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Gianni, Trager, Zacharias

Definition

A maximal ideal M ⊂ K[x1, . . . , xn] is called in general position
with respect to the lexicographical ordering with x1 > · · · > xn, if
there exist g1, . . . , gn ∈ K[xn] with
M = 〈x1 + g1(xn), . . . , xn−1 + gn−1(xn), gn(xn)〉.

A zero–dimensional ideal I ⊂ K[x1, . . . , xn] is called in general
position with respect to the lexicographical ordering with
x1 > · · · > xn, if all associated primes P1, . . . , Pk are in general
position and if Pi ∩ K[xn] 6= Pj ∩ K[xn] for i 6= j.
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Proposition

Let K be a field of characteristic 0, and let I ⊂ K[x], x = (x1, . . . , xn),
be a zero–dimensional ideal. Then there exists a non–empty, Zariski
open subset U ⊂ Kn−1 such that for all a = (a1, . . . , an−1) ∈ U , the
coordinate change ϕa : K[x] → K[x] defined by ϕa(xi) = xi if i < n,
and

ϕa(xn) = xn +

n−1∑

i=1

aixi

has the property that ϕa(I) is in general position with respect to the
lexicographical ordering defined by x1 > · · · > xn.
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Proposition

Let I ⊂ K[x1, . . . , xn] be a zero–dimensional ideal. Let
〈g〉 = I ∩ K[xn], g = gν1

1 . . . gνs
s , gi monic and prime and gi 6= gj for

i 6= j. Then

I =
⋂s

i=1〈I, gνi

i 〉.

If I is in general position with respect to the lexicographical
ordering with x1 > · · · > xn, then

(2) 〈I, gνi

i 〉 is a primary ideal for all i.
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Criterion

Let I ⊂ K[x1, . . . , xn] be a proper ideal. Then the following conditions are equivalent:

I is zero–dimensional, primary and in general position with respect to the
lexicographical ordering with x1 > · · · > xn.

There exist g1, . . . , gn ∈ K[xn] and positive integers ν1, . . . , νn such that

I ∩ K[xn] = 〈gνn
n 〉, gn irreducible;

for each j < n, I contains the element
`

xj + gj

´νj .

Let S be a reduced Gröbner basis of I with respect to the lexicographical ordering
with x1 > . . . > xn. Then there exist g1, . . . , gn ∈ K[xn] and positive integers
ν1, . . . , νn such that

gνn
n ∈ S and gn is irreducible;

(xj + gj)
νj is congruent to an element in S ∩ K[xj , . . . , xn] modulo

〈gn, xn−1 + gn−1, . . . , xj+1 + gj+1〉 ⊂ K[x] for j = 1, . . . , n − 1.
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primaryTest(I)

Input: A zero–dimensional ideal I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).

Output:
√

I if I is primary and in general position or < 0 > else.

compute a reduced Gröbner basis S of I with respect to the lexicographical
ordering with x1 > · · · > xn;

factorize g ∈ S, the element with smallest leading monomial;

if (g = gνn
n with gn irreducible) prim := 〈gn〉

else return 〈0〉.
i := n;
while (i > 1)

i := i − 1;
choose f ∈ S with LM(f) = xm

i ;
b := the coefficient of xm−1

i in f considered as
polynomial in xi;
q := xi + b/m;
if (qm ≡ f mod prim) prim := prim + 〈q〉;
else return 〈0〉;

return prim.
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zeroDecomp(I)

Input: a zero-dimensional ideal I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).

Output: a set of pairs (Qi, Pi) of ideals in K[x], i = 1, . . . , r, such that
− I = Q1 ∩ · · · ∩ Qr is a primary decomposition of I, and
− Pi =

√
Qi, i = 1, . . . , r.

result := ∅;

choose a random a ∈ Kn−1, and apply the coordinate change I ′ := ϕa(I);

compute a Gröbner basis G of I ′ with respect to the lexicographical ordering
with x1 > · · · > xn, let g ∈ G be the element with smallest leading monomial.

factorize g = gν1

1 · . . . · gνs
s ∈ K[xn];

for i = 1 to s do
set Q′

i := 〈I′, gνi

i 〉 and Qi := 〈I, ϕ−1
a (gi)

νi 〉;
set P ′

i := PRIMARYTEST(Q′
i);

if P ′
i 6= 〈0〉
set Pi := ϕ−1

a (P ′
i );

result := result ∪{(Qi, Pi)};
else

result := result ∪ ZERODECOMP (Qi);

return result. Primary Decomposition – p. 8



Proposition

Let I ⊂ K[x] be an ideal and u ⊂ x = {x1, . . . , xn} be a maximal
independent set of variables with respect to I.
(I ∩ K[u] = {0} and #(u) = dim(K[x]/I))

IK(u)[x r u] ⊂ K(u)[x r u] is a zero–dimensional ideal.

Let S = {g1, . . . , gs} ⊂ I ⊂ K[x] be a Gröbner basis of
IK(u)[x r u], and let h := lcm

(
LC(g1), . . . , LC(gs)

)
∈ K[u], then

IK(u)[x r u] ∩ K[x] = I : 〈h∞〉 ,

and this ideal is equidimensional of dimension dim(I).

Let IK(u)[x r u] = Q1 ∩ · · · ∩ Qs be an irredundant primary
decomposition, then also
IK(u)[x r u] ∩ K[x] = (Q1 ∩ K[x]) ∩ · · · ∩ (Qs ∩ K[x]) is an
irredundant primary decomposition.
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reductionToZero(I)

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).

Output: A list (u, G, h), where
− u ⊂ x is a maximal independent set with respect to I,
− G = {g1, . . . , gs} ⊂ I is a Gröbner basis of IK(u)[x r u],
− h ∈ K[u] such that IK(u)[x r u] ∩ K[x] = I : 〈h〉 = I : 〈h∞〉.

compute a maximal independent set u ⊂ x with respect to I;

compute a Gröbner basis G = {g1, . . . , gs} of I with respect to the
lexicographical ordering with x r u > u;

h :=
Qs

i=1 LC(gi) ∈ K[u], where the gi are considered as polynomials in
x r u with coefficients in K(u);

compute m such that 〈g1, . . . , gs〉 : 〈hm〉 = 〈g1, . . . , gs〉 : 〈hm+1〉;
return u, {g1, . . . , gs}, hm.
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decomp(I)

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).

Output: a set of pairs (Qi, Pi) of ideals in K[x], i = 1, . . . , r, such that
− I = Q1 ∩ · · · ∩ Qr is a primary decomposition of I, and
− Pi =

p

(Qi), i = 1, . . . , r.
`

u, G, h
´

:= REDUCTIONTOZERO (I);

change ring to K(u)[x r u] and compute
qprimary := ZERODECOMP (〈G〉K(u)[xru]);

change ring to K[x] and compute
primary := {(Q′ ∩ K[x], P ′ ∩ K[x]) | (Q′, P ′) ∈ qprimary};

primary := primary ∪ DECOMP (〈I, hn〉);
return primary.
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Definition

Let A be a Noetherian ring, let I ⊂ A be an ideal, and let
I = Q1 ∩ · · · ∩ Qs be an irredundant primary decomposition.

The equidimensional part E(I) is the intersection of all primary
ideals Qi with dim(Qi) = dim(I).

The ideal I (respectively the ring A/I) is called equidimensional
or pure dimensional if E(I) = I. In particular, the ring A is
called equidimensional if E(〈0〉) = 〈0〉.
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equidimensional(I)

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).

Output: E(I) ⊂ K[x], the equidimensional part of I.

set (u, G, h) := REDUCTIONTOZERO (I);
if (dim(〈I, h〉) < dim(I))

return (〈G〉 : 〈h〉);
else

return
(
(〈G〉 : 〈h〉)∩ EQUIDIMENSIONAL (〈I, h〉)

)
.
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Proposition

Let I ⊂ K[x1, . . . , xn] be a zero–dimensional ideal and
I ∩ K[xi] = 〈fi〉 for i = 1, . . . , n. Moreover, let gi be the squarefree
part of fi, then

√
I = I + 〈g1, . . . , gn〉.
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proof

Obviously, I ⊂ I + 〈g1, . . . , gn〉 ⊂
√

I. Hence, it remains to show
that an ∈ I implies that a ∈ I + 〈g1, . . . , gn〉.

Let K be the algebraic closure of K. We see that each gi is the
product of different linear factors of K[xi]. These linear factors
of the gi induce a splitting of the ideal (I + 〈g1, . . . , gn〉)K[x] into
an intersection of maximal ideals.

Hence, (I + 〈g1, . . . , gn〉)K[x] is radical. Now consider a ∈ K[x]
with an ∈ I + 〈g1, . . . , gn〉. We obtain
a ∈ (I + 〈g1, . . . , gn〉)K[x] ∩ K[x] = I + 〈g1, . . . , gn〉.
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zeroradical(I)

Input: a zero–dimensional ideal I := 〈f1, . . . , fk〉 ⊂ K[x],
x = (x1, . . . , xn).

Output:
√

I ⊂ K[x], the radical of I.

for i = 1, . . . , n, compute fi ∈ K[xi] such that
I ∩ K[xi] = 〈fi〉;
return I + 〈SQUAREFREE (f1), . . . , SQUAREFREE (fn)〉.
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radical(I)

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).

Output:
√

I ⊂ K[x], the radical of I.

(u, G, h) := REDUCTIONTOZERO (I);
change ring to K(u)[x r u] and compute
J := ZERORADICAL (〈G〉);
compute a Gröbner basis {g1, . . . , g`} ⊂ K[x] of J ;

set p :=
∏`

i=1 LC(gi) ∈ K[u];
change ring to K[x] and compute
J ∩ K[x] = 〈g1, . . . , g`〉 : 〈p∞〉;
return (J ∩ K[x]) ∩ RADICAL (〈I, h〉).
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Hensel’s Lemma

Let A be one of the following rings:
Z, Z[x1, . . . , xn], Q[x1, . . . , xn], C[x1, . . . , xn].

Let I ⊆ A be an ideal and f(x) ∈ A[x] monic.

Assume, g1(x), h1(x) ∈ A/I[x] are relatively prime and monic,
such that f(x) = g1(x) · h1(x) mod I.

Then there exist monic polynomials gn, hn ∈ A/In[x] such that
f = gn · hn mod In

gn = g1 mod I , hn = h1 mod I

Furthermore, there exist unique polynomials ĝ, ĥ ∈ ÂI [X] such
that

f = ĝĥ

ĝ = g1 mod I , ĥ = h1 mod I

Primary Decomposition – p. 18
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Lifting a factorization

f ∈ C[x1, . . . , xn] I = 〈x3 − a3, . . . , xn − aN 〉 , di = degxi
(f)

f̄ (i) = f(x1, . . . , xi, a4, . . . , an)

f̄ (2) = g1 · h1

Hensel’s lemma in A[x1] (A = C[x2, x3] , I = 〈x3 − a3〉)

f̄ (3) = gd3+1
hd3+1

mod 〈x3 − a3〉d3+1

if f = f1 · f2 and
f1(x1, x2, a3, . . . , an) = g1, f2(x1, x2, a3, . . . , an) = h1

then
f1(x1, x2, x3, a4 . . . an) = gd3+1

(x1, x2, x3)

f2(x1, x2, x3, a4 . . . an) = hd3+1
(x1, x2, x3)

by unicity of Hensel’s lemma.

Restart with the next variable.
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Gao’s version of Bertini’s Theorem

Let K be a field of characteristic 0 and S ⊂ K a finite subset.

Let f ∈ K[x1, . . . , xn] , deg(f) = d and
f0(x, y) = f(a1x + b1y + c1, . . . , anx + bny + cn)

Then, for random choices of ai, bi, ci in S with probability at
least 1 − 2d3

|S| all the absolute irreducible factors of f remain

absolutely irreducible factors of f0 in K[x, y].
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Irreducibility Testing

Let f ∈ Z[x, y] be irreducible, if for some prime p

f is irreducible in Z/pZ[x, y]

there exists a simple point (a, b) ∈ (Z/pZ)2 of V (f)

the degree of f mod p is equal to the degree of f .

The test is based on the following theorem:

Let k be a field and (α, β) ∈ k̄2 be a simple point of
f ∈ k[x, y].
Then one absolute irreducible factor belongs to k[α, β][x, y].
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Splitting over C

Theorem: Gao/Ruppert Let f ∈ Q[x, y] be irreducible of bidegree
(m, n).

Let G = {g ∈ Q[x, y]|(m − 1, n) ≥ deg(g), ∃h ∈ Q[x, y], ∂(g/f)
∂y = ∂(h/f)

∂x }.
The vector space G has the following properties

f is irreducible in C[x, y] if and only if dimQ(G) = 1.

gG ⊂ ∂f
∂xG mod f for all g ∈ G.

Let g1, . . . , ga ∈ G be a basis and g ∈ G r Q
∂f
∂x ,

ggi =
∑

aijgj
∂f
∂x mod f .

Let χ(t) = det(tE − (aij)) be the characteristic polynomial.
Then χ is irreducible in Q[t].

f =
∏

c∈C,χ(c)=0 gcd(f, g − c∂f
∂x ) is the decomposition of f into

irreducible factors in C[x, y].
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Splitting over C: Example

f = x2 + y2

G =< x, y >Q

(ai,j) =

(
0 1/2

−1/2 0

)

χ(t) = t2 + 1/4

gcd(x2 + y2, y− i
22x)gcd(x2 + y2, y+ i

22x) = x2 + y2
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How to compute the normalization?

Let A be a reduced ring, the normalization A is the integral
closure of A in the total ring of fractions Q(A).

Let A be a reduced Noetherian ring and J ⊂ A an ideal
containing a non–zerodivisor x of A. Then there are natural
inclusions of rings

A ⊂ HomA(J, J) ∼= 1

x
· (xJ : J) ⊂ A .
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proof

For a ∈ A, let ma : J → J denote the multiplication with a. If ma = 0, then
ma(x) = ax = 0 and, hence, a = 0, since x is a non–zerodivisor. Thus, a 7→ ma

defines an inclusion A ⊂ HomA(J, J).

It is easy to see that for ϕ ∈ HomA(J, J) the element ϕ(x)/x ∈ Q(A) is
independent of x: for any a ∈ J we have ϕ(a) = (1/x) · ϕ(xa) = a · ϕ(x)/x, since
ϕ is A–linear.

Hence, ϕ 7→ ϕ(x)/x defines an inclusion HomA(J, J) ⊂ Q(A) mapping
x · HomA(J, J) into xJ : J = {b ∈ A | bJ ⊂ xJ}. The latter map is also
surjective, since any b ∈ xJ : J defines, via multiplication with b/x, an element
ϕ ∈ HomA(J, J) with ϕ(x) = b. Since x is a non–zerodivisor, we obtain the
isomorphism HomA(J, J) ∼= (1/x) · (xJ : J).

It follows that any b ∈ xJ : J satisfies an integral relation
bp + a1bp−1 + · · · + a0 = 0 with ai ∈ 〈xi〉. Hence, b/x is integral over A, showing
(1/x) · (xJ : J) ⊂ A.
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non-normal locus

The non–normal locus of A is defined as

N(A) = {P ∈ SpecA | AP is not normal} .

Let C = AnnA(A/A) = {a ∈ A | aA ⊂ A} be the conductor of A

in A. Then

N(A) = V (C) = {P ∈ SpecA | P ⊃ C} .

In particular, N(A) is closed in SpecA.
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Let J ⊂ A be an ideal containing a non–zerodivisor of A.

There are natural inclusions of A–modules

HomA(J, J) ⊂ HomA(J, A) ∩ A ⊂ HomA(J,
√

J) .

If N(A) ⊂ V (J) then JdA ⊂ A for some d.
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The embedding of HomA(J, A) in Q(A) is given by ϕ 7→ ϕ(x)/x, where x is a
non–zerodivisor of J . With this identification we obtain

HomA(J, A) = A :Q(A) J = {h ∈ Q(A) | hJ ⊂ A}

and HomA(J, J), respectively HomA(J,
√

J), is identified with those h ∈ Q(A)

such that hJ ⊂ J , respectively hJ ⊂
√

J . Then the first inclusion follows.
For the second inclusion let h ∈ A satisfy hJ ⊂ A. Consider an integral relation
hn + a1hn−1 + · · · + an = 0 with ai ∈ A. Let g ∈ J and multiply the above
equation with gn. Then

(hg)n + ga1(hg)n−1 + · · · + gnan = 0 .

Since g ∈ J , hg ∈ A and, therefore, (hg)n ∈ J and hg ∈
√

J . This shows the
second inclusion.

By assumption, we have V (C) ⊂ V (J) and, hence, J ⊂
√

C, that is, Jd ⊂ C for
some d which implies the claim.
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Criterion for Normality

Let A be a Noetherian reduced ring and J ⊂ A an ideal satisfying

J contains a non–zerodivisor of A,

J is a radical ideal,

N(A) ⊂ V (J).

Then A is normal if and only if A = HomA(J, J).
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proof

If A = A then HomA(J, J) = A. To see the converse, we choose
d ≥ 0 minimal such that JdA ⊂ A. If d > 0 then there exists
some a ∈ Jd−1 and h ∈ A such that ah 6∈ A.

But ah ∈ A and ah · J ⊂ hJd ⊂ A, that is, ah ∈ HomA(J, A) ∩ A,
which is equal to HomA(J, J), since J =

√
J .

By assumption HomA(J, J) = A and, hence, ah ∈ A, which is a
contradiction. We conclude that d = 0 and A = A.
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Let A be a reduced Noetherian ring, let J ⊂ A be an ideal and x ∈ J a non–zerodivisor.
Then

A = HomA(J, J) if and only if xJ : J = 〈x〉.

Moreover, let {u0 = x, u1, . . . , us} be a system of generators for the A–module
xJ : J . Then we can write

ui · uj =
s

X

k=0

xξij
k

uk with suitable ξij
k

∈ A, 1 ≤ i ≤ j ≤ s.

Let (η
(k)
0 , . . . , η

(k)
s ) ∈ As+1, k = 1, . . . , m, generate syz(u0, . . . , us), and let

I ⊂ A[t1, . . . , ts] be the ideal ( t0 := 1)

I :=

*(

titj −
s

X

k=0

ξij
k

tk

˛

˛

˛

˛

˛

1 ≤ i ≤ j ≤ s

)

,

(

s
X

ν=0

η
(k)
ν tν

˛

˛

˛

˛

˛

1 ≤ k ≤ m

)+

,

ti 7→ ui/x, i = 1, . . . , s, defines an isomorphism

A[t1, . . . , ts]/I
∼=−→ HomA(J, J) ∼= 1

x
· (xJ : J) .

Primary Decomposition – p. 31



Let A be a reduced Noetherian ring, let J ⊂ A be an ideal and x ∈ J a non–zerodivisor.
Then

A = HomA(J, J) if and only if xJ : J = 〈x〉.
Moreover, let {u0 = x, u1, . . . , us} be a system of generators for the A–module
xJ : J . Then we can write

ui · uj =
s

X

k=0

xξij
k

uk with suitable ξij
k

∈ A, 1 ≤ i ≤ j ≤ s.

Let (η
(k)
0 , . . . , η

(k)
s ) ∈ As+1, k = 1, . . . , m, generate syz(u0, . . . , us), and let

I ⊂ A[t1, . . . , ts] be the ideal ( t0 := 1)

I :=

*(

titj −
s

X

k=0

ξij
k

tk

˛

˛

˛

˛

˛

1 ≤ i ≤ j ≤ s

)

,

(

s
X

ν=0

η
(k)
ν tν

˛

˛

˛

˛

˛

1 ≤ k ≤ m

)+

,

ti 7→ ui/x, i = 1, . . . , s, defines an isomorphism

A[t1, . . . , ts]/I
∼=−→ HomA(J, J) ∼= 1

x
· (xJ : J) .

Primary Decomposition – p. 31



Let A be a reduced Noetherian ring, let J ⊂ A be an ideal and x ∈ J a non–zerodivisor.
Then

A = HomA(J, J) if and only if xJ : J = 〈x〉.
Moreover, let {u0 = x, u1, . . . , us} be a system of generators for the A–module
xJ : J . Then we can write

ui · uj =
s

X

k=0

xξij
k

uk with suitable ξij
k

∈ A, 1 ≤ i ≤ j ≤ s.

Let (η
(k)
0 , . . . , η

(k)
s ) ∈ As+1, k = 1, . . . , m, generate syz(u0, . . . , us), and let

I ⊂ A[t1, . . . , ts] be the ideal ( t0 := 1)

I :=

*(

titj −
s

X

k=0

ξij
k

tk

˛

˛

˛

˛

˛

1 ≤ i ≤ j ≤ s

)

,

(

s
X

ν=0

η
(k)
ν tν

˛

˛

˛

˛

˛

1 ≤ k ≤ m

)+

,

ti 7→ ui/x, i = 1, . . . , s, defines an isomorphism

A[t1, . . . , ts]/I
∼=−→ HomA(J, J) ∼= 1

x
· (xJ : J) .

Primary Decomposition – p. 31



Example

Let A := K[x, y]/〈x2− y3〉 and J := 〈x, y〉 ⊂ A.

Then x ∈ J is a non–zerodivisor in A with
xJ : J = x〈x, y〉 : 〈x, y〉 = 〈x, y2〉, therefore,

HomA(J, J) = 〈1, y2/x〉.
Setting u0 := x, u1 := y2, we obtain u2

1 = y4 = x2y, that is,
ξ11
0 = y. Hence, we obtain an isomorphism

A[t]/〈t2− y, xt − y2, yt − x〉 ∼=−→ HomA(J, J) .

of A–algebras. Note that A[t]/〈t2− y, xt− y2, yt−x〉 ' K[t].
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normalization(I)

Input:I := 〈f1, . . . , fk〉 ⊂ K[x] a prime ideal, x = (x1, . . . , xn).

Output: A polynomial ring K[t], t = (t1, . . . , tN ), a prime ideal P ⊂ K[t] and
π : K[x] → K[t] such that the induced map π : K[x]/I → K[t]/P is the
normalization of K[x]/I.

if I = 〈0〉 then return (K[x], 〈0〉, idK[x]);

compute r := dim(I);

if we know that the singular locus of I is V (x1, . . . , xn)

J := 〈x1, . . . , xn〉;
else

compute J := the ideal of the (n − r)–minors of the Jacobian matrix I;

J := RADICAL(I + J);

choose a ∈ J r {0};

if aJ : J = 〈a〉 return (K[x], I, idK[x]);
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normalization(I)

compute a generating system u0 = a, u1, . . . , us for aJ : J ;

compute a generating system
˘

(η
(1)
0 , . . . , η

(1)
s ), . . . , (η

(m)
0 , . . . , η

(m)
s )

¯

for the module of syzygies syz(u0, . . . , us) ⊂ (K[x]/I)s+1;

compute ξij
k

such that ui · uj =
Ps

k=0 a · ξij
k

uk, i, j = 1, . . . s;

change ring to K[x1, . . . , xn, t1, . . . , ts], and set (with t0 := 1)

I1 :=
˙

{titj − Ps
k=0 ξij

k
tk}0≤i≤j≤s, {Ps

ν=0 η
(k)
ν tν}1≤k≤m

¸

+ IK[x, t];

return NORMALIZATION(I1).
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non-normal locus

The ideal AnnA

(
HomA(J, J)/A

)
⊂ A defines the non–normal locus.

Moreover,
AnnA

(
HomA(J, J)/A

)
= 〈x〉 : (xJ : J)

for any non–zerodivisor x ∈ J .
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non–normalLocus(I)

Input: I := 〈f1, . . . , fk〉 ⊂ K[x] a prime ideal, x = (x1, . . . , xn).

Output: An ideal N ⊂ K[x], defining the non–normal locus in
V (I).

If I = 〈0〉 then return (K[x]);
compute r = dim(I);
compute J the ideal of the (n − r)–minors of the Jacobian
matrix of I;
J = RADICAL (I + J);
choose a ∈ J r {0};

return
(
〈a〉 : (aJ : J)

)
.
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