Using Gröbner Bases for Solving Linear 2Pt Boundary Value Problems

Special Semester on Gröbner Bases
 Workshop on Symbolic Analysis Castle of Hagenberg / Austria
 11 May 2006

Markus.Rosenkranz@oeaw.ac.at

Radon Institute for Computational and Applied Mathematics
Austrian Academy of Sciences
A-4040 Linz, Austria

Copyright Markus Rosenkranz 2004.
COPYRIGHT NOTE. Copying and storing is granted under the following conditions:

- The file is kept unchanged (including the copyright note).
- A message is sent to markus.rosenkranz@oeaw.ac.at
- If the material in this talk is used in publications or talks, please, cite the talk appropriately.

Outline of the Talk

Cooperation Prof. Buchberger-Prof. Engl within SFB F013.

Importance of boundary conditions for practical usage of differential equations:

Lions: «God made the differential equations, but the devil made the boundary conditions.»

Simple starting point: Linear two-point boundary value problems (briefly BVPs).

- How to see them. (On the operators level.)
- How to solve them. (By Gröbner bases.)
- How to factor them. (Through Stieltjes conditions.)
- How to divide them. (In the Mikusiński style.)

Parts (1) and (2): Doctoral thesis \rightarrow JSC.
Parts (3) and (4): Ongoing joint research with Georg Regensburger.

Two-Point Boundary Value Problems

Given $f \in C^{\infty}[a, b]$, find $u \in C^{\infty}[a, b]$ such that:
(\#)

$$
\begin{array}{|l|}
\hline T u=f \\
B_{1} u=\ldots=B_{n} u=0
\end{array}
$$

For simplicity, we assume constant coefficients in T :

$$
\begin{aligned}
T: C^{\infty}[a, b] & \rightarrow C^{\infty}[a, b] \\
\boldsymbol{u} & \mapsto c_{0} u+c_{1} u^{\prime}+c_{2} u^{\prime \prime}+\ldots+c_{n-1} u^{(n-1)}+u^{(n)}
\end{aligned}
$$

Two-point boundary operators:

$$
\begin{aligned}
B_{i}: C^{\infty}[a, b] & \rightarrow \mathbb{C} \\
u & \mapsto p_{i, 0} u^{(n-1)}(a)+\ldots+p_{i, n-1} u^{\prime}(a)+p_{i, n} u(a)
\end{aligned}
$$

Traditional Solution by the Green's Function

We assume regularity:

```
\forall \ ב! (#)
```

Then every linear two-point BVP admits to write the solution as:

$$
u(x)=\int_{a}^{b} g(x, \xi) f(\xi) d \xi
$$

f...................... Given forcing function $[a, b] \rightarrow \mathbb{C}$
u
Desired solution function $[a, b] \rightarrow \mathbb{C}$

Traditional solution method (see e.g. Kamke): Matrix inversion based on a fundamental system for T.
Importance_of Green's function: Response to "point sources".

An Example: Beam Deflection

Beam deflected under a loading σ :

$$
-u^{\prime \prime \prime}(x)+\underbrace{\sigma(x) / E I}_{f(x)} u(x)=0 \quad \rightarrow \quad u, \ngtr(x)=f(x)
$$

Fixed at both ends, but allowed to bend:

$$
\begin{array}{ll}
u^{\prime, \prime \prime}(x)=f(x) & \\
\hline u(0)=0 & u^{\prime \prime}(0)=0 \\
u(1)=0 & u \prime \prime(1)=0
\end{array}
$$

Green's function:

$g(x, \xi)=\left\{\begin{array}{lll}\frac{1}{3} x \xi-\frac{1}{6} \xi^{3}-\frac{1}{2} x^{2} \xi+\frac{1}{6} x \xi^{3}+\frac{1}{6} x^{3} \xi & \text { if } & 0 \leq \xi \leq x \leq 1 \\ \frac{1}{3} x \xi-\frac{1}{2} x \xi^{2}-\frac{1}{6} x^{3}+\frac{1}{6} x \xi^{3}+\frac{1}{6} x^{3} \xi & \text { if } & 0 \leq x \leq \xi \leq 1\end{array}\right.$

The Operator Perspective of BVPs

Everything seems to be on the functional level:

- Problem statement: For every function f, find the function u such that ...
- Solution method: Linear algebra over function fields.
- Final solution: The Green's function.

$\boldsymbol{u} \underset{\vec{G}}{\boldsymbol{T}} \boldsymbol{f}$

But actually, everything happens on the operator level:

- What we really want is the Green's operator G mapping forcing functions to solutions (via g or not).
- In some sense, it is the inverse of the given differential operator T.
- We will present a new method that works directly on (an algebraic model of) the operators.

Integro-Differential Algebras

A complex algebra \mathcal{F} with basis $\mathcal{F}^{\#}$, plus 5 linear operations fulfilling these axioms:

$$
\text { Boundary operators as abbreviations: } f^{\leftarrow} \equiv f-\int^{*} f^{\prime} \text { and } f^{\rightarrow} \equiv \int_{*} f^{\prime}-f \text {. }
$$

Differentiation	$\ldots,: \mathcal{F} \rightarrow \mathcal{F}$	$(f g)^{\prime}=f^{\prime} g+f g$,
Integral	$\int^{*} \ldots: \mathcal{F} \rightarrow \mathcal{F}$	$\int^{*} f^{\prime}=f-f^{\leftarrow},\left(f^{*} f\right)^{\prime}=f$
Cointegral	$\int_{*} \ldots: \mathcal{F} \rightarrow \mathcal{F}$	$\int_{*} f^{\prime}=f^{\rightarrow-f},\left(\int_{*} f\right)^{\prime}=-f$
Left Boundary Value	$\ldots \leftarrow: \mathcal{F} \rightarrow \mathbb{C}$	$(f g)^{\leftarrow}=f^{\leftarrow} g^{\leftarrow}$
Right Boundary Value	$\ldots \rightarrow: \mathcal{F} \rightarrow \mathbb{C}$	$(f g)^{\rightarrow}=f^{\rightarrow} g^{\rightarrow}$

Standardexample: $\mathcal{F}=C^{\infty}[0,1]$ with:

$$
\begin{aligned}
& f^{\prime}=\frac{\partial f}{\partial x} \\
& \int^{*} f=\int_{0}^{x} f(\xi) d \xi \\
& \int_{*} f=\int_{x}^{1} f(\xi) d \xi \\
& f^{-}=f(\mathbf{0}) \\
& f^{\rightarrow}=f(\mathbf{1})
\end{aligned}
$$

Commonsubalgebra: Exponential polynomials

$$
\mathcal{E} x \boldsymbol{p}^{\#}=\left\{x^{k} e^{\lambda x} \mid k \in \mathbb{N} \wedge \lambda \in \mathbb{C}\right\}
$$

Other example: $\mathcal{F}=C^{\infty}\left(\mathbb{R}^{2}\right)$ with:

$$
\begin{aligned}
& f^{\prime}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \\
& \int^{*} f=\int_{0}^{x} f(t, t-x+y) d t \\
& \int_{*} f=\int_{x}^{1} f(t, t-x+y) d t \\
& f^{-}=f(0,-x+y) \\
& f^{\rightarrow}=f(1,1-x+y)
\end{aligned}
$$

$+\quad \mathrm{H}$

Integro-Differential Polynomials

Analogous to differential algebra \rightarrow differential polynomials:
Ldea:

> Integral / differential / boundary / multiplication operators
~ "formal linear expressions" of \mathcal{F} containing an indeterminate u.

Introduce abbreviations for basic operators:

Differential operator	$u, ~ \rightharpoonup D$
Integral Operator	$\int^{*} u \rightharpoonup A$
Cointegral Operator	$\int_{*} u \rightharpoonup B$
Left Boundary Operator	$u^{\leftarrow} \rightharpoonup L$
Right Boundary Operator	$u^{*} \rightharpoonup R$
Multiplication Operator	f

Hence we construct the noncommutative algebra_f integro-differential polynomials:

$$
\mathcal{A} n(\mathcal{F})=\mathbb{C}\left\langle\{D, A, B, L, R\} \cup\left\{[f\rceil \mid f \in \mathcal{F}^{\#}\right\}\right\rangle / G r n
$$

Here $\mathcal{G r n}$ is the ideal generated by a set of polynomial identities ("Green's system").
Somehow mirroring integro-differential axioms.

The Green's System 1, 2

```
System["1. Equalities for Isolating Differential Operators", any[f],
    DA=1 "DA"
\begin{tabular}{ll}
\(D B=-1\) & "DB" \\
\hline\(D\lceil f\rceil=\lceil f\rceil D+\left\lceil f^{\prime}\right\rceil\) & "DM" \\
\hline\(D L=0\) & "DL" \\
\(D R=0\) & "DR"
\end{tabular}
]
```

System["2. Equalities for Isolating Boundary Operators", any[f],

$L A=0$	"LA"
$R A=A+B$	"RA"
$L B=A+B$	"LB"
$R B=0$	"RB"
$L\lceil f\rceil=f^{\leftarrow} L$	"LM"
$R\lceil f\rceil=f^{\leftarrow} R$	"RM"
$L L=L$	"LL"
$L R=R$	"LR"
$R L=L$	"RL"
$R R=R$	"RR"
$]$	

The Green's System 0, 3

System["Equalities for Algebraic Simplication", any[f, g], $\lceil f\rceil\lceil g\rceil=\lceil f g\rceil$]

System["3. Equalities for Contracting Integration Operators", any[f],

$A\lceil f\rceil A=\left\lceil\int^{*} f\right\rceil A-A\left\lceil\int^{*} f\right\rceil$	"AMA"
$A\lceil f\rceil B=\left\lceil\int^{*} f\right\rceil B+A\left\lceil\int^{*} f\right\rceil$	"AMB"
$B\lceil f\rceil A=\left\lceil\int_{*} f\right\rceil A+B\left\lceil\int_{*} f\right\rceil$	"BMA"
$B\lceil f\rceil B=\left\lceil\int_{*} f\right\rceil B-B\left\lceil\int_{*} f\right\rceil$	"BMB"
$A A=\left\lceil\int^{*} 1\right\rceil A-A\left\lceil\int^{*} 1\right\rceil$	"AA"
$A B=\left\lceil\int^{*} 1\right\rceil B+A\left\lceil\int^{*} 1\right\rceil$	"AB"
$B A=\left\lceil\int_{*} 1\right\rceil A+B\left\lceil\int_{*} 1\right\rceil$	"BA"
$B B=\left\lceil\int_{*} 1\right\rceil B-B\left\lceil\int_{*} 1\right\rceil$	"BB"

]

The Green's System 4

```
System["4. Equalities for Absorbing Integration Operators", any[f],
```

$A\lceil f\rceil D=-f^{\leftarrow} L+\lceil f\rceil-A\left\lceil f^{\prime}\right\rceil$	"AMD"
$B\lceil f\rceil D=f^{\rightarrow} R-\lceil f\rceil-B\left\lceil f^{\prime}\right\rceil$	"BMD"
$A D=-L+1$	"AD"
$B D=R-1$	"AML"
$A\lceil f\rceil L=\left\lceil\int^{*} f\right\rceil L$	"BML"
$B\lceil f\rceil L=\left\lceil\int_{*} f\right\rceil L$	"AMR"
$A\lceil f\rceil R=\left\lceil\int^{*} f\right\rceil R$	"BMR"
$B\lceil f\rceil R=\left\lceil\int_{*} f\right\rceil R$	"AL"
$A L=\left\lceil\int^{*} 1\right\rceil L$	"BL"
$B L=\left\lceil\int_{*} 1\right\rceil L$	"AR"
$A R=\left\lceil\int^{*} 1\right\rceil R$	"BR"
$B R=\left\lceil\int_{*} 1\right\rceil R$	

]

New Formulation of BVPs

Remember: Given $f \in C^{\infty}[a, b]$, find $u \in C^{\infty}[a, b]$ such that $T u=f$ and $B_{1} u=\ldots=B_{n} u=0$.

$$
\begin{aligned}
G: C^{\infty}[a, b] & \longrightarrow C^{\infty}[a, b] \\
f & \longmapsto u
\end{aligned}
$$

Hence, for every $f \in C^{\infty}[a, b]$ we must have:

$$
\begin{aligned}
& T G f=f \\
& B_{1} G f=\ldots=B_{n} G f=0
\end{aligned}
$$

```
TG=1
B1G=\ldots=\mp@subsup{B}{n}{}}\boldsymbol{G}=
```

So we search an operator G that is a right inverse of T and annihilated by $\left\langle B_{1}, \ldots, B_{n}\right\rangle$.
Characteristic data of BVP: Differential operator T and boundary (vector) operator $\left\langle B_{1}, \ldots, B_{n}\right\rangle$.

Beam Deflection Again

Functionalformulation from before:

$$
\begin{aligned}
& u^{\prime \prime \prime}(x)=f(x) \\
& u(0)=0 \quad u, \prime(0)=0 \\
& u(1)=0 \quad u \prime(1)=0
\end{aligned} \quad g(x, \xi)=\left\{\begin{array}{l}
\frac{1}{3} x \xi-\frac{1}{6} \xi^{3}-\frac{1}{2} x^{2} \xi+\frac{1}{6} x \xi^{3}+\frac{1}{6} x^{3} \xi \quad \text { if } \quad 0 \leq \xi \leq x \leq 1 \\
\frac{1}{3} x \xi-\frac{1}{2} x \xi^{2}-\frac{1}{6} x^{3}+\frac{1}{6} x \xi^{3}+\frac{1}{6} x^{3} \xi \quad \text { if } \quad 0 \leq x \leq \xi \leq 1
\end{array}\right.
$$

New operator formulation:

$$
\begin{array}{llc}
D^{4} G=1 & G=-\frac{1}{6} A\left\lceil x^{3}\right\rceil-\frac{1}{6}\left\lceil x^{3}\right\rceil B+\frac{1}{3}\lceil x\rceil A\lceil x\rceil+\frac{1}{6}\lceil x\rceil A\left\lceil x^{3}\right\rceil+\frac{1}{3}\lceil x\rceil B\lceil x\rceil \\
\hline L G=0 & L D^{2} G=0 & -\frac{1}{2}\lceil x\rceil B\left\lceil x^{2}\right\rceil+\frac{1}{6}\lceil x\rceil B\left\lceil x^{3}\right\rceil-\frac{1}{2}\left\lceil x^{2}\right\rceil A\lceil x\rceil+\frac{1}{6}\left\lceil x^{3}\right\rceil A\lceil x\rceil+\frac{1}{6}\left\lceil x^{3}\right\rceil B\lceil x\rceil \\
R G=0 & R D^{2} G=0 & -1
\end{array}
$$

Characteristic data: $T=D^{4}$ and $\left\langle B_{1}, B_{2}, B_{3}, B_{4}\right\rangle=\left\langle L G, R G, L D^{2} G, R D^{2} G\right\rangle$.
Computation within the Theorema system:
Compute[Green [$D^{4},\left\langle L, R, L D^{2}, R D^{2}\right\rangle$], by \rightarrow GreenEvaluator]

$$
\begin{aligned}
-\frac{1}{6} A\left\lceil x^{3}\right\rceil-\frac{1}{6}\left\lceil x^{3}\right\rceil B+\frac{1}{3}\lceil x\rceil A\lceil x\rceil+\frac{1}{6}\lceil x\rceil A\left\lceil x^{3}\right\rceil+\frac{1}{3}\lceil x\rceil B\lceil x\rceil-\frac{1}{2}\lceil x\rceil B\left\lceil x^{2}\right\rceil+ \\
\frac{1}{6}\lceil x\rceil B\left\lceil x^{3}\right\rceil-\frac{1}{2}\left\lceil x^{2}\right\rceil A\lceil x\rceil+\frac{1}{6}\left\lceil x^{3}\right\rceil A\lceil x\rceil+\frac{1}{6}\left\lceil x^{3}\right\rceil B\lceil x\rceil
\end{aligned}
$$

Solving BVPs-A Primitive Approach

Heuristic strategy:

For every concrete problem characterized by T and $\left\langle B_{1}, \ldots, B_{n}\right\rangle$ throw together

$$
\text { the equations } T G=1, B_{1} G=\ldots=B_{n} G=0
$$

> and an appropriate segment of the above "Green's system" identities.

Then solve the resulting system for G by using noncommutative Gröbner bases.

Problematic points in the above strategy:

- In the noncommutative case, (finite) Gröbner bases need not exist.
- If it exists, how do we know that G always gets isolated as above?
- Computing a noncommutative Gröbner basis for each example is expensive!

Observe:

- The $n+1$ equations $T G=1, B_{1} G=\ldots=B_{n} G=0$ are the only ones changing in each computation.
- Replacing them by a single equation, $\mathcal{E}(G)$, might yield an expression for G by a uniform method.
- Then we could use the Green's system only for normalizing this expression.

```
TG=1, B1G=\ldots=\mp@subsup{B}{n}{}G=0\quad&\quad\mathcal{E}(G)\quad??
```


Solving BVPs—A Refined Approach

Sketch of Solution Algorithm

$$
\begin{aligned}
& T G=1 \\
& B_{1} G=\ldots=B_{n} G=0
\end{aligned}
$$

$\mathcal{E}(G): \quad G T=1-P$

- Compute the solution space N of the homogeneous equation $T u=0$.
- Determine a projector P onto N such that $M=(1-P) C^{\infty}[a, b]$ fulfills the boundary conditions.

$$
\begin{aligned}
& P=\text { Compute }\left[\operatorname{Proj}\left[D^{4},\left\langle L, R, L D^{2}, R D^{2}\right\rangle\right], \text { by } \rightarrow \text { GreenEvaluator }\right] \\
& L-\lceil x\rceil L+\lceil x\rceil R-\frac{1}{3}\lceil x\rceil L D^{2}-\frac{1}{6}\lceil x\rceil R D^{2}+\frac{1}{2}\left\lceil x^{2}\right\rceil L D^{2}-\frac{1}{6}\left\lceil x^{3}\right\rceil L D^{2}+\frac{1}{6}\left\lceil x^{3}\right\rceil R D^{2}
\end{aligned}
$$

- Find the right inverse T^{\star} of T as specified above.

$$
\begin{aligned}
& T \leqslant=\text { Compute }\left[\left(D^{4}\right), \text { by } \rightarrow \text { GreenEvaluator }\right] \\
& -\frac{1}{6} A\left\lceil x^{3}\right\rceil+\frac{1}{6}\left\lceil x^{3}\right\rceil A+\frac{1}{2}\lceil x\rceil A\left\lceil x^{2}\right\rceil-\frac{1}{2}\left\lceil x^{2}\right\rceil A\lceil x\rceil
\end{aligned}
$$

- Build up $G=(1-P) T^{\bullet}$ as the crude Green's operator.
- Reduce G with respect to the Green's system for obtaining a standard representation.

The Role of Noncommutative Gröbner Bases
Crucial Properties of the Green's System:

- Noetherianity: Every reduction terminates \rightarrow finitary basis.
- Confluence: It provides a unique normal form for each polynomial \rightarrow Gröbner basis!
- Adequacy: Enough reductions for algebraizing relevant analytic knowledge \rightarrow correctness claim.
- Standardization: Normal forms correspond exactly to the Green's functions \rightarrow extraction algorithm.

But there are 233 such S-polynomials! \rightarrow Proof automated in Theorema (approximately 2000 lines).
Proof is relative to the axioms of integro-differential algebras.

The Problem Monoid-Ideas

Additive Structure on Boundary Conditions:

$$
\begin{array}{rlrl}
\boldsymbol{B}: \mathcal{F} & \rightarrow \mathbb{C}^{m} & \tilde{\boldsymbol{B}}: \mathcal{F} & \rightarrow \mathbb{C}^{n} \\
f & \mapsto \tilde{\boldsymbol{B}} f & f & \mapsto \tilde{\boldsymbol{B}}: \mathcal{F}
\end{array} \mapsto_{\mathbb{C}^{m+n}} \quad \boldsymbol{f} \mapsto\langle\boldsymbol{B} f, \tilde{\boldsymbol{B}} f\rangle
$$

Encoding of Boundary Value Problems:

$$
\left(T, B_{1} \oplus \ldots \oplus B_{n}\right):=\quad \begin{aligned}
& T u=f \\
& \left(B_{1} \oplus \ldots \oplus B_{n}\right) u=0
\end{aligned}
$$

Identifying Boundary Value Problems

$$
(T, B) \sim(\tilde{T}, \tilde{B}) \quad: \Leftrightarrow \quad T=\tilde{T} \wedge \operatorname{Ker}(B)=\operatorname{Ker}(\tilde{B})
$$

Noncommutative Multiplicative Structure on Boundary Value Problems:

```
B}={(T,B)|\mathrm{ regular } / ~
[T,B]}[\tilde{T},\tilde{B}]=[T\tilde{T},B\tilde{T}\oplus\tilde{B}
```


Example of Multiplication / Factorization

Decomposing Boundary Value Problems:

$$
\begin{array}{|l|}
\hline u^{\prime}=f \\
\int_{0}^{1} u(\xi) d \xi=0
\end{array} \cdot \begin{aligned}
& u^{\prime}=f \\
& u(0)=0
\end{aligned}=\begin{aligned}
& u \prime \prime=f \\
& u(0)=u(1)=0
\end{aligned}
$$

In the Problem Monoid:

$$
[D, F] \cdot[D, L]=\left[D^{2}, L \oplus R\right]
$$

Abbreviation

$$
\begin{aligned}
& F \equiv A+B=\int_{0}^{x}+\int_{x}^{1}=\int_{0}^{1} \\
& F=R A=L B
\end{aligned}
$$

The Problem Monoid—Exact Definition

Stieltjes Boundary Conditions:

$$
\begin{aligned}
& \beta u=\sum_{i=0}^{n-1}\left(a_{i} u^{(i)}(0)+b_{i} u^{(i)}(1)\right)+\int_{0}^{1} \varphi(\xi) u(\xi) d \xi \\
& \beta=\sum_{i=0}^{n-1}\left(a_{i} L D^{i}+b_{i} R D^{i}\right)+F\lceil\varphi\rceil \\
& \quad \quad \ldots \text { for any } a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1} \in \mathbb{C} \text { and } \varphi \in \mathcal{E x p}:
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& \mathcal{S t j}=\{L, R\} \cdot \mathcal{A} n(\mathcal{F}) \\
& \mathcal{S t j} j_{n}=\left\{B_{1} \oplus \ldots \oplus B_{n} \mid B_{1}, \ldots, B_{n} \in \mathcal{S}_{t} j\right\}
\end{aligned}
$$
\]

Recognizing Regularity of BVPs:

$$
\begin{aligned}
& {[T, B] \text { regular : } \Leftrightarrow \underset{f \in C^{\infty}[0,1]}{V} \underset{u \in C^{\infty}}{\exists}{ }_{[0,1]}^{\exists}(T u=f \wedge B u=0)} \\
& {[T, B] \text { regular } \Leftrightarrow \quad \Leftrightarrow \operatorname{Ker}(T)+\operatorname{Ker}(B)=\mathcal{F} \quad \Leftrightarrow\left(\begin{array}{ccc}
B_{1} \varphi_{1} & \cdots & B_{1} \varphi_{n} \\
\vdots & \ddots & \vdots \\
B_{n} \varphi_{1} & \cdots & B_{n} \varphi_{n}
\end{array}\right) \text { regular }} \\
& \quad \ldots \text { where } B=B_{1} \oplus \ldots \oplus B_{n} \text { and }\left\{\varphi_{1}, \ldots, \varphi_{n}\right\} \text { is any basis for } \operatorname{Ker}(T)
\end{aligned}
$$

Problem Monoid Revisited

$$
\mathcal{B}=\left\{[T, B] \mid T \in \mathbb{C}[\partial]_{n} \wedge B \in \mathcal{S t} j_{n} \wedge \operatorname{Ker}(T) \dot{+} \operatorname{Ker}(B)=\mathcal{F}\right\} / \sim
$$

Problem Factorization versus Operator Factorization

Easy to check:

$$
\begin{array}{ccc}
{[T, B]} & \cdot[\tilde{T}, \tilde{B}] & =[T \tilde{T}, B \tilde{T} \oplus \tilde{B}] \\
\uparrow & \uparrow & \uparrow \\
G & \tilde{G} & \tilde{G} \cdot G
\end{array}
$$

Notation:

$$
[T, B]^{-1}:=G \quad[\tilde{T}, \tilde{B}]^{-1}:=\tilde{G} \quad \rightarrow \quad([T, B] \cdot[\tilde{T}, \tilde{B}])^{-1}=[\tilde{T}, \tilde{B}]^{-1} \cdot[T, B]^{-1}
$$

Example from before:

The Factorization Lemma

Every factorization of the differential operator can be lifted to the level of problems:

For every regular problem $[T, B]$ and for every factorization

$$
T=T_{1} T_{2}
$$

there are boundary conditions B_{1}, B_{2} with $\operatorname{Ker}(B) \subseteq \operatorname{Ker}\left(B_{1}\right)$ such that

$$
[T, B]=\left[T_{1}, B_{1}\right] \cdot\left[T_{2}, B_{2}\right]
$$

and both $\left[T_{1}, B_{1}\right]$ and $\left[T_{2}, B_{2}\right]$ are regular.

Iteration yields:

$$
\begin{aligned}
& {[T, B]=\left[D-\lambda_{1}, \beta_{1}\right] \cdot \ldots \cdot\left[D-\lambda_{n}, \beta_{n}\right]} \\
& {[T, B]^{-1}=\left[D-\lambda_{n}, \beta_{n}\right]^{-1} \cdot \ldots \cdot\left[D-\lambda_{1}, \beta_{1}\right]^{-1}}
\end{aligned}
$$

First-Order Green's Operators

$$
[D-\lambda, \beta]^{-1}=\left(1-\boldsymbol{P}_{\lambda, \beta}\right)\left\lceil e^{\lambda x} 1 A\left[e^{-\lambda x}\right] \quad \text { with } \quad \boldsymbol{P}_{\lambda, \beta} \equiv \beta\left(e^{\lambda x}\right)^{-1}\left[e^{\lambda x}\right] \beta\right.
$$

Solving Inhomogeneous Initial Value Problems à la Mikusiński

Recall Duhamel Convolution:

$$
u * \tilde{u}(x)=\int_{0}^{x} u(x-t) \tilde{u}(t) d t
$$

Note:

- Makes $\mathfrak{L} \equiv C(0, \infty)$ into a commutative(!) ring.
- Tichmarsh's Theorem: No zero divisors!
- Field of fractions \mathfrak{M} introduced by Mikusiński in 1959.
- Integral operator $l \equiv 1 \in \mathfrak{L}$, so $l * u(x)=\int_{0}^{x} u(t) d t=A u(x)$.
- Differential operator $s \equiv l^{-1} \in \mathbb{M}$

How to Solve Inhomogeneous Initial Value Problems (Constant Coefficients):

```
Fundamental Formula : s*u=\mp@subsup{u}{}{\prime}+u(0)\mp@subsup{\delta}{0}{}
Iteration :
s*s*u=u',}+\mp@subsup{u}{}{\prime}(0)\mp@subsup{\delta}{0}{}+u(0)\mp@subsup{\delta}{0}{\prime
Dirac Distribution: }\quad\mp@subsup{\delta}{0}{}\equivs*1=f//f\longrightarrow\mp@subsup{\delta}{0}{}*u=u,l*\mp@subsup{\delta}{0}{}=
```

Example:

```
u',=f
u(0)=a,u'(0)=b }\quad->u=(l*l)*f+a(l*1)+b=x*f+ax+
```

Solution:

$$
u(x)=a+b x+\int_{0}^{x} t f(t) d t
$$

How about Boundary Value Problems?

We need both A and B for representing Green's operators for boundary value problems.
Since $A B \neq B A$, Mikusiński cannot do this!

Returning to Green's Operators-on the Functional Level à la Mikusiński

Recall Green's Functions:

$$
\begin{aligned}
& G f(x)=\int_{0}^{1} g(x, \xi) f(\xi) d \xi \\
& G=\operatorname{Fred}(g)
\end{aligned}
$$

Introduce Multiplication on Collection \mathcal{G} of all Green's Functions of Regular Problems in \mathcal{B} :

$$
g * \tilde{g}(x, y)=\int_{0}^{1} g(x, t) \tilde{g}(t, y) d t
$$

Note:

- Introduced by Volterra in 1913.
- Makes $K \equiv L^{2}(I \times I) \supseteq \mathcal{G}$ into a noncommutative ring.
- Key property is $\operatorname{Fred}(g * \tilde{g})=\operatorname{Fred}(g) \circ \operatorname{Fred}(\tilde{g})$.
- We will often identify g with $\operatorname{Fred}(g)$ and drop $*$.

Factorization on Three Levels:

$$
\left.\begin{array}{cll}
{\left[D^{2}, L \oplus R\right]} & = & {[D, F]} \\
X A X+X B X-A X-X B & = & A \\
-h(\xi-x) x-h(x-\xi) x+h(\xi-x) x \xi+h(x-\xi) x \xi & = & h(\xi-x) *
\end{array}\right)(-h(x-\dot{~}
$$

```
Anti-Isomorphism : }\quadG\simeq\mp@subsup{\mathcal{B}}{}{\mathbf{p}
```


Localization in Noncommutative Rings

Necessary and Sufficient Condition for Constructing a «Ring of Fractions»:

For localizing R at $S \subseteq R$ into $R S^{-1}$ we require:
Multiplicativity: $\quad \forall \quad S \widetilde{S} \in S$
$s, \tilde{s} \in S$

$r \in R s \in S \tilde{r} \in R \tilde{s} \in S$

Even if R has no zero divisors, it may not have a ring of fractions, i.e. a quotient (skew) field!

Failing Attempts at Localizing in K :

- First Attempt: Take $R=$ K and $S=\mathbf{K}^{\diamond}$. Too many denominators!
- Second Attempt: Take $R=$ K and $S=\langle A, B\rangle$. Too few denominators!
- Third Attempt: Take $R=K$ and $S=G$. More balanced, but still fails!

The Ore condition turns out to be very tough!

Winning Idea:

Let R be any ring and $S \subseteq R$ a multiplicative subset fulfilling the Ore condition just within S.
Then the ring S^{+}generated by S in R fulfills the Ore condition when localized at S.

Successful choice: $R=\mathrm{G}^{+}$and $S=\mathrm{G}$:

- Hence it suffices to prove the Ore condition within \mathcal{G}.
- Since $\mathcal{G} \simeq \mathcal{B}^{\text {op }}$, we may as well prove it within \mathcal{B}.

The Ore Condition in the Problem Monoid

Regularization Lemma:

For every $T \in \mathbb{C}[\partial]_{m}$ and every $B=\mathcal{S t j}_{m}$
there is a regular $[\tilde{T}, \tilde{B}]$ with $T \mid \tilde{T}$ and $\operatorname{Ker}(B) \supseteq \operatorname{Ker}(\tilde{B})$.

Division Lemma:

For regular problems $[T, B]$ and $\left[T_{1}, B_{1}\right]$ with $T_{1} \mid T$ and $\operatorname{Ker}\left(B_{1}\right) \supseteq \operatorname{Ker}(B)$
there is exactly one regular problem $\left[T_{2}, B_{2}\right]$ with $\left[T_{1}, B_{1}\right] \cdot\left[T_{2}, B_{2}\right]=[T, B]$.

Ore Condition:

Given regular problems $\left[T_{1}, B_{1}\right]$ and $\left[T_{2}, B_{2}\right]$, there are regular problems $\left[\tilde{T}_{1}, \tilde{B}_{1}\right]$ and $\left[\tilde{T}_{2}, \tilde{B}_{2}\right]$ such that $\left[T_{1}, B_{1}\right] \cdot\left[\tilde{T}_{1}, \tilde{B}_{1}\right]=\left[T_{2}, B_{2}\right] \cdot\left[\tilde{T}_{2}, \tilde{B}_{2}\right]$.

Proof of the Ore Condition:
\bullet Regularization Lemma $\longrightarrow[T, B]$ with $T_{1} T_{2} \mid T$ and $\operatorname{Ker}\left(B_{1} \oplus B_{2}\right) \supseteq \operatorname{Ker}(B)$.
\bullet Division Lemma $\longrightarrow\left[\tilde{T}_{1}, \tilde{B}_{1}\right]$ and $\left[\tilde{T}_{2}, \tilde{B}_{2}\right]$.

Lots of Fundamental Formulae

The Fundamental Formulae à la Mikusiński:

$$
\begin{array}{ll}
A D=1-L & -B D=1-R \\
A u^{\prime}=u-u(0) & -B u^{\prime}=u-u(1) \\
u^{\prime}=A^{-1} u-u(0) A^{-1} 1 & u^{\prime}=-B^{-1} u+u(1) B^{-1} 1 \\
\begin{array}{|c|}
\hline A^{-1} u=u^{\prime}+u(0) \delta_{0} \\
\delta_{0} \equiv A^{-1} 1 \nearrow
\end{array} & B^{-1} u=-u^{\prime}+u(1) \delta_{1} \\
\hline \delta_{1} \equiv B^{-1} 1 \nearrow
\end{array}
$$

Example of a Different Fundamental Formula:

$$
\begin{aligned}
& C D=1-F \\
& C u^{\prime}=u-\int_{0}^{1} u(\xi) d \xi \\
& u^{\prime}=C^{-1} u-\left(\int_{0}^{1} u(\xi) d \xi\right) C^{-1} 1 \\
& C^{-1} u=u^{\prime}+\left(\int_{0}^{1} u(\xi) d \xi\right) \varepsilon \\
& \varepsilon \equiv C^{-1} 1 \\
&
\end{aligned}
$$

Recall: $C=[D, F]^{-1}=A-A F$
H|_,

Solving Inhomogeneous Boundary Value Problems à la Mikusiński

Recall the Factorization:

$$
\begin{array}{ccc}
\begin{array}{ccc}
{[D, F]^{-1}} \\
\uparrow & {[D, L]^{-1}} & =
\end{array} & {\left[D^{2}, L \oplus R\right]^{-1}} \\
\underbrace{(A-A F)}_{C} & \uparrow & A \\
& & =\underbrace{X A X+X B X-A X-X B}_{G_{2}}
\end{array}
$$

A Custom-Tailored Fundamental Formula:

$$
\begin{gathered}
G_{2}^{-1} u=u^{\prime}+u(0) \delta_{0}^{\prime}+u(1) \varepsilon \\
\delta_{0}^{\prime} \equiv A^{-2} 1 \nearrow
\end{gathered}
$$

Example:

$$
\begin{aligned}
& \hline u "=f \\
& u(0)=a, u(1)=b \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& G_{2}^{-1} u=f+a \delta_{0}^{\prime}+b \varepsilon \\
& \quad \rightarrow u \stackrel{*}{=} G_{2} f+a A\left(\delta_{0}-1\right)+b A 1=G_{2} f+a(1-x)+b x
\end{aligned}
$$

Solution:
$u(x)=a(1-x)+b x+\int_{0}^{1} g_{2}(x, \xi) f(\xi) d t$

Conclusion

Computer algebra tools (noncommutative polynomials) for handling

- Problem and solution of
- Differential equation and boundary conditions.

Two new recent achievements:

- Factorization of any regular BVP into irreducibles.
- The Mikusiński calculus extended to cover boundary conditions.

Setting still very simple: variable coefficients, partial differential equations, systems, ...?

Hope of extending some ideas there!

[^0]: Formulation in the Language of Green's Algebra:

