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Introduction: factorization and decomposition

e Let L(O) be a scalar partial differential operator.
e When is it possible to find L1(9) and L»(0) such that:
L(0) = L2(9) L1(9)?
e We note that L1(0)y = 0= L(9)y = 0.
e L(0)y = 0 is equivalent to the cascade integration:
L(O)y=z & Ly0)z=0.
e When is the integration of L(9)y = 0 equivalent to:

L1(8)y:0 & Lg(a)ZZO?
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Introduction: factorization and decomposition

e Let us consider the first order ordinary differential system:
Oy =E(t)y, E(t) € k(t)P*P. (%)
e When does it exist an invertible change of variables
y = P(t)z,

such that
(x) & 0z=F(t)z,

where F = —P~1 (0P — E P) is either of the form:
_ Fu1 Fo2 _( Fin 0 ),
F—<0 F22> or F—<0 F22>'
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Factorization: known cases

Square differential systems:

@ Beke's algorithm (Bekel894, Schwarz89, Bronstein94,
Tsarév94)

e Eigenring (Singer96, Giesbrecht98, Barkatou-Pfliigel98,
BarkatouO1 - ideas in Jacobson37)

Square (g-)difference systems (generalizations):
@ Barkatou01, Bomboy01

Square D-finite partial differential systems (connections):
@ Li-Schwarz-Tsarév03, Wu05

Same cases in positive characteristic and modular approaches:

@ van der Put95, C.03, Giesbrecht-Zhang03, C.-van Hoeij04,06,
Barkatou-C.-Weil05
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General Setting

What about general linear functional systems?

e Example (Saint Venant equations): linearized model around the
Riemann invariants (Dubois-Petit-Rouchon, ECC99):

yi(t —2h) + yao(t) — 2y3(t — h) =0,
yi(t) + y2(t —2h) —2y3(t — h) = 0.

elet D=R [%, 5] and consider the system matrix:
2 d
R 0° 1 =204 c p2X3.
1 62 -204
Question: 3 U € GL3(D), V € GL2(D) such that:

a1 0 0
VRU= , a1, ap,a3 € D?
0 Qo Q3
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e Type of systems: Ordinary or partial differential /
discrete/differential time-delay. .. linear systems.

e General topic: Algebraic study of linear functional systems
(LFSs) coming from mathematical physics, engineering sciences. . .

e Techniques: Module theory and homological algebra.

e Applications: Equivalences of systems, Galois symmetries,
quadratic first integrals, autonomous observables, controllability. . .

e Implementation: package MORPHISMS based on OREMODULES:

http://wwwb.math.rwth-aachen.de/0OreModules.
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General methodology

© A linear system is defined by means of a matrix R with entries
in a ring D of functional operators:

Ry =0. (%)

We associate a finitely presented left D-module M with (x).
A dictionary exists between the properties of (x) and M.

Homological algebra allows us to check properties of M.

© ©6 0 ©

Effective algebra (non-commutative Grébner/Janet bases)
leads to constructive algorithms.

©

Implementation (Maple, Singular, Cocoa...).
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I. Ore Module associated with a linear functional system
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Ore algebras

Consider a ring A, an automorphism ¢ of A and a o-derivation §:
d(ab) = o(a)d(b) + d(a) b.

Definition: A non-commutative polynomial ring D = A[0; 0, 4] in

0 is called skew if Vaec A, da=oc(a)d+ d(a).

Definition: Let us consider A = k, k[x1,...,xn] or k(x1,...,xn).

The skew polynomial ring D = A[01;01,01] ... [Om; Om, Im] is
called an Ore algebra if we have:

{U;5J_5j0;, 1<, j<m,
O’,'(aj) = aj, (5,(({%) =0, j < I.

= D is generally a non-commutative polynomial ring.
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Examples of Ore algebras

e Partial differential operators: A=k, k[x1,...,xa], k(Xx1,-..,Xn),

D=A [81;1(1, 8%1} [Gn;id, a%n] )

P:ZOS|H|§m aM(X)au eD, o* :8{“8#”
e Shift operators:
D= A[9;0,0, A=k K], k(n),

P=Y7oain)d €D, o(a)(n)=a(n+1)

e Differential time-delay operators:
D= A[01;id, &£][02;0,0], A=k, k[t], k(t),
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Exact sequences

e Definition: A sequence of D-morphisms M’ oM M s
said to be exact at M if we have:

kerg =imf.

e Example: If f : M — M’ is a D-morphism, we then have the
following exact sequences:

@ 0— kerf —— M -2 coim f 2 M/ ker f — 0.
@ 0 — imf s M 5 coker f 2 M//im f — 0.

Q 0— kerf —— M M = coker f — 0.
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A left D-module M associated with Rn =0

e Let D be an Ore algebra, R € D9%P and a left D-module F.
e Let us consider kerr(R.) = {n € FP| Rn = 0}.

e As in number theory or algebraic geometry, we associate with
the system kerz(R.) the finitely presented left D-module:

M = DY*P /(D™ 9 R).
e Malgrange's remark: applying the functor homp(., F) to the

finite free resolution (exact sequence)

p1xa Eope oM — o,

)\:(Al,...,)\q) — AR
we then obtain the exact sequence:

Fa K FP &~ homp(M, F) «— 0.

_ T
Ry — n=(m.-..,7mp)
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Example: Linearized Euler equations

e The linearized Euler equations for an incompressible fluid can be
defined by the system matrix

0 0 03 0
o 81‘ 0 0 a1 4x4
R=1 0 a5 0 a |€P
O 0 3t 83

where D = R [81,id, 8%} [az,id, 8%] [03,1d, 8%} [0r,id, 2].
e Let us consider the left D-module F = C*(£2) (2 open convex
subset of R*) and the D-module:

M = D1><4/(D1><4 R)

The solutions of Ry = 0in F are in 1 — 1 correspondence with the
morphisms from M to F, i.e., with the elements of:

homp(M, F).
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[l. Morphisms between Ore modules finitely presented
by two matrices R and R’ of functional operators
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Morphims of finitely presented modules

e Let D be an Ore algebra of functional operators.
o Let R € DI*P, R' € D7*F' be two matrices.
e Let us consider the finitely presented left D-modules:
M = DYP /(D9 R), M = DY /(D7 R').

e We are interested in the abelian group homp(M, M") of
D-morphisms from M to M':

D1><q _R> D1><p ™ M 0
Lf
1xq’ R’ 1xp’ ! l
D ~— D — M — 0.
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Morphims of finitely presented modules

e Let D be an Ore algebra of functional operators.
o Let R € DI*P, R' ¢ D7 %P’ be two matrices.

e We have the following commutative exact diagram:
D1><q L D1><p 7T M 0

l.e L.p Lf
pixd R, puxp T o g
3f:M—> M < 3P e DPP Qe DI such that:
RP=QR.
Moreover, we have f(m()\)) = 7/(A P), for all A € D**P.



Eigenring: 0y = Ey & 0z=F z

OD:A[(D;(T./(S], E,FeAPXP,R:(’)Ip—E, R’z(?lp—F.
0— DIxp M pixp T, M -0
l.Q l.P lf

0— Dlxp M D1xp L’> M —0.

o(P) = Q € APXP,

(8/p—E)P—Q(5’P_F)‘:’{ 5(P) = EP — o(P)F.

If P € AP*P is invertible, we then have:

F = —o(P)"Y(§(P) — EP).
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Eigenring: 0y = Ey & 0z=F z

e D=Ad;0,0, E,FEA*P R=0l,—E, R =01l,—F.

0— Dlxp M pxep T, M 0

l-Q L.p Lf

0— DIxp m D1lxp L M —0.

— X
@“‘DP:Q“MF**ﬁi{QQQSEf;%F
If P € AP*P is invertible, we then have:

F=—o(P)"Y(6(P) — EP).
e Differential case: § = %, o =id:
P=EP—PF,
{F:—P%P—Em.
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Eigenring: 0y = Ey & 0z=F z

e D=Ad;0,0, E,FEA*P R=0l,—E, R =01l,—F.

0— Dlxp M pixep T, M -0

l-Q L.p Lf

0— DIxp M) D1lxp L M —0.

o(P) = Q € APXP,
l,—E)P= I, — F
(91~ E) P =Q (01, )@{5(P):EPU(P)F.
If P € AP*P is invertible, we then have:
F=—o(P)"}(4(P) — EP).

e Discrete case: 6 =0, o(k) =k —1:

E(k) P(k) — P(k — 1) F(k) = 0,
B=o(P) tEP.
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Computation of homp(M, M’)

e Problem: Given R € D9%P and R’ € D9*P" find P € DP*F' and
Q € D99 satisfying the commutation relation R P = Q R'.

e If D is a commutative ring, then homp(M, M) is a D-module.

e The Kronecker product of E € D9*P and F € D"™** is:

EnwnF ... EipF
E®F = : ; e Dlanx(ps)
Eq;l F Eq,;,F
Lemma: If U € D?*b, V € DP*¢ and W € D*?  then we have:
UVW=(V...V,) (U @ W).

RPly=(P1...P)(RT®1y), I4QR =(Q1...Qq)(ly®R').

RT @ Iy
We are reduced to compute kerp < < @R )
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Computation of homp(M, M’)

e Problem: Given R € D9*P and R’ € D9 *P', find P ¢ DP*P" and
Q € D9%9 satisfying the commutation relation R P = Q R'.

e If D is a non-commutative ring, then homp(M, M) is an abelian
group and generally an infinite-dimensional k-vector space.

= find a k-basis of morphisms with given degrees in x; and in 0:

Take an ansatz for P with chosen degrees.
Compute R P and a Grobner basis G of the rows of R’.
Reduce the rows of RP w.r.t. G.

Solve the system on the coefficients of the ansatz so that all
the normal forms vanish.

© 000

©

Substitute the solutions in P and compute @ by means of a
factorization.
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Example: Bipendulum

e We consider the Ore algebra D = R(g, /) [4].

e We consider the matrix of the bipendulum with [ =/, = b:
R:<dt2+ 0 o >€D2><3'

e
0 dt2 + -
e Let us consider the D-module M = D¥*3/(D'*2 R).

—I

—I

e We obtain that endp(M) is defined by the matrices:

a1 @2 a3 g
P = g Q1+ Qo — Qg a3 g 7
0 0 azD? 4+ o1+ +azg
— aq Qi
Q_(a4 Oé1+a2—a4>’ Vai,...,as €D.
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Example: Bomboy's PhD, p. 80

g-dilatation case: D = R(q)(x) [H] where H(f(x)) = f(q x) and:

H -1

R = 1— g3x2 1— g2 e D?*?.
g’ x x( CI)+H

T 1-gx2 1-—gx2

e Searching for endomorphisms with degree 0 in H and 2 in x
(both in numerator and denominator), we obtain

—a+bxq—bx+aqgx? b(—1+x?)
p c(—1+gx?) c(—1+gx?)
B b(—1+ g¢*x?) a+bxqg—bx—agx® |’
c(—1+qgx?) B c(—1+gx?)

where, a, b, ¢ are constants or P =, (and corresponding Q).
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Saint-Venant equations

elet D=Q [81; id, %] [02; 0, 0] be the ring of differential

time-delay operators and consider the matrix of the tank model:

2
p (B 1 228\
1 382 20,0,

e The endomorphisms of M = D¥*3/(D*2 R) are defined by:

ai
P, = oy + 20401 + 20501 0o
ag O + as
Qs 20301 0o
a1 — 20401 — 20501 0o 20301 0b ,
—0y Or — a5 a1+ s+ a3 (02 +1)

0 _< a1 — 204 01 ar + 204 01

= , Yai,...,as5 €D.
as + 2 a5 010 051—20558182> ! >
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Euler-Tricomi equation

e Let us consider the Euler-Tricomi equation (transonic flow):
92 u(xy, x2) — x1 93 u(x1, x2) = 0.
elet D=AQ), R=(0?-x03) € Dand M=D/(DR).
o endD(M)Ll is defined by:
P= al+3282+%a3x282+a3x1817
Q=(a1+2a3)+ a0+ 3300+ a3x 01,
o endp(M)a g is defined by P = Q = a1 + a» 0> + a3 03.
@ endp(M), 1 is defined by:
P=2a +3262+%Q3X282+33X181
+ay 8% + % as X 322 + ag x1 01 O,
Q= (al +283)+3282 +%33X282 + a3 xq 01,
a1 03 + a5 x1 0102 + 2 a5 0p + 3 a5 %, 03.
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I1I. A few applications:
Galois symmetries, quadratic first integrals of motion
and conservation laws
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Galois Symmetries

We have the following commutative exact diagram:

pxa K pue T, om0
l.@ 1P Lf (*)
pixa K, pup T o

If F is a left D-module, by applying the functor homp(-, F) to (x),
we then obtain the following commutative exact diagram:

0=Q(R'y)=R(Py) «— Py

Fa & FP —— kerg(R) 0
T Q. TP T r*
R Ko m  kers(R) —o.
0=R'y — y

= f* sends kerz(R.") to kerz(R.) (R' = R: Galois symmetries).



Example: Linear elasticity

e Consider the Killing operator for the euclidian metric defined by:

8 0
R=| 8/2 8./)2
0 &

e The system Ry = 0 admits the following general solution:

o X+ ¢
y(—c1x1—|—C3>’ ¢, &, s €ER. (%)

e We find that endp (D2 /(D**3 R)) is defined by:

[ o o Oy
P—< 0 20[3(314—041)7 al,ag,oz3€D.

e Applying P to (x), we then get the new solution:

_ 1 CL X+ Q1 C— oy . _
= = e, Ry=0.
y="Py (—a1C1X1—‘y-OZ1C3—2Oé3C1)7167 y=0
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Quadratic first integrals of motion

Let us consider a morphism f from N to M defined by:

T ~

0— pDlxp M} pixp T, N 0
L.P l.P Lf

0— pwxp B pue Ty g

We then have: .
P+ETP+PE=0.

If V(x) =xT Px, then V(x) =x" (P+ET P+ PE)x so that:

P+ETP+PE=0+<= V(x)=x" Px first integral.

= Morphisms from N to M give quadratic first integrals.

Alban Quadrat Morphisms, equivalences and symmetries of LFSs



Example: Landau & Lifchitz (p. 117)

0 1 0 0

. —w? 0 «a 0

e Consider R=090 I, — E, where E = o o0 o0 1
0 0 —w? a

e We find that the morphisms from N to M are defined by

Cc1 w* C w? —w? (C104+C2) C1 w?
—C w2 C1 w2 —C1 w2 + —C
P = 2 2 2 2 )
—wf(aa—a) —aw —aa a (o 4+ w?) —qa+ o
(o} w2 (@) —Clx— C (o}

which leads to the quadratic first integral V(x) = x” P x:
V(x) = cw*xi(t)? —2xi(t)w?xs(t) cra+2xi(t) cp w? xq(t)

—|—X2(t)2 1 w2 — 2X2(t) c1 X3(t) w? + X3(t)2 a?
tc1 x3(t)2 w? — 2x3(t) xa(t) a1 o + c1 xa(t)2.
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Formal adjoint

elet D=A [81; id, 8%1} {8,,; id, aix,,} be the ring of differential
operators with coefficients in A (e.g., k[x1,...,xn], k(x1,...,Xn))-

e The formal adjoint R € DP*9 of R € D9%P is defined by:
~ n
< MR >=<RAn>+> 0 di(\n).
i=1

e The formal adjoint R can be defined by R = (0(R;))T € DP9,
where 0 : D — D is the involution defined by:

QO VacA 6a)=a
@ 9(0)=-0;, i=1,...,n

Involution: 62 = idp, V Py, P, e D: 9(P1 P2) = 9(P2)0(P1)
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Conservation laws

e et us consider the left D-modules:
M = DY™P /(D9 R), N = DY9/(D**PR).

eletf: N— M bea morphism defined by the matrices P and Q.
e Let F be a left D-module and the commutative exact diagram:

7P B i kerg(R) —0

Tae TP T

Fa Ko kerr(R.) «— 0.

e 1 € FP solution of Rn =0 = A= Pn is a solution of RA=0.

n
= < Pn,Rp>—<R(Pn),n>=>_ 0 i(Pn,n) =0,
i=1
e, ®=(®1(Pn,n),...,0,(Pn,n))" satisfies divd = 0.
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Example: Laplacian operator

e Let us consider the Laplacian operator A y(x1,x2) = 0, where:

0 0
A= 81+826D @[allda :||:821d 8x]

e The formal adjoint R of R is then defined by:

A(An) = (AN =01 (A(81n) = (91 A)n) + 82 (A (921) = (92 ) m).

e R=A=Re D= homp(N, M) =endp(M) = D.

o if 7 is a D-module (e.g., C*°(£2)), then we have:
VaeD,Vnekerr(A), A=ayckerr(A.).

(ay)(Ory) —y(O1ay)
(ay)(Bay)—y(Baay) |
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IV. Factorization of linear functional systems
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Kernel and factorization

A — y
ptxa . pe .M 0
l.Q l.P lf
D1><q’ i/) D1><p’ L/) M  —0

dJpu +— puR=AP — 0

e kerp (( g, )) =D (§ —-T)

= {Ae DY*P|AP e DR} =D'S
= ker f = (D*" S)/(D**9 R).

« (D¥9(R — Q)€ kerp ( < - >> — (D9 R) C (D*" S).

IVveDI*: R=VS.
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Kernel and factorization

We have the following commutative exact diagram:

0

!

ker f

Li
ptxa £ pxe T,y 0
L [
Dxr =2, pixp T, M/kerf — 0.

!
0
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Example: Linearized Euler equations

& 0 03 0
8 0 0 9
e let R= Ot 8, 0 3: over D = R[81,82,63,8t].
0 0 O 0
e Let us consider f € endp(M) defined by:
0 0 0 0
p_ 0 03 —0,0; 0
10 6o 93 0
0 0 0 0
: P . .
e Computing kerp | . R and factorizing R by S, we obtain:
10 0 0 0 1 0 0 O
0 0 93 0
Jr 0 0 0 O
S=|o0 -8 0 0], v=
0 0 -1 0 0
0 0 2 0 00 01 9
0 0 0 1 3

Alban Quadrat Morphisms, equivalences and symmetries of LFSs



Example: Linearized Euler equations

e We have R = V' S where:

o 8 95 0 % 1 00 0 (1);808
& 0 0 o | _| 9 0 00 0 0 -8 0 0
0 8 0 & | | 00 -1 0 & ootao
t
0 0 0, 05 00 01 & o o0 o 1

e The solutions of Sy = 0 are particular solutions of Ry = 0.

= Integrating S, we obtain the following solutions of Ry = 0:

0
o E(x
8X3 15 X27 X3)

8X2 g(X].) X2a X3)
0

y(xi, %2, x3,t) = , VEe Q).
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Ker f, im f, coim f and coker f

e Proposition: Let M = DY*P /(D9 R), M’ = Dlxp//(Dlm’ R')
and f : M — M’ be a morphism defined by RP = QR’.

Let us consider the matrices S € D™P, T € D'™<9, U € DS*" and
V € D9*" satisfying R= V'S, kerp(.S)= DU and:

kerp ( < g, >) =D (s —T).

Then, we have:

o ker f = (DIX" S)/(D'*9 R) = D1*// (Dlx(q+s> ( g ))
e coimf & M/ ker f = D1><P/(D1><r S),

e im f = D1x(p+d) < g/ >/(D1><q R) o D1><p/(D1><r S),
o coker f £ M'/im f = D'*P/ <D1X(p+q/) < g, >>

Alban Quadrat Morphisms, equivalences and symmetries of LFSs



Equivalence of systems

e Corollary: Let us consider f € homp(M, M’). Then, we have:

@ f is injective iff one of the assertions holds:
e There exists L € D9 such that S = LR.

° ( 5 > admits a left-inverse.

@ f is surjective iff < Z,

© f is an isomorphism, i.e., M = M’, iff 1 and 2 are satisfied.

> admits a left-inverse.
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Pommaret's example

e Equivalence of the systems defined by the following R and R’?

p_ BB-1 003
T\ B2 0202

), R =(0,—1 —33).

e We find a morphism given by P = ( (1) (1) ),QZ ( 1+5.82162 )
i

. ( g ) = < 1+8821 & > admits the left-inverse (1 — 0,0, 03).
1

p 1 0
o ( R ) = 0 1 admits the left-inverse (L 0).
010, —1 —R

= M — D1><2/(D1><2 R) o M/ — DIXQ/(D Rl)
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V. Decomposition of linear functional systems
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Projectors of endp(M)

e Lemma: An endomorphism f of M = D**P/(D'*9 R), defined
by the matrices P and Q, is a projector, i.e., f° = f, iff there exist
Z € DP*9 and Z' € D9%* such that

P2=P+ZR,
Q?=Q+RZ+ZRs,

where R, € D**9 satisfies kerp(.R) = D** Ry.

e Some projectors of endp(M) can be computed when a family of
endomorphisms of M is known.

e Example: D = A1(Q), R= (0> —td—1), M=D>?/(DR).

—(t 0+1 t2 t 2
P:< (+g) " J;a ) P2:P+<(t+0a) )R.
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Projectors of endp(M) & ldempotents

e Particular case: (R; =0 and P2 =P) = Q%> = Q.

e Lemma: Let us suppose that R, = 0 and P?> = P+ Z R. If there
exists a solution A € DP*9 of the Riccatti equation

ARAN+(P—IL)AN+ANQ+Z=0, (%)
then the matrices P = P+ AR and Q@ = Q + R satisfy:
RP=QR, P =P, @ =AQ.
e Example: A = (at a0 —1)7 is a solution of (x)

5 [ atd®—(t+a)o+1 t2(1—ad) —
;‘P—< (230-1)?2  —atP+(t—2a)0+2 ) 9=

L. =2 = —2 =
then satisfy P~ = P and Q™ = Q.



Projectors of endp(M)

e Proposition: f is a projector of endp(M), i.e., f2 = f iff there
exists a matrix X € DP*® such that P =/, — X'S and we have the

following commutative exact diagram: 0
|
ker f
Li
ptxa K pbe T, M o0
TTl.v PTL f1lk
ptxs Y ptxr S plxp T M/kerf — 0.
X
— l
0

=>M=Zkerfdimf & S—-SXS=TR. (%)
e Corollary: If kerp(.S) =0, then R = V' S satisfies:
SX-TV=I.



Decomposition of solutions

e Corollary: Let us suppose that F is an injective left D-module.
Then, we have the following commutative exact diagram:

Vz=0=Ry «— vy
R

Fa K FP o kerg(R) 0
Tv. | T
Foo L Fr S FP o kerg(S) «—O.
L
0=Uz +— z=Sy — y

Moreover, we have: Ry =0 <& < >z:0, Sy=z

General solution: y =y + X z where Sy = 0 and ( lé ) z=0.
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Example: OD system

o Let D = k[t] [9;id, &] and M = D¥**/(D¥** R), where:

0 —t t 0
0 to—-t 0 -1
0 —t O+t 0-1
0 00—t t 0

R = c D4X4.

e We obtain the following idempotents:

1000

0

0

10 4x4 2 2
o 0 ekt P2op  @=4Q.
00

o O O

e We obtain the factorization R = V' S, where:

9 —t 0 0 10 ¢t )

0 0 00 1t 0 ~1
S=1lo 0o 10" V=10 9+t 0-1

0 0 0 1 11 t )
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e Using the fact that we must have /[, — P = X S, we then obtain:
0 0O
X =

O O O o

0 0O
010
0 01

Ry=0sy=y+Xz: Vz=0, Sy=0.
e The solution of Sy = 0 is defined by:
1
)71=§C1t+C2, yo=GC, y3=0, y,=0.
e The solution of V z =10 is defined by: z1 =0, z2 =0 and
z3(t) = GAi(t) + G Bi(t), z(t) = GGOAi(t) + G4 0Bi(t).
e The general solution of Ry = 0 is then given by:
1 T
y=y+Xz= (2 Gt+ G G z3(t) Z4(t)> .
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|dempotents & Projective/free modules

e Definition: Let M be a finitely generated left D-module M.
o Mis free if 3/ € Z, such that M = D1*/,
@ M is projective if there exists N such that M @ N = D1*/.

e Lemma: If P € DP*P is an idempotent, then kerp(.P) and
imp (.P) are projective left D-modules of rank m and p — m.

e Proposition: Let P € DP*P be an idempotent. 1 < 2:

© kerp(.P) and imp (.P) are free modules of rank m and p — m.

0 lpem
kerp(.P) = D™ Uy,
imp(.P) = D (P=m) (.

@ 1 U e GL,(D) satisfying UP U™ = < 0 0 )

= U:(UlT U2T)T7 {
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Block diagonal decomposition

e Theorem: Let R € D9*P, M = D*P/(D'*9 R) and
f € endp(M) defined by P and @ satisfying:

PP=P, @=Q
If kerp(.P), imp(.P), kerp(.Q) and imp(.Q) are free left
D-modules of rank m, p — m, I, g — I, then there exist two

invertible matrices U € GL,(D) and V € GL4(D) such that:

— Vi R W 0
_ -1 _ 1 1 gxp
R=VRU ( 0 V2RW2>6D ,

where U=t = (W W), Wy € DP*™ and W, € DP*(P—m),
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Block diagonal decomposition

The following commutative diagram

1
D1><q (VRUT) D1><p
V—l
U—l
Jo Jp
D1><q R D1><p
-Q P
-1
D1><CI (VRUTY) D1><P
vl
D1><q R D1><p

implies (VR U 1) J, = Jo (VRU™Y).
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Example: Saint-Venant equations

e We consider D = Q [81; id, %] [02; 0,0] and:
o (B 1 200
S\ 1 82 2600, )

e A projector f € endp(M) is defined by the idempotents:

1/2 1/2 0
1/2 12
P=1|1/2 1/2 0 |, Q= < >,
1/2 12
0 0 1

i.e., P and @ satisfy:

RP=QR, P’=P, Q@°=Q.
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Example: Saint-Venant equations

and we obtain the following two unimodular matrices:

1 -1 0
u=[1 1 0|, vz<111>.
0 0 1

e We easily check that we have the following block diagonal matrix:

_ B-1 0 0
_ -1 _ 2
R=VRU —< 0 1+ —48162)'
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Example: OD system

e Let us consider the matrix again:

0 —t t 0
0 to—t 0 -1
0 —t o+t 0-1
0 00—t t 0

R:

e We obtain the following idempotents:

100 0 0010
o100 | o001 o
P=Q=10v000 | Y1000 Y=U =VU

0000 0100

e R is then equivalent to the following block diagonal matrix:

o -1 0 0
= 1 _ |t 0 0 0
R=VRU " = 0 0 o —t
0 0 0 0
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Corollary

e Corollary: Let R € D9*P, M = D*P/(D'*9 R) and
f € endp(M) be defined by P and @ and satisfying P? = P and
Q? = Q. Let us suppose that one of the conditions holds:

@ D = A[0;0,0], where A is a field and o is injective,
@ D = k[01;01,01] ... [On; On,0n] is @ commutative Ore algebra,
©Q D = A[01;id, 61] ... [On;1d, dp), where A = k[xi,...,x,] or

k(x1,...,xn) and k is a field of characteristic 0, and:
rankp(kerp(.P)) > 2, rankp(imp (.P)) > 2,
rankp(kerp(.Q)) > 2, rankp(imp (.Q)) > 2.

Then, there exist U € GLy(D) and V € GL4(D) such that
R =V RU™!is a block diagonal matrix.
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Example: Flexible rod

e Let us consider the flexible rod (Mounier95):

B o) —010, -1
S\ 2010 —0103-01 0 )

1+03 —203(1+0) O L _1s
p=| 20 p 0 - 27 )
2 2 9 Q (0 0 )
0 0 1
—20 82+1 0 )
= U= -2 ,
0 _a2>

R=VRU! .
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V. Implementation: the Maple MORPHISMS package
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The MORPHISMS package

e The algorithms have been implemented in a Maple package
called MORPHISMS based on the library OREMODULES developed
by Chyzak, Q. and Robertz:

’ http://wwwb.math.rwth-aachen.de/OreModules

e List of functions:

@ Morphisms, MorphismsConst, MorphismsRat, MorphimsRat1.
Projectors, ProjectorsConst, ProjectorsRat, Idempotents.
KerMorphism, ImMorphism, CokerMorphism, CoimMorphism.
TestSurj, Testlnj, TestBij.

QuadraticFirstIntegralConst. . .

e |t will be soon available with a library of examples
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Conclusion

e Contributions:

@ We use constructive homological algebra to provide algorithms
for studying general LFSs (e.g., factoring or decomposing).

@ We apply the obtained results in control theory.

e Work in progress:

@ Study of morphisms of linear functional systems and r-pure
observables, in the proceedings of the Mathematical Theory of
Networks and Systems (MTNS), Kyoto (Japan), 2006.

@ Morphisms, equivalences and symmetries of linear functional
systems, in preparation
e Open questions:
@ Bounds in the general case.

@ Formulas for connections. . .
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Conference in Memory of Manuel Bronstein

An international conference in memory of Manuel Bronstein will be
held at INRIA Sophia Antipolis (Nice, France), July 13, 2006.
e Invited speakers:

@ S. Abramov

@ M. van Hoeij

e E. Kaltofen

o B. Trager

o F. Ulmer

e S. Watt

e Important information:
@ A coach will bring the ISSAC participants (Genova) to Sophia.
@ The conference is free.

e July 14 is Bastille Day (French national holiday).



Congratulations Jean-Francois!

e Jean-Francois Pommaret will retire in June 2006.

e | would like to thank him for his impressible work and for all |
owe him.

e In particular, | believe that his 5 books

@ Systems of partial differential equations and Lie pseudogroups,
Gordon and Breach, 1978,

o Differential Galois theory, Gordon and Breach, 1983,
@ Lie Pseudogroups and Mechanics, Gordon and Breach, 1988,

e Partial Differential Equations and Group Theory, Kluwer,
1994,

@ Partial Differential Control Theory, Kluwer, 2001,

will influence the next generations.
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