Primary Decomposition

Gerhard Pfister

pfister@mathematik.uni-kl.de

Departement of Mathematics
University of Kaiserslautern

Primary Decomposition:References

- Gianni, P.; Trager, B.; Zacharias, G.: Gröbner Bases and Primary Decomposition of Polynomial Ideals. J. Symb. Comp. 6, 149-167 (1988).
- Eisenbud, D.; Huneke, C.; Vasconcelos, W.: Direct Methods for Primary Decomposition. Invent. Math. 110, 207-235 (1992).
- Shimoyama, T.; Yokoyama, K.: Localization and Primary Decomposition of Polynomial ideals. J. Symb. Comp. 22, 247-277 (1996).

Primary Decomposition:References

- Gianni, P.; Trager, B.; Zacharias, G.: Gröbner Bases and Primary Decomposition of Polynomial Ideals. J. Symb. Comp. 6, 149-167 (1988).
- Eisenbud, D.; Huneke, C.; Vasconcelos, W.: Direct Methods for Primary Decomposition. Invent. Math. 110, 207-235 (1992).
- Shimoyama, T.; Yokoyama, K.: Localization and Primary Decomposition of Polynomial ideals. J. Symb. Comp. 22, 247-277 (1996).
- Decker, W.; Greuel, G.-M.; Pfister, G.: Primary Decomposition: Algorithms and Comparisons. In: Algorithmic Algebra and Number Theory, Springer, 187-220 (1998).

Primary Decomposition:References

- Gianni, P.; Trager, B.; Zacharias, G.: Gröbner Bases and Primary Decomposition of Polynomial Ideals. J. Symb. Comp. 6, 149-167 (1988).
- Eisenbud, D.; Huneke, C.; Vasconcelos, W.: Direct Methods for Primary Decomposition. Invent. Math. 110, 207-235 (1992).
- Shimoyama, T.; Yokoyama, K.: Localization and Primary Decomposition of Polynomial ideals. J. Symb. Comp. 22, 247-277 (1996).
- Decker, W.; Greuel, G.-M.; Pfister, G.: Primary Decomposition: Algorithms and Comparisons. In: Algorithmic Algebra and Number Theory, Springer, 187-220 (1998).
- Greuel, G.-M.; Pfister, G.: A SINGULAR Introduction to Commutative Algebra, Springer 2002

Gianni, Trager, Zacharias

Definition

- A maximal ideal $M \subset K\left[x_{1}, \ldots, x_{n}\right]$ is called in general position with respect to the lexicographical ordering with $x_{1}>\cdots>x_{n}$, if there exist $g_{1}, \ldots, g_{n} \in K\left[x_{n}\right]$ with $M=\left\langle x_{1}+g_{1}\left(x_{n}\right), \ldots, x_{n-1}+g_{n-1}\left(x_{n}\right), g_{n}\left(x_{n}\right)\right\rangle$.

Gianni, Trager, Zacharias

Definition

- A maximal ideal $M \subset K\left[x_{1}, \ldots, x_{n}\right]$ is called in general position with respect to the lexicographical ordering with $x_{1}>\cdots>x_{n}$, if there exist $g_{1}, \ldots, g_{n} \in K\left[x_{n}\right]$ with $M=\left\langle x_{1}+g_{1}\left(x_{n}\right), \ldots, x_{n-1}+g_{n-1}\left(x_{n}\right), g_{n}\left(x_{n}\right)\right\rangle$.
- A zero-dimensional ideal $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ is called in general position with respect to the lexicographical ordering with $x_{1}>\cdots>x_{n}$, if all associated primes P_{1}, \ldots, P_{k} are in general position and if $P_{i} \cap K\left[x_{n}\right] \neq P_{j} \cap K\left[x_{n}\right]$ for $i \neq j$.

Proposition

Let K be a field of characteristic 0 , and let $I \subset K[x], x=\left(x_{1}, \ldots, x_{n}\right)$, be a zero-dimensional ideal. Then there exists a non-empty, Zariski open subset $U \subset K^{n-1}$ such that for all $\underline{a}=\left(a_{1}, \ldots, a_{n-1}\right) \in U$, the coordinate change $\varphi_{\underline{a}}: K[x] \rightarrow K[x]$ defined by $\varphi_{\underline{a}}\left(x_{i}\right)=x_{i}$ if $i<n$, and

$$
\varphi_{\underline{a}}\left(x_{n}\right)=x_{n}+\sum_{i=1}^{n-1} a_{i} x_{i}
$$

has the property that $\varphi_{\underline{g}}(I)$ is in general position with respect to the lexicographical ordering defined by $x_{1}>\cdots>x_{n}$.

Proposition

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a zero-dimensional ideal. Let $\langle g\rangle=I \cap K\left[x_{n}\right], g=g_{1}^{\nu_{1}} \ldots g_{s}^{\nu_{s}}, g_{i}$ monic and prime and $g_{i} \neq g_{j}$ for $i \neq j$. Then

- $I=\bigcap_{i=1}^{s}\left\langle I, g_{i}^{\nu_{i}}\right\rangle$.

Proposition

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a zero-dimensional ideal. Let $\langle g\rangle=I \cap K\left[x_{n}\right], g=g_{1}^{\nu_{1}} \ldots g_{s}^{\nu_{s}}, g_{i}$ monic and prime and $g_{i} \neq g_{j}$ for $i \neq j$. Then

- $I=\bigcap_{i=1}^{s}\left\langle I, g_{i}^{\nu_{i}}\right\rangle$.
- If I is in general position with respect to the lexicographical ordering with $x_{1}>\cdots>x_{n}$, then
(2) $\left\langle I, g_{i}^{\nu_{i}}\right\rangle$ is a primary ideal for all i.

Criterion

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a proper ideal. Then the following conditions are equivalent:

- I is zero-dimensional, primary and in general position with respect to the lexicographical ordering with $x_{1}>\cdots>x_{n}$.
- There exist $g_{1}, \ldots, g_{n} \in K\left[x_{n}\right]$ and positive integers ν_{1}, \ldots, ν_{n} such that
- $I \cap K\left[x_{n}\right]=\left\langle g_{n}^{\nu_{n}}\right\rangle, g_{n}$ irreducible;
- for each $j<n, I$ contains the element $\left(x_{j}+g_{j}\right)^{\nu_{j}}$.

Criterion

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a proper ideal. Then the following conditions are equivalent:

- I is zero-dimensional, primary and in general position with respect to the lexicographical ordering with $x_{1}>\cdots>x_{n}$.
- There exist $g_{1}, \ldots, g_{n} \in K\left[x_{n}\right]$ and positive integers ν_{1}, \ldots, ν_{n} such that
- $I \cap K\left[x_{n}\right]=\left\langle g_{n}^{\nu_{n}}\right\rangle, g_{n}$ irreducible;
- for each $j<n, I$ contains the element $\left(x_{j}+g_{j}\right)^{\nu_{j}}$.
- Let S be a reduced Gröbner basis of I with respect to the lexicographical ordering with $x_{1}>\ldots>x_{n}$. Then there exist $g_{1}, \ldots, g_{n} \in K\left[x_{n}\right]$ and positive integers ν_{1}, \ldots, ν_{n} such that
- $g_{n}^{\nu_{n}} \in S$ and g_{n} is irreducible;
- $\left(x_{j}+g_{j}\right)^{\nu_{j}}$ is congruent to an element in $S \cap K\left[x_{j}, \ldots, x_{n}\right]$ modulo $\left\langle g_{n}, x_{n-1}+g_{n-1}, \ldots, x_{j+1}+g_{j+1}\right\rangle \subset K[x]$ for $j=1, \ldots, n-1$.

primaryTest(I)

- Input: A zero-dimensional ideal $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x], x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: \sqrt{I} if I is primary and in general position or $\langle 0\rangle$ else.
- compute a reduced Gröbner basis S of I with respect to the lexicographical ordering with $x_{1}>\cdots>x_{n}$;
- factorize $g \in S$, the element with smallest leading monomial;
- if ($g=g_{n}^{\nu_{n}}$ with g_{n} irreducible) prim $:=\left\langle g_{n}\right\rangle$ else return $\langle 0\rangle$.
- $i:=n$; while ($i>1$) $i:=i-1 ;$
choose $f \in S$ with $L M(f)=x_{i}^{m}$;
$b:=$ the coeffi cient of x_{i}^{m-1} in f considered as
polynomial in x_{i};
$q:=x_{i}+b / m ;$
if $\left(q^{m} \equiv f \bmod\right.$ prim $) \quad$ prim $:=$ prim $+\langle q\rangle$;
else return $\langle 0\rangle$;
- return prim.

zeroDecomp(I)

- Input: a zero-dimensional ideal $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x], x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: a set of pairs $\left(Q_{i}, P_{i}\right)$ of ideals in $K[x], i=1, \ldots, r$, such that
$-I=Q_{1} \cap \cdots \cap Q_{r}$ is a primary decomposition of I, and
$-P_{i}=\sqrt{Q_{i}}, i=1, \ldots, r$.
- result $:=\emptyset$;
- choose a random $\underline{a} \in K^{n-1}$, and apply the coordinate change $I^{\prime}:=\varphi_{\underline{a}}(I)$;
- compute a Gröbner basis G of I^{\prime} with respect to the lexicographical ordering with $x_{1}>\cdots>x_{n}$, let $g \in G$ be the element with smallest leading monomial.
- factorize $g=g_{1}^{\nu_{1}} \cdot \ldots \cdot g_{s}^{\nu_{s}} \in K\left[x_{n}\right]$;
- for $i=1$ to s do

$$
\begin{aligned}
& \text { set } Q_{i}^{\prime}:=\left\langle I^{\prime}, g_{i}^{\nu_{i}}\right\rangle \text { and } Q_{i}:=\left\langle I, \varphi_{\underline{a}}^{-1}\left(g_{i}\right)^{\nu_{i}}\right\rangle ; \\
& \text { set } P_{i}^{\prime}:=\operatorname{PrimaRYTESt}\left(Q_{i}^{\prime}\right) ; \\
& \text { if } P_{i}^{\prime} \neq\langle 0\rangle \\
& \quad \text { set } P_{i}:=\varphi_{\underline{a}}^{-1}\left(P_{i}^{\prime}\right) ; \\
& \quad \text { result }:=\text { result } \cup\left\{\left(Q_{i}, P_{i}\right)\right\} ; \\
& \text { else } \\
& \quad \text { result }:=\text { result } \cup \text { zerodecomp }\left(Q_{i}\right)
\end{aligned}
$$

- return result.

Proposition

Let $I \subset K[x]$ be an ideal and $u \subset x=\left\{x_{1}, \ldots, x_{n}\right\}$ be a maximal independent set of variables with respect to I.
$(I \cap K[u]=\{0\}$ and $\#(u)=\operatorname{dim}(K[x] / I))$

- $I K(u)[x \backslash u] \subset K(u)[x \backslash u]$ is a zero-dimensional ideal.
- Let $S=\left\{g_{1}, \ldots, g_{s}\right\} \subset I \subset K[x]$ be a Gröbner basis of $I K(u)[x \backslash u]$, and let $h:=\operatorname{lcm}\left(\operatorname{LC}\left(g_{1}\right), \ldots, \operatorname{LC}\left(g_{s}\right)\right) \in K[u]$, then

$$
I K(u)[x \backslash u] \cap K[x]=I:\left\langle h^{\infty}\right\rangle,
$$

and this ideal is equidimensional of dimension $\operatorname{dim}(I)$.

Proposition

Let $I \subset K[x]$ be an ideal and $u \subset x=\left\{x_{1}, \ldots, x_{n}\right\}$ be a maximal independent set of variables with respect to I.
$(I \cap K[u]=\{0\}$ and $\#(u)=\operatorname{dim}(K[x] / I))$

- $I K(u)[x \backslash u] \subset K(u)[x \backslash u]$ is a zero-dimensional ideal.
- Let $S=\left\{g_{1}, \ldots, g_{s}\right\} \subset I \subset K[x]$ be a Gröbner basis of $I K(u)[x \backslash u]$, and let $h:=\operatorname{lcm}\left(\operatorname{LC}\left(g_{1}\right), \ldots, \operatorname{LC}\left(g_{s}\right)\right) \in K[u]$, then

$$
I K(u)[x \backslash u] \cap K[x]=I:\left\langle h^{\infty}\right\rangle,
$$

and this ideal is equidimensional of dimension $\operatorname{dim}(I)$.

- Let $I K(u)[x \backslash u]=Q_{1} \cap \cdots \cap Q_{s}$ be an irredundant primary decomposition, then also $I K(u)[x \backslash u] \cap K[x]=\left(Q_{1} \cap K[x]\right) \cap \cdots \cap\left(Q_{s} \cap K[x]\right)$ is an irredundant primary decomposition.
- Input: $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x], x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: A list (u, G, h), where
$-u \subset x$ is a maximal independent set with respect to I,
$-G=\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis of $I K(u)[x \backslash u]$,
$-h \in K[u]$ such that $I K(u)[x \backslash u] \cap K[x]=I:\langle h\rangle=I:\left\langle h^{\infty}\right\rangle$.
- compute a maximal independent set $u \subset x$ with respect to I;
- compute a Gröbner basis $G=\left\{g_{1}, \ldots, g_{s}\right\}$ of I with respect to the lexicographical ordering with $x \backslash u>u$;
- $h:=\prod_{i=1}^{s} \mathrm{LC}\left(g_{i}\right) \in K[u]$, where the g_{i} are considered as polynomials in $x \backslash u$ with coeffi cients in $K(u)$;
- compute m such that $\left\langle g_{1}, \ldots, g_{s}\right\rangle:\left\langle h^{m}\right\rangle=\left\langle g_{1}, \ldots, g_{s}\right\rangle:\left\langle h^{m+1}\right\rangle$;
- return $u,\left\{g_{1}, \ldots, g_{s}\right\}, h^{m}$.

O Input: $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x], x=\left(x_{1}, \ldots, x_{n}\right)$.

- Output: a set of pairs $\left(Q_{i}, P_{i}\right)$ of ideals in $K[x], i=1, \ldots, r$, such that $-I=Q_{1} \cap \cdots \cap Q_{r}$ is a primary decomposition of I, and
$\left.-P_{i}=\sqrt{(} Q_{i}\right), i=1, \ldots, r$.
- $(u, G, h):=$ reductionToZero (I);
- change ring to $K(u)[x \backslash u]$ and compute qprimary := zeroDecomp $\left(\langle G\rangle_{K(u)[x \backslash u]}\right)$;
- change ring to $K[x]$ and compute primary $:=\left\{\left(Q^{\prime} \cap K[x], P^{\prime} \cap K[x]\right) \mid\left(Q^{\prime}, P^{\prime}\right) \in\right.$ qprimary $\} ;$
- primary $:=$ primary $\cup \operatorname{decomp}\left(\left\langle I, h^{n}\right\rangle\right)$;
- return primary.

Definition

Let A be a Noetherian ring, let $I \subset A$ be an ideal, and let $I=Q_{1} \cap \cdots \cap Q_{s}$ be an irredundant primary decomposition.

- The equidimensional part $E(I)$ is the intersection of all primary ideals Q_{i} with $\operatorname{dim}\left(Q_{i}\right)=\operatorname{dim}(I)$.

Definition

Let A be a Noetherian ring, let $I \subset A$ be an ideal, and let $I=Q_{1} \cap \cdots \cap Q_{s}$ be an irredundant primary decomposition.

- The equidimensional part $E(I)$ is the intersection of all primary ideals Q_{i} with $\operatorname{dim}\left(Q_{i}\right)=\operatorname{dim}(I)$.
- The ideal I (respectively the ring A / I) is called equidimensional or pure dimensional if $E(I)=I$. In particular, the ring A is called equidimensional if $E(\langle 0\rangle)=\langle 0\rangle$.

equidimensional(I)

- Input: $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x], x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: $E(I) \subset K[x]$, the equidimensional part of I.
- set (u, G, h) := ReductionToZero (I);
- if $(\operatorname{dim}(\langle I, h\rangle)<\operatorname{dim}(I))$
return $(\langle G\rangle:\langle h\rangle)$;
else
return $((\langle G\rangle:\langle h\rangle) \cap$ Equidimensional $(\langle I, h\rangle))$.

Proposition

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a zero-dimensional ideal and $I \cap K\left[x_{i}\right]=\left\langle f_{i}\right\rangle$ for $i=1, \ldots, n$. Moreover, let g_{i} be the squarefree part of f_{i}, then $\sqrt{I}=I+\left\langle g_{1}, \ldots, g_{n}\right\rangle$.

- Obviously, $I \subset I+\left\langle g_{1}, \ldots, g_{n}\right\rangle \subset \sqrt{I}$. Hence, it remains to show that $a^{n} \in I$ implies that $a \in I+\left\langle g_{1}, \ldots, g_{n}\right\rangle$.
- Obviously, $I \subset I+\left\langle g_{1}, \ldots, g_{n}\right\rangle \subset \sqrt{I}$. Hence, it remains to show that $a^{n} \in I$ implies that $a \in I+\left\langle g_{1}, \ldots, g_{n}\right\rangle$.
- Let \bar{K} be the algebraic closure of K. We see that each g_{i} is the product of different linear factors of $\bar{K}\left[x_{i}\right]$. These linear factors of the g_{i} induce a splitting of the ideal $\left(I+\left\langle g_{1}, \ldots, g_{n}\right\rangle\right) \bar{K}[x]$ into an intersection of maximal ideals.
- Obviously, $I \subset I+\left\langle g_{1}, \ldots, g_{n}\right\rangle \subset \sqrt{I}$. Hence, it remains to show that $a^{n} \in I$ implies that $a \in I+\left\langle g_{1}, \ldots, g_{n}\right\rangle$.
- Let \bar{K} be the algebraic closure of K. We see that each g_{i} is the product of different linear factors of $\bar{K}\left[x_{i}\right]$. These linear factors of the g_{i} induce a splitting of the ideal $\left(I+\left\langle g_{1}, \ldots, g_{n}\right\rangle\right) \bar{K}[x]$ into an intersection of maximal ideals.
- Hence, $\left(I+\left\langle g_{1}, \ldots, g_{n}\right\rangle\right) \bar{K}[x]$ is radical. Now consider $a \in K[x]$ with $a^{n} \in I+\left\langle g_{1}, \ldots, g_{n}\right\rangle$. We obtain $a \in\left(I+\left\langle g_{1}, \ldots, g_{n}\right\rangle\right) \bar{K}[x] \cap K[x]=I+\left\langle g_{1}, \ldots, g_{n}\right\rangle$.

zeroradical(I)

- Input: a zero-dimensional ideal $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x]$, $x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: $\sqrt{I} \subset K[x]$, the radical of I.
- for $i=1, \ldots, n$, compute $f_{i} \in K\left[x_{i}\right]$ such that $I \cap K\left[x_{i}\right]=\left\langle f_{i}\right\rangle ;$
- return $I+\left\langle\operatorname{squarefree}\left(f_{1}\right), \ldots, \operatorname{squarefree}\left(f_{n}\right)\right\rangle$.
- Input: $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x], x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: $\sqrt{I} \subset K[x]$, the radical of I.
- $(u, G, h):=$ reductionToZero (I);
- change ring to $K(u)[x \backslash u]$ and compute $J:=$ zeroradical ($\langle G\rangle$);
- compute a Gröbner basis $\left\{g_{1}, \ldots, g_{\ell}\right\} \subset K[x]$ of J;
- set $p:=\prod_{i=1}^{\ell} \mathrm{LC}\left(g_{i}\right) \in K[u]$;
- change ring to $K[x]$ and compute $J \cap K[x]=\left\langle g_{1}, \ldots, g_{\ell}\right\rangle:\left\langle p^{\infty}\right\rangle ;$
- return $(J \cap K[x]) \cap \operatorname{radical}(\langle I, h\rangle)$.

Hensel's Lemma

Let A be one of the following rings:
$\mathbb{Z}, \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right], \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

- Let $I \subseteq A$ be an ideal and $f(x) \in A[x]$ monic.
- Assume, $g_{1}(x), h_{1}(x) \in A / I[x]$ are relatively prime and monic, such that $f(x)=g_{1}(x) \cdot h_{1}(x) \bmod I$.

Hensel's Lemma

Let A be one of the following rings:
$\mathbb{Z}, \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right], \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

- Let $I \subseteq A$ be an ideal and $f(x) \in A[x]$ monic.
- Assume, $g_{1}(x), h_{1}(x) \in A / I[x]$ are relatively prime and monic, such that $f(x)=g_{1}(x) \cdot h_{1}(x) \bmod I$.
- Then there exist monic polynomials $g_{n}, h_{n} \in A / I^{n}[x]$ such that
- $f=g_{n} \cdot h_{n} \bmod I^{n}$
- $g_{n}=g_{1} \bmod I, h_{n}=h_{1} \bmod I$

Hensel's Lemma

Let A be one of the following rings:
$\mathbb{Z}, \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right], \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

- Let $I \subseteq A$ be an ideal and $f(x) \in A[x]$ monic.
- Assume, $g_{1}(x), h_{1}(x) \in A / I[x]$ are relatively prime and monic, such that $f(x)=g_{1}(x) \cdot h_{1}(x) \bmod I$.
- Then there exist monic polynomials $g_{n}, h_{n} \in A / I^{n}[x]$ such that
- $f=g_{n} \cdot h_{n} \bmod I^{n}$
- $g_{n}=g_{1} \bmod I, h_{n}=h_{1} \bmod I$
- Furthermore, there exist unique polynomials $\widehat{g}, \widehat{h} \in \widehat{A}_{I}[X]$ such that
- $f=\widehat{g} \widehat{h}$
- $\widehat{g}=g_{1} \bmod I, \widehat{h}=h_{1} \bmod I$

Lifting a factorization

$$
\begin{aligned}
& f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \quad I=\left\langle x_{3}-a_{3}, \ldots, x_{n}-a_{N}\right\rangle, d_{i}=\operatorname{deg}_{x_{i}}(f) \\
& \bar{f}^{(i)}=f\left(x_{1}, \ldots, x_{i}, a_{4}, \ldots, a_{n}\right)
\end{aligned}
$$

- $\bar{f}^{(2)}=g_{1} \cdot h_{1}$

Hensel's lemma in $A\left[x_{1}\right]\left(A=\mathbb{C}\left[x_{2}, x_{3}\right], I=\left\langle x_{3}-a_{3}\right\rangle\right)$

Lifting a factorization

$f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \quad I=\left\langle x_{3}-a_{3}, \ldots, x_{n}-a_{N}\right\rangle, d_{i}=\operatorname{deg}_{x_{i}}(f)$
$\bar{f}^{(i)}=f\left(x_{1}, \ldots, x_{i}, a_{4}, \ldots, a_{n}\right)$

- $\bar{f}^{(2)}=g_{1} \cdot h_{1}$

Hensel's lemma in $A\left[x_{1}\right]\left(A=\mathbb{C}\left[x_{2}, x_{3}\right], I=\left\langle x_{3}-a_{3}\right\rangle\right)$

- $\bar{f}^{(3)}=g_{d_{3+1}} h_{d_{3+1}} \bmod \left\langle x_{3}-a_{3}\right\rangle^{d_{3}+1}$
- if $f=f_{1} \cdot f_{2}$ and
$f_{1}\left(x_{1}, x_{2}, a_{3}, \ldots, a_{n}\right)=g_{1}, f_{2}\left(x_{1}, x_{2}, a_{3}, \ldots, a_{n}\right)=h_{1}$
then

$$
\begin{aligned}
f_{1}\left(x_{1}, x_{2}, x_{3}, a_{4} \ldots a_{n}\right) & =g_{d_{3+1}}\left(x_{1}, x_{2}, x_{3}\right) \\
f_{2}\left(x_{1}, x_{2}, x_{3}, a_{4} \ldots a_{n}\right) & =h_{d_{3+1}}\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

by unicity of Hensel's lemma.

- Restart with the next variable.

Gao's version of Bertini's Theorem

Let K be a field of characteristic 0 and $S \subset K$ a finite subset.

- Let $f \in K\left[x_{1}, \ldots, x_{n}\right], \operatorname{deg}(f)=d$ and

$$
f_{0}(x, y)=f\left(a_{1} x+b_{1} y+c_{1}, \ldots, a_{n} x+b_{n} y+c_{n}\right)
$$

Gao's version of Bertini's Theorem

Let K be a field of characteristic 0 and $S \subset K$ a finite subset.

- Let $f \in K\left[x_{1}, \ldots, x_{n}\right], \operatorname{deg}(f)=d$ and $f_{0}(x, y)=f\left(a_{1} x+b_{1} y+c_{1}, \ldots, a_{n} x+b_{n} y+c_{n}\right)$
- Then, for random choices of a_{i}, b_{i}, c_{i} in S with probability at least $1-\frac{2 d^{3}}{|S|}$ all the absolute irreducible factors of f remain absolutely irreducible factors of f_{0} in $K[x, y]$.

Irreducibility Testing

- Let $f \in \mathbb{Z}[x, y]$ be irreducible, if for some prime p
- f is irreducible in $\mathbb{Z} / p \mathbb{Z}[x, y]$
- there exists a simple point $(a, b) \in(\mathbb{Z} / p \mathbb{Z})^{2}$ of $V(f)$
- the degree of $f \bmod p$ is equal to the degree of f.

Irreducibility Testing

- Let $f \in \mathbb{Z}[x, y]$ be irreducible, if for some prime p
- f is irreducible in $\mathbb{Z} / p \mathbb{Z}[x, y]$
- there exists a simple point $(a, b) \in(\mathbb{Z} / p \mathbb{Z})^{2}$ of $V(f)$
- the degree of $f \bmod p$ is equal to the degree of f.
- The test is based on the following theorem:
- Let k be a field and $(\alpha, \beta) \in \bar{k}^{2}$ be a simple point of $f \in k[x, y]$.
Then one absolute irreducible factor belongs to $k[\alpha, \beta][x, y]$.

Splitting over \mathbb{C}

Theorem: Gao/Ruppert Let $f \in \mathbb{Q}[x, y]$ be irreducible of bidegree (m, n).
Let $G=\left\{g \in \mathbb{Q}[x, y] \mid(m-1, n) \geq \operatorname{deg}(g), \exists h \in \mathbb{Q}[x, y], \frac{\partial(g / f)}{\partial y}=\frac{\partial(h / f)}{\partial x}\right\}$.
The vector space G has the following properties

Splitting over \mathbb{C}

Theorem: Gao/Ruppert Let $f \in \mathbb{Q}[x, y]$ be irreducible of bidegree (m, n).
Let $G=\left\{g \in \mathbb{Q}[x, y] \mid(m-1, n) \geq \operatorname{deg}(g), \exists h \in \mathbb{Q}[x, y], \frac{\partial(g / f)}{\partial y}=\frac{\partial(h / f)}{\partial x}\right\}$.
The vector space G has the following properties

- f is irreducible in $\mathbb{C}[x, y]$ if and only if $\operatorname{dim}_{\mathbb{Q}}(G)=1$.

Splitting over \mathbb{C}

Theorem: Gao/Ruppert Let $f \in \mathbb{Q}[x, y]$ be irreducible of bidegree (m, n).
Let $G=\left\{g \in \mathbb{Q}[x, y] \mid(m-1, n) \geq \operatorname{deg}(g), \exists h \in \mathbb{Q}[x, y], \frac{\partial(g / f)}{\partial y}=\frac{\partial(h / f)}{\partial x}\right\}$.
The vector space G has the following properties

- f is irreducible in $\mathbb{C}[x, y]$ if and only if $\operatorname{dim}_{\mathbb{Q}}(G)=1$.
- $g G \subset \frac{\partial f}{\partial x} G \bmod \mathrm{f}$ for all $g \in G$.

Splitting over \mathbb{C}

Theorem: Gao/Ruppert Let $f \in \mathbb{Q}[x, y]$ be irreducible of bidegree (m, n).
Let $G=\left\{g \in \mathbb{Q}[x, y] \mid(m-1, n) \geq \operatorname{deg}(g), \exists h \in \mathbb{Q}[x, y], \frac{\partial(g / f)}{\partial y}=\frac{\partial(h / f)}{\partial x}\right\}$.
The vector space G has the following properties

- f is irreducible in $\mathbb{C}[x, y]$ if and only if $\operatorname{dim}_{\mathbb{Q}}(G)=1$.
- $g G \subset \frac{\partial f}{\partial x} G \bmod \mathrm{f}$ for all $g \in G$.
- Let $g_{1}, \ldots, g_{a} \in G$ be a basis and $g \in G \backslash \mathbb{Q} \frac{\partial f}{\partial x}$,

$$
g g_{i}=\sum a_{i j} g_{j} \frac{\partial f}{\partial x} \bmod f
$$

Let $\chi(t)=\operatorname{det}\left(t E-\left(a_{i j}\right)\right)$ be the characteristic polynomial. Then χ is irreducible in $\mathbb{Q}[t]$.

Theorem: Gao/Ruppert Let $f \in \mathbb{Q}[x, y]$ be irreducible of bidegree (m, n).
Let $G=\left\{g \in \mathbb{Q}[x, y] \mid(m-1, n) \geq \operatorname{deg}(g), \exists h \in \mathbb{Q}[x, y], \frac{\partial(g / f)}{\partial y}=\frac{\partial(h / f)}{\partial x}\right\}$.
The vector space G has the following properties

- f is irreducible in $\mathbb{C}[x, y]$ if and only if $\operatorname{dim}_{\mathbb{Q}}(G)=1$.
- $g G \subset \frac{\partial f}{\partial x} G \bmod \mathrm{f}$ for all $g \in G$.
- Let $g_{1}, \ldots, g_{a} \in G$ be a basis and $g \in G \backslash \mathbb{Q} \frac{\partial f}{\partial x}$,

$$
g g_{i}=\sum a_{i j} g_{j} \frac{\partial f}{\partial x} \bmod f
$$

Let $\chi(t)=\operatorname{det}\left(t E-\left(a_{i j}\right)\right)$ be the characteristic polynomial. Then χ is irreducible in $\mathbb{Q}[t]$.

- $f=\prod_{c \in \mathbb{C}, \chi(c)=0} g c d\left(f, g-c \frac{\partial f}{\partial x}\right)$ is the decomposition of f into irreducible factors in $\mathbb{C}[x, y]$.

Splitting over \mathbb{C} : Example

- $f=x^{2}+y^{2}$

Splitting over \mathbb{C} : Example

- $f=x^{2}+y^{2}$
- $G=<x, y>_{\mathbb{Q}}$

$$
\left(a_{i, j}\right)=\left(\begin{array}{rr}
0 & 1 / 2 \\
-1 / 2 & 0
\end{array}\right)
$$

Splitting over \mathbb{C} : Example

- $f=x^{2}+y^{2}$
- $G=<x, y>_{\mathbb{Q}}$

$$
\left(a_{i, j}\right)=\left(\begin{array}{rr}
0 & 1 / 2 \\
-1 / 2 & 0
\end{array}\right)
$$

- $\chi(t)=t^{2}+1 / 4$

Splitting over \mathbb{C} : Example

- $f=x^{2}+y^{2}$
- $G=<x, y>_{\mathbb{Q}}$

$$
\left(a_{i, j}\right)=\left(\begin{array}{rr}
0 & 1 / 2 \\
-1 / 2 & 0
\end{array}\right)
$$

- $\chi(t)=t^{2}+1 / 4$
- $\operatorname{gcd}\left(x^{2}+y^{2}, y-\frac{i}{2} 2 x\right) \operatorname{gcd}\left(x^{2}+y^{2}, y+\frac{i}{2} 2 x\right)=x^{2}+y^{2}$

How to compute the normalization?

- Let A be a reduced ring, the normalization \bar{A} is the integral closure of A in the total ring of fractions $Q(A)$.

How to compute the normalization?

- Let A be a reduced ring, the normalization \bar{A} is the integral closure of A in the total ring of fractions $Q(A)$.
- Let A be a reduced Noetherian ring and $J \subset A$ an ideal containing a non-zerodivisor x of A. Then there are natural inclusions of rings

$$
A \subset \operatorname{Hom}_{A}(J, J) \cong \frac{1}{x} \cdot(x J: J) \subset \bar{A}
$$

- For $a \in A$, let $m_{a}: J \rightarrow J$ denote the multiplication with a. If $m_{a}=0$, then $m_{a}(x)=a x=0$ and, hence, $a=0$, since x is a non-zerodivisor. Thus, $a \mapsto m_{a}$ defi nes an inclusion $A \subset \operatorname{Hom}_{A}(J, J)$.
- For $a \in A$, let $m_{a}: J \rightarrow J$ denote the multiplication with a. If $m_{a}=0$, then $m_{a}(x)=a x=0$ and, hence, $a=0$, since x is a non-zerodivisor. Thus, $a \mapsto m_{a}$ defi nes an inclusion $A \subset \operatorname{Hom}_{A}(J, J)$.
- It is easy to see that for $\varphi \in \operatorname{Hom}_{A}(J, J)$ the element $\varphi(x) / x \in Q(A)$ is independent of x : for any $a \in J$ we have $\varphi(a)=(1 / x) \cdot \varphi(x a)=a \cdot \varphi(x) / x$, since φ is A-linear.
- For $a \in A$, let $m_{a}: J \rightarrow J$ denote the multiplication with a. If $m_{a}=0$, then $m_{a}(x)=a x=0$ and, hence, $a=0$, since x is a non-zerodivisor. Thus, $a \mapsto m_{a}$ defi nes an inclusion $A \subset \operatorname{Hom}_{A}(J, J)$.
- It is easy to see that for $\varphi \in \operatorname{Hom}_{A}(J, J)$ the element $\varphi(x) / x \in Q(A)$ is independent of x : for any $a \in J$ we have $\varphi(a)=(1 / x) \cdot \varphi(x a)=a \cdot \varphi(x) / x$, since φ is A-linear.
- Hence, $\varphi \mapsto \varphi(x) / x$ defi nes an inclusion $\operatorname{Hom}_{A}(J, J) \subset Q(A)$ mapping $x \cdot \operatorname{Hom}_{A}(J, J)$ into $x J: J=\{b \in A \mid b J \subset x J\}$. The latter map is also surjective, since any $b \in x J: J$ defi nes, via multiplication with b / x, an element $\varphi \in \operatorname{Hom}_{A}(J, J)$ with $\varphi(x)=b$. Since x is a non-zerodivisor, we obtain the isomorphism $\operatorname{Hom}_{A}(J, J) \cong(1 / x) \cdot(x J: J)$.
- For $a \in A$, let $m_{a}: J \rightarrow J$ denote the multiplication with a. If $m_{a}=0$, then $m_{a}(x)=a x=0$ and, hence, $a=0$, since x is a non-zerodivisor. Thus, $a \mapsto m_{a}$ defi nes an inclusion $A \subset \operatorname{Hom}_{A}(J, J)$.
- It is easy to see that for $\varphi \in \operatorname{Hom}_{A}(J, J)$ the element $\varphi(x) / x \in Q(A)$ is independent of x : for any $a \in J$ we have $\varphi(a)=(1 / x) \cdot \varphi(x a)=a \cdot \varphi(x) / x$, since φ is A-linear.
- Hence, $\varphi \mapsto \varphi(x) / x$ defi nes an inclusion $\operatorname{Hom}_{A}(J, J) \subset Q(A)$ mapping $x \cdot \operatorname{Hom}_{A}(J, J)$ into $x J: J=\{b \in A \mid b J \subset x J\}$. The latter map is also surjective, since any $b \in x J: J$ defi nes, via multiplication with b / x, an element $\varphi \in \operatorname{Hom}_{A}(J, J)$ with $\varphi(x)=b$. Since x is a non-zerodivisor, we obtain the isomorphism $\operatorname{Hom}_{A}(J, J) \cong(1 / x) \cdot(x J: J)$.
- It follows that any $b \in x J: J$ satisfi es an integral relation $b^{p}+a_{1} b^{p-1}+\cdots+a_{0}=0$ with $a_{i} \in\left\langle x^{i}\right\rangle$. Hence, b / x is integral over A, showing $(1 / x) \cdot(x J: J) \subset \bar{A}$.

non-normal locus

- The non-normal locus of A is defined as

$$
N(A)=\left\{P \in \operatorname{Spec} A \mid A_{P} \text { is not normal }\right\} .
$$

Let $C=A n n_{A}(\bar{A} / A)=\{a \in A \mid a \bar{A} \subset A\}$ be the conductor of A in \bar{A}. Then

$$
N(A)=V(C)=\{P \in \operatorname{Spec} A \mid P \supset C\} .
$$

non-normal locus

- The non-normal locus of A is defined as

$$
N(A)=\left\{P \in \operatorname{Spec} A \mid A_{P} \text { is not normal }\right\} .
$$

Let $C=A n n_{A}(\bar{A} / A)=\{a \in A \mid a \bar{A} \subset A\}$ be the conductor of A in \bar{A}. Then

$$
N(A)=V(C)=\{P \in \operatorname{Spec} A \mid P \supset C\} .
$$

- In particular, $N(A)$ is closed in SpecA.

Let $J \subset A$ be an ideal containing a non-zerodivisor of A.

- There are natural inclusions of A-modules

$$
\operatorname{Hom}_{A}(J, J) \subset \operatorname{Hom}_{A}(J, A) \cap \bar{A} \subset \operatorname{Hom}_{A}(J, \sqrt{J})
$$

Let $J \subset A$ be an ideal containing a non-zerodivisor of A.

- There are natural inclusions of A-modules

$$
\operatorname{Hom}_{A}(J, J) \subset \operatorname{Hom}_{A}(J, A) \cap \bar{A} \subset \operatorname{Hom}_{A}(J, \sqrt{J})
$$

- If $N(A) \subset V(J)$ then $J^{d} \bar{A} \subset A$ for some d.
- The embedding of $\operatorname{Hom}_{A}(J, A)$ in $Q(A)$ is given by $\varphi \mapsto \varphi(x) / x$, where x is a non-zerodivisor of J. With this identifi cation we obtain

$$
\operatorname{Hom}_{A}(J, A)=A:_{Q(A)} J=\{h \in Q(A) \mid h J \subset A\}
$$

and $\operatorname{Hom}_{A}(J, J)$, respectively $\operatorname{Hom}_{A}(J, \sqrt{J})$, is identifi ed with those $h \in Q(A)$ such that $h J \subset J$, respectively $h J \subset \sqrt{J}$. Then the first inclusion follows. For the second inclusion let $h \in \bar{A}$ satisfy $h J \subset A$. Consider an integral relation $h^{n}+a_{1} h^{n-1}+\cdots+a_{n}=0$ with $a_{i} \in A$. Let $g \in J$ and multiply the above equation with g^{n}. Then

$$
(h g)^{n}+g a_{1}(h g)^{n-1}+\cdots+g^{n} a_{n}=0 .
$$

Since $g \in J, h g \in A$ and, therefore, $(h g)^{n} \in J$ and $h g \in \sqrt{J}$. This shows the second inclusion.

- The embedding of $\operatorname{Hom}_{A}(J, A)$ in $Q(A)$ is given by $\varphi \mapsto \varphi(x) / x$, where x is a non-zerodivisor of J. With this identifi cation we obtain

$$
\operatorname{Hom}_{A}(J, A)=A:_{Q(A)} J=\{h \in Q(A) \mid h J \subset A\}
$$

and $\operatorname{Hom}_{A}(J, J)$, respectively $\operatorname{Hom}_{A}(J, \sqrt{J})$, is identifi ed with those $h \in Q(A)$ such that $h J \subset J$, respectively $h J \subset \sqrt{J}$. Then the first inclusion follows. For the second inclusion let $h \in \bar{A}$ satisfy $h J \subset A$. Consider an integral relation $h^{n}+a_{1} h^{n-1}+\cdots+a_{n}=0$ with $a_{i} \in A$. Let $g \in J$ and multiply the above equation with g^{n}. Then

$$
(h g)^{n}+g a_{1}(h g)^{n-1}+\cdots+g^{n} a_{n}=0 .
$$

Since $g \in J, h g \in A$ and, therefore, $(h g)^{n} \in J$ and $h g \in \sqrt{J}$. This shows the second inclusion.

- By assumption, we have $V(C) \subset V(J)$ and, hence, $J \subset \sqrt{C}$, that is, $J^{d} \subset C$ for some d which implies the claim.

Criterion for Normality

Let A be a Noetherian reduced ring and $J \subset A$ an ideal satisfying

- J contains a non-zerodivisor of A,
- J is a radical ideal,
- $N(A) \subset V(J)$.

Criterion for Normality

Let A be a Noetherian reduced ring and $J \subset A$ an ideal satisfying

- J contains a non-zerodivisor of A,
- J is a radical ideal,
- $N(A) \subset V(J)$.
- Then A is normal if and only if $A=\operatorname{Hom}_{A}(J, J)$.
- If $A=\bar{A}$ then $\operatorname{Hom}_{A}(J, J)=A$. To see the converse, we choose $d \geq 0$ minimal such that $J^{d} \bar{A} \subset A$. If $d>0$ then there exists some $a \in J^{d-1}$ and $h \in \bar{A}$ such that $a h \notin A$.
- If $A=\bar{A}$ then $\operatorname{Hom}_{A}(J, J)=A$. To see the converse, we choose $d \geq 0$ minimal such that $J^{d} \bar{A} \subset A$. If $d>0$ then there exists some $a \in J^{d-1}$ and $h \in \bar{A}$ such that $a h \notin A$.
- But $a h \in \bar{A}$ and $a h \cdot J \subset h J^{d} \subset A$, that is, $a h \in \operatorname{Hom}_{A}(J, A) \cap \bar{A}$, which is equal to $\operatorname{Hom}_{A}(J, J)$, since $J=\sqrt{J}$.
- If $A=\bar{A}$ then $\operatorname{Hom}_{A}(J, J)=A$. To see the converse, we choose $d \geq 0$ minimal such that $J^{d} \bar{A} \subset A$. If $d>0$ then there exists some $a \in J^{d-1}$ and $h \in \bar{A}$ such that $a h \notin A$.
- But $a h \in \bar{A}$ and $a h \cdot J \subset h J^{d} \subset A$, that is, $a h \in \operatorname{Hom}_{A}(J, A) \cap \bar{A}$, which is equal to $\operatorname{Hom}_{A}(J, J)$, since $J=\sqrt{J}$.
- By assumption $\operatorname{Hom}_{A}(J, J)=A$ and, hence, $a h \in A$, which is a contradiction. We conclude that $d=0$ and $A=\bar{A}$.

Let A be a reduced Noetherian ring, let $J \subset A$ be an ideal and $x \in J$ a non-zerodivisor. Then

- $A=\operatorname{Hom}_{A}(J, J)$ if and only if $x J: J=\langle x\rangle$.

Let A be a reduced Noetherian ring, let $J \subset A$ be an ideal and $x \in J$ a non-zerodivisor. Then

- $A=\operatorname{Hom}_{A}(J, J)$ if and only if $x J: J=\langle x\rangle$.
- Moreover, let $\left\{u_{0}=x, u_{1}, \ldots, u_{s}\right\}$ be a system of generators for the A-module $x J: J$. Then we can write
- $u_{i} \cdot u_{j}=\sum_{k=0}^{s} x \xi_{k}^{i j} u_{k}$ with suitable $\xi_{k}^{i j} \in A, 1 \leq i \leq j \leq s$.

Let A be a reduced Noetherian ring, let $J \subset A$ be an ideal and $x \in J$ a non-zerodivisor. Then

- $A=\operatorname{Hom}_{A}(J, J)$ if and only if $x J: J=\langle x\rangle$.
- Moreover, let $\left\{u_{0}=x, u_{1}, \ldots, u_{s}\right\}$ be a system of generators for the A-module $x J: J$. Then we can write
- $u_{i} \cdot u_{j}=\sum_{k=0}^{s} x \xi_{k}^{i j} u_{k}$ with suitable $\xi_{k}^{i j} \in A, 1 \leq i \leq j \leq s$.
- Let $\left(\eta_{0}^{(k)}, \ldots, \eta_{s}^{(k)}\right) \in A^{s+1}, k=1, \ldots, m$, generate $\operatorname{syz}\left(u_{0}, \ldots, u_{s}\right)$, and let $I \subset A\left[t_{1}, \ldots, t_{s}\right]$ be the ideal $\left(t_{0}:=1\right)$

$$
I:=\left\langle\left\{t_{i} t_{j}-\sum_{k=0}^{s} \xi_{k}^{i j} t_{k} \mid 1 \leq i \leq j \leq s\right\},\left\{\sum_{\nu=0}^{s} \eta_{\nu}^{(k)} t_{\nu} \mid 1 \leq k \leq m\right\}\right\rangle,
$$

- $t_{i} \mapsto u_{i} / x, i=1, \ldots, s$, defi nes an isomorphism

$$
A\left[t_{1}, \ldots, t_{s}\right] / I \xrightarrow{\cong} \operatorname{Hom}_{A}(J, J) \cong \frac{1}{x} \cdot(x J: J) .
$$

Example

- Let $A:=K[x, y] /\left\langle x^{2}-y^{3}\right\rangle$ and $J:=\langle x, y\rangle \subset A$.
- Then $x \in J$ is a non-zerodivisor in A with $x J: J=x\langle x, y\rangle:\langle x, y\rangle=\left\langle x, y^{2}\right\rangle$, therefore,
- $\operatorname{Hom}_{A}(J, J)=\left\langle 1, y^{2} / x\right\rangle$.
- Setting $u_{0}:=x, u_{1}:=y^{2}$, we obtain $u_{1}^{2}=y^{4}=x^{2} y$, that is, $\xi_{0}^{11}=y$. Hence, we obtain an isomorphism

Example

- Let $A:=K[x, y] /\left\langle x^{2}-y^{3}\right\rangle$ and $J:=\langle x, y\rangle \subset A$.
- Then $x \in J$ is a non-zerodivisor in A with $x J: J=x\langle x, y\rangle:\langle x, y\rangle=\left\langle x, y^{2}\right\rangle$, therefore,
- $\operatorname{Hom}_{A}(J, J)=\left\langle 1, y^{2} / x\right\rangle$.
- Setting $u_{0}:=x, u_{1}:=y^{2}$, we obtain $u_{1}^{2}=y^{4}=x^{2} y$, that is, $\xi_{0}^{11}=y$. Hence, we obtain an isomorphism

$$
A[t] /\left\langle t^{2}-y, x t-y^{2}, y t-x\right\rangle \xrightarrow{\cong} \operatorname{Hom}_{A}(J, J) .
$$

of A-algebras. Note that $A[t] /\left\langle t^{2}-y, x t-y^{2}, y t-x\right\rangle \simeq K[t]$.

- Input: $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x]$ a prime ideal, $x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: A polynomial ring $K[t], t=\left(t_{1}, \ldots, t_{N}\right)$, a prime ideal $P \subset K[t]$ and $\pi: K[x] \rightarrow K[t]$ such that the induced map $\pi: K[x] / I \rightarrow K[t] / P$ is the normalization of $K[x] / I$.
- if $I=\langle 0\rangle$ then return $\left(K[x],\langle 0\rangle, i d_{K[x]}\right)$;
- compute $r:=\operatorname{dim}(I)$;
- if we know that the singular locus of I is $V\left(x_{1}, \ldots, x_{n}\right)$

$$
J:=\left\langle x_{1}, \ldots, x_{n}\right\rangle ;
$$

else
compute $J:=$ the ideal of the $(n-r)$-minors of the Jacobian matrix I;

- $J:=\operatorname{radical}(I+J)$;
- choose $a \in J \backslash\{0\}$;
- if $a J: J=\langle a\rangle$ return $\left(K[x], I, i d_{K[x]}\right)$;

〇 compute a generating system $u_{0}=a, u_{1}, \ldots, u_{s}$ for $a J: J$;

- compute a generating system $\left\{\left(\eta_{0}^{(1)}, \ldots, \eta_{s}^{(1)}\right), \ldots,\left(\eta_{0}^{(m)}, \ldots, \eta_{s}^{(m)}\right)\right\}$ for the module of syzygies $\operatorname{syz}\left(u_{0}, \ldots, u_{s}\right) \subset(K[x] / I)^{s+1}$;
- compute $\xi_{k}^{i j}$ such that $u_{i} \cdot u_{j}=\sum_{k=0}^{s} a \cdot \xi_{k}^{i j} u_{k}, i, j=1, \ldots s$;

O change ring to $K\left[x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{s}\right]$, and set (with $t_{0}:=1$) $I_{1}:=\left\langle\left\{t_{i} t_{j}-\sum_{k=0}^{s} \xi_{k}^{i j} t_{k}\right\}_{0 \leq i \leq j \leq s},\left\{\sum_{\nu=0}^{s} \eta_{\nu}^{(k)} t_{\nu}\right\}_{1 \leq k \leq m}\right\rangle+I K[x, t] ;$

- return normalization $\left(I_{1}\right)$.

non-normal locus

The ideal $A n n_{A}\left(\operatorname{Hom}_{A}(J, J) / A\right) \subset A$ defines the non-normal locus. Moreover,

$$
\operatorname{Ann}_{A}\left(\operatorname{Hom}_{A}(J, J) / A\right)=\langle x\rangle:(x J: J)
$$

for any non-zerodivisor $x \in J$.

non-normalLocus(I)

- Input: $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x]$ a prime ideal, $x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: An ideal $N \subset K[x]$, defining the non-normal locus in $V(I)$.
- If $I=\langle 0\rangle$ then return $(K[x])$;
- compute $r=\operatorname{dim}(I)$;
- compute J the ideal of the $(n-r)$-minors of the Jacobian matrix of I;
- $J=\operatorname{radical}(I+J)$;
- choose $a \in J \backslash\{0\}$;
- return $(\langle a\rangle:(a J: J))$.

