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I Outline of the Talk
Cooperation Prof. BuchbergeiProf. Engl within SFB F013.

Importance ohaoundaryconditions for practical usage of differential equations:

Lions. «God made the differential equations, but the devil made the boundary conditions.»
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Simple starting pointLineartwo-point boundarywalueproblems (briefly BVPS).
e How tosee them. (On the operators level.)
e How tosolve them. (By Grobner bases.)
e How tofactor them. (Through Stieltjes conditions.)

e How todivide them. (In the Mikusiski style.)

Parts (1) and (2): Doctoral thesisJSC.
Parts (3) and (4): Ongoing joint research with Georg Regensburger.
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I Two-Point Boundary Value Problems
Given f € C*[a, b], find u € C~[a, b] such that:

[a,bl........ ... ... ... Finiteinterval inR

C[a,b] ...... ... ... . Snoot h functions [a,b] » C

T Li near differential operator of order n
By, ....Bn .o Two-poi nt boundary operators

For simplicity, we assumennstanicoefficients inT:

Two-point boundary operators:

e R S T T - A
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I Traditional Solution by the Green’s Function
We assumeegularity:

Then every linear twgoint BVP admits to write theolution as:

o Green’s function [a b2 ->C

...................... G ven forcing function [a b]—>C
N Desired solution function [a b]—>C

Traditionalsolutionmethod (see e.g. Kamke): Matrix inversion based on a fundamental system for
Importancenf Green'sfunction: Response to "point sources".
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I An Example: Beam Deflection

Beam deflected under a loadiog

Fixed at both ends, but allowed to bend:




Talk.nb

I The Operator Perspective of BVPs
Everything seems to be on thmctionallevel:

e Problem statement: For eveynction f, find thefunction u such that..

e Solution method: Linear algebra oenction fields.

e Final solution: The Greenfsinction.

But actually, everything happens on theeratodevel:

e What we really want is the Greergperator G mapping forcing functions to solutions (\gar not).
e In some sense, it is the inverse of the given differeopiedator T.

e We will present a new method that works directly on (an algebraic model aétetors.
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I Integro -Differential Algebras
A complex algebra& with basisF#, plus 5 linear operations fulfilling theagioms:

Boundary operators as abbreviations: = f — [* f* andf~ = f* f—f.
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StandarexampleF = C*[0, 1] with:

Commansubalgebra: Exponential polynomials

Otherexample = C* (R?) with:

I Integro -Differential Polynomials

Analogous to differential algebra differential polynomials:

ldea: Integral / differential / boundary / multiplication operators

~ "formal linear expressions" ¢f containing an indeterminate




Talk.nb

Introduce abbreviations fduasicoperators:

Hence we construct the noncommutatigebraof integradifferentialpolynomials:

HereGrn is the ideal generated by a set of polynomial identiti@sg8n’ssystem").

Somehow mirroring integrdifferential axioms.

T S T - <A

I The Green’s System 1, 2

system["l. Equalities for Isolating Differential Operators", any[f],

DA=1 " DA"
DB=-1 " DB"
Drf1=rf1D+f" 1] " DM’
DL=0 "pL"

DR=0 "DR"
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Syst em["2. Equalities for Isolating Boundary Qperators", any[f ],

LA=0 "LA"
RA=A+B " RA"
LB=A+B "LB"
RB=0 " RB"
Lrf1=fcL LM
R[f1=f"R "RM
LL=L "LL"
LR=R "LR'
RL =L "RL"
RR=R "RR'
]
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I The Green’s System 0, 3

System["Equal ities for Al gebraic Sinplication", any[f, g],
rf1rg1=rf g1 "M
1

Syst em["3. Equalities for Contracting Integration Operators”, any[f ],

ATfTA=T["fTA-AT["f] " ANVA"
ATf1B=T["f1B+AT["f] " AVB"
Brf1A=[[f]A+B[[f] " BMVA
Brf1B=[[f]B-B[[f] " BMVB"
AA=T["1TA-AT["1] " AA"
AB=T["11B+AT["1] " AB"
BA=[[1]A+B[[ 1] " BA"
BB:[J'*l]B—B[J'*l] " BB"
]
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I The Green’s System 4

Syst em["4. Equalities for Absorbing Integration Operators", any[f],

ATf1D=-f<L+[f1-ATf"]
Brf]D=f>R-[f71-BJf"]
AD=-L+1

BD=R-1

ATfiL=Tr["f1L
Brf1L=[J’*f]L
ATfIR=T["f1R
Brf1R=[Lf]R

AL = rj*11 L

BL = [Ll] L
AR = [J'*l] R

BR= ”;1] R

AMD
BVD
AD
BD
AML
BML
AMR
BMVR
AL
BL
AR
BR
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I New Formulation of BVPs

RememberGiven f € C*[a, b], find ue C*[a, b] such tha u= f andB; u=... =B, u=0.

Hence, for everyf € C*[a, b] we must have:

Or purely on the level of operators:
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So we search an operat@rthat is a right inverse of and annihilated byBy, ..., By).

Characteristic data of BVP: Differential operatdrand boundary (vector) operatoBs, ..., B,).
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I Beam Deflection Again
Eunctionatformulation from before:

Characteristidata:T = D* and(By, B, Bz, Bs) = (LG, RG, LD?G, RD?G).
Computation within theTheoremasystem:

Conput e[Green[D*, (L, R LD?, RD?)], by » G eenEval uat or ]
! ATx3] ' x31B . IX1ATX] ' Ix1ATX3] ! [x1Bx] ! x1Bx?1
- — - — + — + — + — - — +
6 6 3 6 3 2

. x1Brx37 ! X217 AX] ! X371 A X7 . Ix31B[x]
—_ _-— + — + —
6 2 6 6
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I Solving BVPs —A Primitive Approach

Heuristic strategy:

For every concrete problem characterizedlbgnd(Bs, ..., B,) throw together

the equation¥G=1,BG=...=B,G=0
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and an appropriate segment of the above "Green’s system" identities.

Then solve the resulting system @by using noncommutative Grébner bases.

Problematic points in the above strategy:
¢ In the noncommutative case, (finite) Grébner bases need not exist.
o If it exists, how do we know th& always gets isolated as above?

e Computing a noncommutative Grébner basis for each example is expensive!

Observe:

e Then+ 1 equationd G=1, B;G = ... = B,G = 0 are the only ones changing in each computation.
e Replacing them by a single equati&iG), might yield an expression f@ by a uniform method.

e Then we could use the Green’s system only for normalizing this expression.
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I Solving BVPs —A Refined Approach

Sketch of Solution Algorithm

e Compute the solution spabkof the homogeneous equatido = O.

e Determine a projectd? ontoN such thaiM = (1 — P) C*[a, b] fulfills the boundary conditions.
P = Conpute[Proj [D*, (L, R LD?, RD?)], by » GreenEval uator]

1 1 1 1 1
L—rX1L+rX1R—§rX1LD2—grX1RD2+ErX21LD2—EFX31LD2+EFX31RD2

e Find the right invers&*® of T as specified above.
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Te = Conpute[ (D*)*, by » GreenEval uat or ]

1 1 1 1
o 3 T ry3 - 29 _ T 2
6Arx'|+6rx'|A+2|'x]Ar><'| 2r><'|Arx'|

e Build up| G=(1-P)T* |as the crude Green’s operator.

e ReduceG with respect to the Green’s system for obtaining a standard representation.
The Role of Noncommutative Grobner Bases
Crucial Properties of the Green’s System:
e Noetherianity Every reduction terminates finitary basis.
¢ Confluencelt provides a unique normal form for each polynomigbrobner basis!
e AdequacyEnough reductions for algebraizing relevant analytic knowledgerrectness claim.
e StandardizationNormal forms correspond exactly to the Green’s functierextraction algorithm.

But there are 233 suchf®lynomials!- Proof automated iftheoremgapproximately 2000 lines).

Proof is relative to the axioms of integdifferential algebras.

\ Logfile
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I The Problem Monoid —Ideas

Additive Structure on Boundary Conditions:

Encoding of Boundary Value Problems:

Identifying Boundary Value Problems

Noncommutative Multiplicative Structure on Boundary Value Problems:
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I Example of Multiplication / Factorization

Decomposing Boundary Value Problems:

In the Problem Monoid:

Abbreviation:

I The Problem Monoid —Exact Definition

Stieltjes Boundary Conditions:

Formulation in the Language of Green’s Algebra:
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Recognizing Regularity of BVPs:

Problem Monoid Revisited

=
-
v
—

I Problem Factorization versus Operator Factorization

Easy to check:

Example from before:
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I The Factorization Lemma

Every factorization of the differential operator can be lifted to the level of problems:

For every regular problerfil, Bl and for every factorization
T=T1 T,

there are boundary conditiorg; , B, with Ker(B) c Ker(B;) such that
[T, Bl =[T1, B1]-[T2, B2]

and both[T;, B;] and[T2, B,] are regular.

Iteration yields:

FirstOrder Green’s Operators

=
-
v
—

I Solving Inhomogeneous Initial Value Problems a la Mikusi nski

Recall Duhamel Convolution:

Note:
e Makest = C(0, ) into a commutative(!) ring.
e Tichmarsh’s Theorem: No zero divisors!
e Field of fractiondM introduced by Mikusiski in 1959.
e Integral operator= 1 € £, sol u(x) = fo *u(t) dt = Au(Xx).

e Differential operatos= 1"t e M
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How to Solve Inhomogeneous Initial Value Problems (Constant Coefficients):

How about Boundary Value Problems?

We need botl andB for representing Green'’s operators for boundary value problems.

SinceAB = BA, Mikusiiski cannot do this!

T S T - < S

Returning to Green’s Operators —on the Functional Level a la
Mikusi Aski

Recall Green’s Functions:

Introduce Multiplication on CollectioG of all Green’s Functions of Regular Problem®in

Note:

e Introduced by Volterra in 1913.
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e MakesK = L?(I x1) 2 G into a noncommutative ring.
e Key property if-redg= 0) = Fredg)cFred(g).
o We will often identifyg with Fredg) and dropx.

Factorization on Three Levels:
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I Localization in Noncommutative Rings

Necessary and Sufficient Condition for Constructing a «Ring of Fractions»:

For localizingR at SC Rinto RS we require:

iy ¥ SSE S
S8=S

aecondtonr ¥V YV 4 A rsS=sr
reRseSreRsS

Reversihility. Y (3 sr=0=> 4 rS:O)
reR \seS 5SS

Even ifR has no zero divisors, it may not have a ring of fractions, i.e. a quotient (skew) field!

Failing Attempts at Localizing iK:
e First Attempt: TakeR = K andS= K° . Too many denominators!
e Second Attempt: TakB = K andS= (A, B). Too few denominators!
e Third Attempt: TakeR = K andS= G. More balanced, but still fails!

The Ore condition turns out to be very tough!

Winning Idea:
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Then the ringS" generated b¥ in R fulfills the Ore condition when localized &t

LetR be any ring and ¢ R a multiplicative subset fulfilling the Ore condition just witin

Successful choic®® = G* andS= G:
e Hence it suffices to prove the Ore condition witéin
e SinceG ~ B, we may as well prove it withiB.
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I The Ore Condition in the Problem Monoid

Regularization Lemma:

For everyT e C[d],, and everyB = Stj,

there is a regulafT, B| with T |T andKer(B) 2 Ker(B).

Division Lemma:

For regular problemgT, B] and[Ty, B ] with T, | T andKer(B;) 2 Ker(B)

there is exactly one regular probldifp, B, ] with [Ty, By]-[T2, Bo1=[T, B].

Ore Condition:

such tha{Ty, B1]-[T1, Bi| = [T2, B21+[T2, By

Given regular problemfTy, By | and[T2, B, ], there are regular problen{§,, B, | and|T>, B; |

Proof of the Ore Condition:

e Regularization Lemma— [T, B] with T; T, | T andKer(B; & B,) 2 Ker(B).

e Division Lemma— [Ty, B | and[T, B;|.
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I Lots of Fundamental Formulae

The Fundamental Formulae a la Mikassi:
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Example of a Different Fundamental Formula:

Recall: C=[D, F]'L = A- AF

e

I Solving Inhomogeneous Boundary Value Problems a la Mikusi nski

Recall the Factorization:

A CustomTailored Fundamental Formula:

Example:

Solution:
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I Conclusion

Computer algebra tools (noncommutative polynomials) for handling
e Problemand solution of
o Differential equatiorand boundary conditions.
Two new recent achievements:
e Factorization of any regular BVP into irreducibles.
e TheMikusifiski calculus extended to cover boundary conditions.

Setting still verysimple: variable coefficients, partial differential equations, systent,

Hope of extending some ideas there!




