
- The Mikusiński calculus extended to cover boundary conditions.

Setting still very **simple**: variable coefficients, partial differential equations, systems, ...?

Hope of extending some ideas there!