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Poincare (return) map:

P(p) =p+ 773(0413'7 @'j)p?’ + 774(0%3', ﬂz'j)p4 + ...
Limit cycles «— isolated fixed points of P(p). The center variety:

V = {(aij, Bi;) € € | 3y, Bij) = nalewy, Bij) = -+~ =0}

Let B = (n3,n4,...) C Rlayj, Bi;] be the ideal generated by the focus quantities 7);.
B is called the Bautin ideal of system (1). There is k such that

B = (N3,M5,...,N2k+1)-

Then
Plp) —p=mn3(14...)p° + .. napra (14 ... )p*+H

Theorem 1 (Bautin). If B = (13,75, ...,M2k11) then the cyclicity of system (1)
(i.e. the mazximal number of limit cycles which appear from the origin after small
perturbations) is equal to k.

Proof. Bautin N.N. Mat. Sb. (1952) v.30, 181-196 (Russian); Trans. Amer. Math. Soc. (1954) v.100
Roussarie R. Bifurcations of planar vector fields and Hilbert’s 16th problem (1998), Birkhauser.



The Center Problem: The Cyelicity Problem

(Local Hilbert’s 16th Problem):
Find the variety V(B) Find a basis for the
of the Bautin ideal B. Bautin ideal B

Theorem 2 (Strong Hilbert Nullstellensatz) Let
f € Clzy,...,zn] and let I be an ideal of Clzy,...,z,|. Then
f vanishes on the variety of I if and only if for some positive

integer £ fC € I (f € VI).

Complexification: x = u+iv (T =u — v) N
n—1 (:
§ : J+1

ptg=1
n—1

pa=1




n—1

n—1
T =i(x — Z ap P y?), = —i(y — Z bypxly?) (1)

p+q=1 p+q=1
If byp = Gpq, ¥y = T then from (3) we obtain the "real” system.

The change of time d7 = idt transforms (1)) to the system

n—1

n—1
&= (x— Z apgx?y?), ¥ = —(y — Z bapx?y") (2)
p+q=1 p+q=1

where x,y, ayq, byp are complex variables, S = {(m, k)|m + k > 1} is a subset of
{—1UN} x N, N is the set of non-negative integers. Let [ be the number of the
elements in the set S. We denote by E(a,b)(= C?) the parameter space of (2), and

by Cla, b] (Qla, b]) the polynomial ring in the variables a,,, b, over the field C (over
Q).



What is a center for system ([2)?77
Theorem 2 (Poincaré-Lyapunov). The system

du . P dv o .
E:_UJF Z Qvjju' v, E:qu Z Biju'v’

i+j=2 i+j=2

has a center at the origin if and only if it admits a first integral of the form

b =u’+ 02+ Z gbklukvl.

k+1>2
Consider polynomial systems of the form
dx dy

where F'(z,y),G(x,y) € Clz,y] without constant and linear terms.
Definition 1. (Dulac). System (5) has a center at the origin if there is an analytic
first integral of the form

U(z,y) =ay+ Y Y vjs g2y’ (3)

s=3 7=0



(First integral: 2XP(z,y) + %—3 (x,y) =0.)

For system (2) one can always find a function ¥ of the form ({3)) such that
D(¥) := —xP(az, y) +—=—Q(z,y) = g11(zy)” + goalay)’ + - -,

where the g;; are polynomials of C|a, b] called focus quantities. Thus system (2)
with the fixed parameters (a*,b*) has a center at the origin if and only if
gii(a*,b*) =0 forallt=1,2,..., i.e. if and only if

(CL*, b*) < V(<9117922, vy Gigy - >)

V ({911,922, - - -, Giiy--.)) = V(B) is the the center variety.



CALCULATION OF FOCUS QUANTITIES

n—1 n—1
T = (z— Z apg?y?), = —(y - Z bapz?y”)
ptq=1 pt+q=1

We assume that S = {71,..., 51} ={(p1, 1), (P2, ¢2),-- -, (q1,p1)} (2s = (ps,qs)) is
the ordered set of the indices of the coefficients of the first equation of system (2)

and consider the map L : N2/ — N? (recall that [ is the number of elements in the
set S), defined by

LY (v _ _ _ _ _ _ _
L(v) = ( L2EV§ ) = 11+t -tV 11+ VT V1)1 FVi42)1—11 - -+ V21—1])21+ V9

(4)

where 7, corresponds to 7, such that if 7, = (¥*), then 7, = ().
ds Ps

Denote by [v] the monomial

vV 14 1%
(V] = astaX? .. ath- S L i
i i g g1 J1

and by 7 the involution of the vector v:

U= (Var, V21—1,- .., V2, V1). (5)



Consider the formal series

. 2R, Vg Vi+1 1 Vi+-2 Va1
V= E :V(V1,V2 voy) A7y Q75 - "afz bil bj_z—1 : "bﬁ ’ (6)

.....

where V(,,, ) are determined by the recurrence formula:

..,l/2l

l
1 1
‘/(l/l,yg,...,l/gl) — Ll(V) _ L2(V) (; ‘/(Vly-..,vi—l,...,ygl)(L (Vla ceey Vi — ]-7 R VQZ)

21
+1)_ Z Vv(vl ..... v,i—1,..., 1/2l)(L2(V17"' 7Vi_17"'7y2l)+1)) (7)
i=l+1
if L'(v) # L*(v), Viy,....voy = 0, if L' (v) = L*(v); Vio....0) = 1 and we put
Vivy ...y = 0 for all v = (v1,...,v9), such that there exists i : v; < 0.

Looking for a first integral

\I!(x,y):xy+ Z Uj—l,k:—1<aab)xjyk7
J+k=>3

we have the equation:

D(¥) := ——P(x,y) + 5-Qx,9) = gu(zy)” + gaa(wy)” + -,



Theorem 3. 1) The coefficient of [v] in the polynomial vy, is equal to Vi, 1, .

2) The i-th focus quantity of the system (9) is

U Vz Vi+1g V42 20}/
Gii = E : 9(v1,va,... Vzl)a’u CL— -+ Ay, le b]l 1 "'bﬁ )

V:L(V):(Z:)

where

l
9(v1,va,...,v9]) — Z ‘/(Vl,...,l/i—l,...,l/zl)(Ll(Vh ceey Vi — 17 sy V2l) + 1)

1=1

_ Z ‘/(yl, v —1,. VZZ)(L (Vl,... —1,...,V2l)—|—1)
1=l+1

and V(. are defined by (@)
3) 9oy = —9w) if v# V.

NZK

(8)

(9)

The equation ([7]) is the so-called difference equation. It is often possible to pass from

a given difference equation to a differential equation, and vice versa.

For general polynomial system ([2)) we obtain the differential equation

AV) = ([a] = o)V,



Whel’e |a/’ — Z(’L,])ES a/ij, |b| — Z(],Z)ES b'L] and

oV L . oV L .
AVY= Y Dy ilal 43D+ Y O byl — ilal + jlbl) (10)
(i,5)es (jies Y

is the linear operator

A : Clla,b]] — Cla, b]]

(recall that k[[x]] denotes the ring of formal power series of x over k).

Let the map
m : Cla, b][[z, y]] — C[[a, b]]

T (Z Co.p(a, b)mo‘yﬁ) = an,g(a, b). (11)

Theorem 4. The system (J) has a center at the origin for all values of the
parameters agy, bpi (that is for all (a,b) € E(a,b)) if and only if there is a formal
series @ such that V(o .. o) = 1 satisfying the equation

be defined by

.....

A(V) = V(la| = [0]). (12)

Thus, the Poincaré center problem is equivalent to the study of formal solutions of
PDE (|12).




THE POINCARE CENTER PROBLEM

: —1 : 1
System (2): @ = (z — Zg+q:1 apgr?y?), § = —(y - ZZ—{—q:l bapriy")

U(x,y) =xy + Z Z v sl ys Y

s=3 7=0

DY) i= 5 Pla.y) + 5 QUavy) = g11(ew)? + gaalaw)* + -
System ([2)) has a center at the origin if and only if g;;(a*,b*) =0 for all i = 1,2, ...,
i.e. if and only if
(a*, b*) € V(<911,g22, vy Gigy - >),
i.e., to solve the center problem means to find the variety of B = (g11, g22, - - ).
The difficulty: ggi are given by recurrence formula.

A way to study the problem:

o Let B, = <gll,922,.. -agkk>- Compute g11,922, - -.,0ss until V(Bl) D) V(Bg) D)
. V(B._1) = V(B.).

e Find irreducible decomposition of V(B,,): V(Bs) = Vi UVLU...V,,.

e For every V; prove existence of a Lyapunov integral.



CUBIC SYSTEM

d
zd—f =x + Py(x,%) + P3(x, T).
System with homogeneous cubic nonlinearities (Malkin, 1966):
d
?,d—f =X — CL20$3 — a11$23_3 — a02$f2 — a_13§:3. (13)

The complexification y = & and the change of the time dt = idt yields the system

.o 3 2 2 3
T =2 — A0r° — a11X°Y — Qpg2xY” — a_13Y"~,

- 14
Yy = _(y — b02y3 — bllflfy2 — bQQZE‘Qy — bg,_1x3). ( )

Computing the first five focus quantities of ({14) we find:

g11
922
933
944

g55

a1 — bi1;

a20002 — bo2b20;

(3a350a_13 + 8az0a_13bag + 3adebs. 1 — 8ag2bo2bs,_1 — 3a_13b3 — 3b55b3. 1)/
(—9a3pa_13b11 + a11a_13b55 + 9a11b5obs, 1 — agybi1bs, 1)/ 16;
(—9a30a—13bo2b20 + a20a02a—13b50 + 9a20a02b50b3, —1 + 18a20a? 13b20b3,—1 +

601(2)26L_13b§,_1 — a(2)2b02b20b3,_1 — 1861,0261,_13[?02[)%,_1 — 6&2_13[?%0[?3,_1)/36.



Theorem 5. Let B = (g11, g22, . ..) be the Bautin ideal of system (14). The center
variety V(B) of the system (14)) consists of the three irreducible components:

V(B) =V ((g11,---,955)) = V(C1) UV (C2) UV(C3),

where

a1 — bi1, 3az — bao, 3bo2 — ap2),

a11,b11, a20 + 3b20, bo2 + 3ap2, a—13b3,—1 — 4ap2bap)

Cs = (a35a—13 — b3 —1b35, aspaoz — baoboz, az0a—13b20 — ag2bs,—1bo2,
air — bi1, 0%253,—1 - a,_13b§0>.

Oy = {
Cy = {

Proof. Computing with minAssChar or minAssGTZ of Singular we find that the
minimal associate primes of the ideal (g11, go2, ..., g55) are the ideals C, Cs, C3. To
prove that V(B) = V({(g11,--.,955)) it is sufficient to show that systems from
V(C1),V(C3),V(C3) admit first integrals.

Q.: what are the most efficient algorithms for decomposition of varieties?
C1 — Hamiltonian systems. System:

i = r—ag0r’—a117°y—agry’—a_13y°>, ¥ = —(y—boay’—br11y*—boor’y—b3 _11°).




C5 — Darboux integrable systems.

Consider the system of differential equations

©=P(z,y), y=Q(wy), (15)

where z,y € C and P and () are polynomials.

The polynomial f(z,y) € C|x,y| defines an algebraic invariant curve f(x,y) =0 of
the system ({15) if and only if there exists a polynomial k(x,y) € Clz, y| such that

of , , 9f
D = 2P+ 20=%LkT. 16
(1) =GP+ 5,Q=kf (16)
k is called cofactor of f.
Suppose that the curves defined by
fl :Oa"'afS:O

are invariant algebraic curves of the system ([15]). A first integral of the system (|15))
of the form

is called a Darboux integral of ([15)).




If f1,..., fs are different irreducible algebraic partial integrals such that
Z§:1 a;k; =0 then H = f;'*--- f& is a first integral of (15).

Algebraic invariant curves:

2_4 2
apg2bs 17w 4b ap2b3, 12y
fl =1+ 2b20$2 + — =20 29 — 20,02b3,_15133y -+ 20,023/2 -+

4bag b3, 1 b2
6anobonr2y? — 8agaboo’ry® | 4agabag’y®
02020L"Y b3 _1 by 12

fg = Sbgobg,_l + 2&02[)%’_1 + 24b%0b37_12$2 + 6&02b20b§’_1m2 + 12&02[)3013%,_1374 +
a022bg,_1x6 — 48aogb§0b3,_13xy — 72aogb§0b§’_1x3y — 6a(2)2b§,_1:133y—
12&82620bg,_1$5y -+ 24a02b203b3,_12y2 + 6&02263,_14y2 + 144a02b204b3,_12x2y2 +
36ag2bgob§’_1$2y2 + 60&022b202b§,_1x4y2—

96a02b30b3, —17y> — T2a3,b3,b3 _ xy® — 160ad,b30b3 _ x3y® + 48a3,b30b3 _ y* +
240@8263053,—133294 - 192&%2195053,—13395 + 64&(2)2198096/(%%,—1(4[730 + a02b§,—1))

Cofactors: ki = 4(bgox® — agoy?), ko = 6(baoz? — ag2y?)

From the equation a1k + asks = 0 we find a1 = 3, = —2, yielding the first
integral U = f7 f2_2.

The associated PDE:
A(V) = (18)



oV oV
ap2(—2+2(—3ao2+b20+b3 1)) + =—b20(2 — 2(ap2 — 3b2o0 +4ap2b20/b3,—1)) )+

6&02 (%20
oV

5 b3,—1(4 — (8b20 — 12a02b20/b3,—1) = (4apz — 4bag + 4agabao/bs,—1 — b3, —1)V.
3,—1

U = ff’f{g is a first integral of our system of ODE, but 7 (W) is not a solution to
(18]), because W is not of the form zy + h.o.t.:

2
U —1_ 3 (—4by’+agzbs _1%) =y 4
4 byo? b3, _1-+ap2 bao b3,—13

2
3 (—4 boo>+ao2 53,—12) (16 boo® —28 ag2 bag” bz, —1°+ag2” b3,—14) x? y? 1
2 e o o
(4b20% b3, —1+ap2 bao bg,—1°)

Thus,

4boo* b3 _1 + app bag b3 _1°
—(m(¥) —1) =

3 (—4 b’ + aoe bs,—12)2
4 by b3, _ boo b, _1°
()P fa) R = 1) 20 03, 13+a02 20 32;
3 (—4boo” + agz bz —1°)

is a (rational) solution to ([18)).

Q.: Is there any algorithmic method to find solutions to equations like ([18])?




('3 — time-reversible systems.

A General Algorithm for Finding Time-Reversible Systems

Jarrah , Laubenbacher and R. (2003):

Let
&t = P(z,T). (19)

be complexification of

i =v+ U(u,v), 0= —u+ V(u,v). (20)

A straight line L is an axis of symmetry of ([20)) if the trajectories of the system are
symmetric with respect to the line L.

Lemma 1. Let a denote the vector of coefficients of the polynomial P(x,Z) in ([19),
arising from the real system (20) by setting x = v+ iv. If a = +a (meaning that
either all the coefficients are real or all are pure imaginary), then the u—axis is an
axrts of symmetry of (20).

By the lemma the u—axis is an axis of symmetry for ([19)) if

P(z,z) = — P(x, %) (21)



(the case a = —a), or if

P(z,z) = P(x, ) (22)
(the case a = a@). If condition (21)) is satisfied then under the change

r — I, T — x, (23)
© = P(z,T) is transformed to its negative,

i = —P(z,7), (24)

and if condition (22)) holds then (]19) is unchanged. Thus condition (22) means that
the system is reversible with respect to reflection across the u—axis (i.e., the
transformation does not change the system) while condition (21]) corresponds to
time—reversibility with respect to the same transformation.

If the line of reflection is not the u—axis but a distinct line L then we can apply the
rotation 1 = e~ *“x through an appropriate angle ¢ to make L the u—axis. ([19) is
time—reversible when there exists a ¢ such that

e?YP(x,%) = —P(e*¥z, e *%x). (25)

This suggests the following natural generalization of the notion of time-reversibility
to the case of two—dimensional complex systems.



Definition 2. Let z = (z,y) € C2. We say that the system

dz_

- = F(z) (26)

1 time—reversible if there is a linear transformation T,

T oy, Yo (27)
(a € C), such that
d(j;z) — _F(Taz) (28)

For a fixed collection (p1,q1),- .-, (pe,qe) of elements of ({—1} UN,) x N, and
letting v denote the element (v4, ..., o) of Nﬁ_e, let L be the map from Nﬁ_g to Ni
(the elements of the latter written as column vectors) defined by

= () (e (s (D (o



Let M denote the set of all solutions v = (vq, s, ..., v9;) with non—negative

components of the equation
k
L) = () (30)

as k runs through N, and the pairs (p;, ¢;) determining L(v) come from system (2)).
M is an Abelian monoid. Let C|M] denote the subalgebra of C|a, b] generated by all
monomials of the form

— V1 V9 . 7/ Vo411 V042 A2
[V] = Up1q1%pago apeqebqﬁplf bqﬁ—lpﬁ—l bQ1p1’

for all v € M. For v in M, let U denote the involution of the vector v:

V= (V2€7V2£—17 .- '7V1)-

Corollary of Theorem 3: The focus quantities of system ([2)) belong to C[M] and

have the form
Jkk = Z 9o (Y] = 7)), (31)
L(v)=(k,k)T

with g(y)EQ, k=1,2,....

Consider the ideal
Lym = (V] = 7] | v € M) C CIM].
It is clear that B C I, hence V(Ig,,) € V(B).



Definition 3. For system (2)) the variety V (Is,m) is called the Sibirsky (or symmetry)
subvariety of the center variety, and the ideal Iy, is called the Sibirsky ideal.

Every time—reversible real system with the singularity of focus or center type at the
origin has a center at the origin. It is easily seen that this property is transferred to
complex systems: every time-reversible system (2)) has a center at the origin. Indeed,
the time-reversibility condition aQ(ay, z/a) = —P(x,y), aQ(z,y) = —P(ay, z/«a)
yields that system ([2)) is time—reversible if and only if

bgp = P Yap,, apg = bgpa®™P. (32)

Hence in the case that (2)) is time—reversible, using (32)) we see that for v € M

9] = ol O] = ) (33)

and thus from (31)) we obtain gir = 0 for all k, which implies that the system has a
center.

By (33) every time-reversible system (a,b) € E(a,b) belongs to V(Isy,). The
converse is false.

T =z(1 — a0r — ap1y), y = —y(1 — bigr — bo1ry).



In this case Ig,m, = (a10a01 — biobo1). The system

T = x(l — alox), y = —y(l — blom) (34)

arises from V (Ig,,,) but (32) are not fulfilled, so (34)) is not time-reversible.
Theorem 6. Let R C E(a,b) be the set of all time—reversible systems in the family
Q). Then:

1. R C V(Isym);

2. V(Isym) \ R ={(a,b) | I(p,q) € S such that apebyy =0 but ap, + by # 0}

The theorem shows that to describe time reversible systems it is sufficient to
compute Lgym,.

Algorithm for Finding Time-Reversible Systems

Input: Two sequences of integers p1,...,p¢ (p; > —1) and q1,...,q¢ (g; > 0).
(These are the coefficient labels for system (2):

; —1 : _1
T = (v — ZZ+q:1 apgx?ty), g = —(y — ZZ+q:1 bgpry?).)

Output: A finite set of generators for the Sibirsky ideal I, of (2)).



1. Compute a reduced Grobner basis GG for the ideal
J = <a’piq7; o yitzljitgiv byip; — yf—i+1t(i£_i+1tg£_i+l [i=1,...,¢)
C Cla,b,y1, ... ,yg,tf, t;t]

with respect to any elimination ordering for which

{ti,t2} > Ay, -, ¥a; > g+ -2 bgipy }-
2. I, = (GNCla,b]).

For the cubic system:

T =x(l— a20T> — a11xyYy — a02y2 - a—13x_193) (35)
y = —y(l — b3,—1£133y_1 - 520332 — brixy — b02y2) .

Computing a Grobner basis of the ideal

J = (a1 — t1toy1, b1 — t1tay1, azg — 15 Y2, boz — t5 Y2, Go2 — 13 Y3, bao — t3 3,

t3 14 t3 ya
a_13 — 2—7 b3,—1 — Y
i1 2

, 22 — t% t% Ys, Dag — t% t% Ys)




with respect to lexicographic order with

t1 >12>Y1>Y2> Y3 > Ya > Ys
>a11>bll>a20>b20>a02>b02>a_13>b3,_1

we obtain a list of polynomials. According to step 2 of the algorithm above, in order
to get a basis of Iy, we just have to pick up the polynomials that do not depend on

tla t27 Y1,Y2,Y3, Y4, Y5 -

aml13 b20* - a02? b3ml, -2l1l+bll, a20 aml3b20 - al2 bO2 b3ml ,

-abZ2aZ0 +b02 h20, 220 aml3- b022 b3ml, bOZ2 b3m1? v3 - aZ0 bZ 07 w47,

-aml3b3ml v¥* + abl2b20 y4?, - aml® L20 v3% +ab2* yi?, ab2 b3ml? v3% - BL20* y4?,

aZ0amli® v3 - ab2? b02 v4° , b2 b3ml y2- aZ0bll yd, aml3 b20y2- ablZbll w4,
al2b3mly2- bll1 h20 yd, a?0aml3 v2 - b2 blly4d, -bll b3ml v22 + h2 0P v2vd,

aZlaml3bll v5 - al2b0Z2 b20y2vy4, aml3bll v532 - ab2? vy2 yd, -LO2L20° w2 +a2a20b11? 3,
aml3®b3ml v2% - bll1? vd4*, -ab2b20y2* +bl11? 3%, -b20yl+aZby3,

-al2v1l+b02y3, bO2hL20y2? - b11? w1 v3, -b1ll b3ml vl v3+a20b20 w2 vd,

BO2b3m1? vy1ly3- a20? b20v4?, aml3bll vl v3- al2 b02 v2 vd, aml3b3ml vl v3- bO2 b20y4?,
-aliaml® vl v3+ a2 b02? v42, bll? v12 - 2a20b02 w22, -bl1b3ml v1? + a20® w2 w4,
BO2b3m1? w12 - a20% yd?, am13 b1l v12 - b02? y2 w4, - am13 b3ml v1? + a20b02 w42,
-aZ0aml® 12 +b02* ywd?, -a2a20aml3® y1 +b022* £2?2 vd?, -aml3Ib3ml v3+ L20 £22 w42,
aZ2baml® v3- alZ2 b02t2? vd4?, -aml F b20 y2+ 2022 +22 vd? , -aml3b53ml v1 +a20 £22 wd?,
am13® b3ml vl v2- L02b1l +2% va4?*, aml3 b3ml y2 v3- ab2bll £2% vd*, ad2- 2 v3,
aml13ibllyl- L2 +2% w2 vd, aml3bll v3- al2t2* v2v4d, -b02 b1l b3ml v3+ a20h20 £2° w2 vd,
LO2bL11 b3ml vl - 220 £ 2 v2v4d, -h20t2% v2? +b11% w3, b11? v1- a20 2% v2%, bOZ2- £2% v1,
aZ0aml® - b02 £27 vd4?, am13* b20 - 202 £2% vd?, -aml1® b3mly2+ bl1lt2! va*,

b2
aml3bll- £2* v2 vd, -b3ml £2* v2* +b11* v4d, - aml 3* b3ml + £ 27 va?, ST t2 vl,



CYCLICITY

The cyclicity of (12)):

n—1 n—1
T = (x— Z apqxp+1yq), y=—(y— Z bgpxTy")
p+q=1 p+q=1

is the maximal number of limit cycles which appear from the origin after small
perturbations.
Theorem 7. The cyclicity of

dx 2 _ _2
l— = X — A1 — a1 — a4—_12I .

dt

is 2 (3 if we take into account the perturbation of the linear part).

Bautin, N. Mat. Sb. 30 (1952) 181-196.

Zotadek, H. J. Differential Equations 109 (1994) 223-273.

Yakovenko, S. A geometric proof of Bautin theorem. Concerning the Hilbert
Sixteenth Problem. Advances in Mathematical Sciences, Vol. 23;

Amer. Math. Soc. Transl. 165 (1995) 203-219.



Theorem 8. The cyclicity of

dr 3 2~ 2 3
1— = X — a0 — A11& & — ap2xXr — A_13T .

dt

is 4 (5 if we take into account the perturbation of the linear part).
Lemma 2. The ideal of focus quantities of system (|14)),
B = (911, 922,--.) C Qlagg, a11,.-..,bo2] is a radical ideal.

Proof. According to Theorem 4 V(B) = V(B5). Therefore it is sufficient to show
that B5 is radical. Computing the intersection of the ideals J; we find

Bs = JiNJoN Js.

Hence B; is radical because, obviously, Ji, Jo are prime (they admit rational
parametrizations), and J3 is prime because the ideal produced by the Algorithm for
Finding Time-Reversible Systems is always prime. []

The proof of Theorem [g follows from
Proposition 1. The Bautin ideal of system (14]) is generated by the first five focus
quantities.

Proof. Let Bs := (911, . --,955). We need to show that B = Bs. It follows from the
facts that V(B) = V(Bs5) and the ideal Bs is radical. [J.



Consider the cyclicity problem for the system
S 2 _ 3
it =2 — a10T° — ap1TT — A_13T (36)

(Jarrah, Laubenbacher and R., to appear).

We study along with (36]) the more general system

. 2 3
L= — a0 — ap1ry — a—-13Y-,

' 37
Y= _(y - b01y2 — bml‘y — bg,_lajg). ( )

Theorem 9. The center variety of system (37) consists of the following irreducible
components:

1) a19p = a—13 = bip = 3ag1 — bp1 = 0,

2) bo1 = bs,—1 = ap1 = 3b1g — a10 =0,

3) a10 = a—13 = bip = 3ap1 + bo1 = 0,

4) bor = b3, _1 = ap1 = 3b1o + a0 =0,

5) ap1 = a—_13 = b1p =0,

6) ap1 = bz 1 = bip =0,

7) ap1 — 2bp1 = bip — 2a10 = 0,

8) a10ap1 — borbio = agybs,—1 — biga—13 = ajpa—13 — by bs,—1 =

a10a—13b70 — ap;bo1bs, —1 = afpa—_13b7y — ag b5 bs,—1 = ajga—_13b10 — ap1bg b3, —1 = 0.




The first nine focus quantities:

gi11
g22
g33

gq4

gs55

ge6
grv

gss

g99

a10a01 — bo1b10;

0;

—(2ai’0a_13b10 — a%oa_lgbfo — 18a10a_13bi’0 — 9a§1b3,_1 +
18a,bo1bs, 1 4+ alibiybs,—1 — 2ag1bo bs 1 + 9a_13by,)/8;
—(14a10b01(2a10a_13bi’0 + a31b3,—1 — 20%1501(?3,—1 — a—13b4110))/27;
(a_13bs,_1(378a,a_13 + 5771a ,a_13b1o — 254624’ ,a_13b7,
+11241a19a_13b5, — 11241a.,bo1bs,_1 + 25462a’ by bs 1 —
5771ag1bs,bs, 1 — 378bs,bs._1))/3240;

0;

—(a®5b; _1(343834a3ya_13by, — 1184919a10a_13by, + 506501a_13by, —
506501a0; b3 1 + 1184919a.,bo1bs, 1 — 343834a],bo1bs _1));

0;

3 3 3 4 4 3
—a” 13b3 1 (2a10a—13blo — a_13b10 + ao1 b3,—1 — 2a0 50153,—1) :

Proposition 2. The ideal I5 = (911, 933, gaa, g55) generated by the first five focus
quantities of system (37) is not radical in Clayo, ap1,a—13, b3, —1, b10, bo1].




Let us introduce new variables setting

aio = Ss1b10, bo1 = s20a01. (38)

By grr we denote the focus quantities obtained from gx after the substitution (38)).
Proposition 3. The polynomials g1, §33, 9aa, G55, G77, Goo form the basis of the ideal
of focus quantities of the system (37) in the ring C|s1, s2, ap1,a—13,b3.—1, b1o].

Proof. Denote by [v] the monomial
1% 1% 14
arpao1a_3bs!_1b1bo]

(where v = (v1,..,4)) and by U the vector (vg, vs, ..., 2, 11). Focus quantities are
polynomials of the ring Q[alg, bo1, ao1, b10, @ —13, bgj_l] and have the form

Grr = Za 9] — [l Z& TIM[VY)),

where a; € Q, v19) are the solutions of the equation

= (s (s (2o (s (s (- () o0



and we use the notation

IM[y] = [v] = [7], RE|V| = [v] +[7].

Denote by M the monoid of all solutions of the equations (39), where k runs through
all N. The Algorithm for Time-reversible systems produces the Hilbert basis of the
monoid M: {(100 001), (110 000), (000 011), (010 010), (001 100), (040 100),
(001 040), (401 000), (000 104), (101 030), (030 101), (201 020), (020 102),

(301 010), (010 103)}.

Therefore the focus quantities in the ring Q[s1, s2, ap1,a-13, b3, —1, b1g] have the form

Gii = Z (f,u[U] _f,u[ﬂ])a

weL () =(i,i) T

where f, € Q[s1, s2], b € M and M is the monoid of solutions of the equation

(e (e (e (=6

(k=0,1,2,...). We denote by f~the ideal of focus quantities in the ring
Cls1, s2,a01,a—13,b3,—1, b1o|, by Ix the ideal generated by the first k quantities in



this ring, and by ~ the involution

~ ~

o (C[Sl,SQ] [M] — C[Sl, SQ][M]

(where C[s1, 59][M] is the monoid ring of the monoid M over Clsy, s5]) defined by
the formula

C_ij — bjk, §1 — S9.

For example, if f = s¥s0'ad,bs._1b10 then f = sT"s4b3,a_13a01.

Using the obvious equality
1 1
IM[f(v + )] = SIM(fv]RE[u] + SIM (1] RE[ f] (40)
where f € Q[s1, 52,a01,0-13,b3,—1,b10}, v, 1 € M we obtain

Gii = h(i)(sh S2, 001,13, b3, _1, b10)[001 040]—
W (s1, s2,a01, 13, b3, 1, b10)[040 010] mod (§11).

It follows from the structure of the monoid M that A, k(") are polynomials of
S$1,82, 2,0V, W, W, where v = a01b10, Z = a_13b3’_1, w = a_lgbilo, w = bg’_lagl.



When s; = s5 = 1/2 the system ([37)) has a center at the origin, therefore

Gis = (251 = 1)0)"w — (252 — 1)01"0) + (252 — 1)vy w — (251 = 1)0y ) mod (gnr),
where 11() € Q[s1, s2,v, z, w, w].

It is easy to see that we can write g;; in the form g;; = gz(zl) + g,f? + gfz ) where g,f,)
is a sum with rational coefficients polynomials of the form

fr =v((2s1 — Deyw — (252 — 1)ayw) + v°((252 — 1) Biw — (251 — 1)B;w),
where «;, 8; € Q[s1, s2,w, z,v], c € N, ¢ > 0, g( )is a sum of polynomials
fo=2°((2s1 — D)viw — (252 — 1)y;w)
where ~;, € Qls1, $2,2,w|, ¢ € N, ¢ > 0, and g( )is a sum of polynomials of the form
f3 = ((251 — 1)0;w — (255 — 1)0;w)

where 0 € Q[sq, s2,w] (i.e. §§,L1) is the sum of all terms of §;; containing the factor v,

§Z(z) is the sum of remaining terms of g;; containing the factor z, and g( ) are all the

rest terms).



We will show that

fl =0 mod j5, fg =0 mod I~9, fg =0 mod I~5. (41)

First we prove that

~

v(s¥s(2s1 — Dw”® — s7s%(2s9 — 1)w") € I (42)

and
v(s¥sT (259 — Dw” — sMs%(2s1 — 1)w®) € I (43)

for all k,u, m € N. Indeed, computing the reduced Groebner basis of I using lex
with s1 > s9 > ag1 > big > a—_13 > bz _1 we see that it contains the polynomials

up = v(s1 — S2), us = v(2s9 — 1)(w — w),
uz = —ap12(2s2 — 1) (w — w),
uy = —by1pz ((231 — 1)11) — (282 — 1))U_J) ;
Uy = a01w(282 — 1)(82 — 3)(82 -+ 3)

and
ug = ((2s1 — 1)(s1 — 3)(s1 + 3)w — (252 — 1)(s2 — 3) (52 + 3)w).



It is easily checked that

v((2s1 — 1)wk — (2589 — 1)wk) — 2uw” = V(289 — 1)(wk — U_Jk’) = 0 mod (us),

v(s1(251 — Dw® — s9(2s9 — 1)w") — (251 + 259 — Dugw® =

v59(259 — 1)(w® — @) = 0 mod (us),

v(s2(251 — Dw”® — 51(2s9 — 1)w0") — ui(2s2(w® — @) + w*) =

v59(289 — 1)(w® — @) = 0 mod (us),
l.e fory=0,1, ¢ = 1,2 the polynomials
(s7(251 — Dw" — 57 (259 — 1)w")
are in the ideal Is. Taking into account that

(s7(251 — 1)w® — 5 (289 — 1)w") =



(5771251 —Dwk =577 (2s0—1)0") (5;45:) —5:5:(s] 2 (21— Dw*—57"%(2s0—1)0")

and using the induction on v we conclude that (42)) holds. Similarly one can verify
(43)). Therefore f1 € Is.

We now show that f € Io.

Without loss of generality fs is of the form
di(c) = 2°(s7 (251 — 1)wk — 55(289 — 1)1Dk)
with & > 1, or of the form

di(c) = z°(s7(2s1 — 1w — s5(2s2 — 1)w).

First we prove that )
di(c) = 0 mod I5. (44)

It is sufficient to consider the case ¢ = 1. We show using the induction on £ that for

k>1 .
dk(l) = 0 mod I5

and
df (1) = z(w — ) (s}(2s1 — D)w" + s5(2s5 — 1)w") = 0 mod I5. (45)



For £k = 2 we have
Clg(l) + Ugbg’_langg + U40J_13b:1))08111' = (282 — 1))(ww)2(s7f — S;) c <U,1>

Also

dy (1) + uzbs _1a5,(s%w + s4w) + uga_13b7sY (w — w) = 0.
Let us assume that for 2 < k < K the statement holds. Then for k = K using (40)
we have

AIM[5%(25,—1)wk] = %IM[sgb(zsl—mwK—l]RE[w]%RE[sy(zsl—nwK—luM[w].

Due to the induction hypothesis the both summands in the right-hand side are in I.
Therefore (44)) holds with k = K. The correctness of (45]) follows from the formula

2(w —w)(s%(251 — Dw? + s5(2s5 — Dw?) =

3 (eu, =1 | ou—j—1 3 u, j—2 _
— usbs _1ap; (sTwW! ™ 4+ s5w! ) + uga_13b7psTw? T (w — w).

Consider now the second case, namely the polynomial

di(c) = 2°(s7(2s1 — Dw — s5(2s2 — 1)w).



In fact here u can be equal only 0,1,2 or 3. Reducing d1(3) modulo a Groebner basis
of Iy we see that all these polynomials are in Iy, therefore dy(c) € Io for ¢ > 2. If

c < 2 then the degree of di(c) is less or equal 15, but the degree of the polynomials
of our interest starts from 20 (namely, the first polynomial under the consideration is

910,10)-

Similarly, it is possible to show that f5 € I5. Hence §;; € Io for i > 9. O

Because when ag; = 0, ajya_13 — afya_13 # 0 the system (36 has a focus at the
origin and when |ag1|| # O the substitution ([38)) is invertible we conclude that
Proposition [3) yields the following statement.

Proposition 4. The cyclicity of the origin of the system (36)) with agy # 0 or
ao1 = 0, ajga_13 is less or equal 5.

If instead of the substitution (38|) we use agy = s1bg1, bi1g = S2a01 then using
similar reasoning one can prove the analog of Proposition 4. Thus, the following
statement holds.

Theorem 10. The cyclicity of the origin of the system (36]) with |ai0| + |ap1| # 0
15 less or equal 5.




