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Birth of SINGULAR

1984
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Fields

rational numbers Q (charakteristic 0)

finite fields Z/pZ(p < = 2147483629)

finite fields Fpn(pn < 215)

trancendental extensions of Q or Z/pZ

algebraic extensions of Q or Z/pZ

K[t]/MinPoly

floating point real and complex numbers
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Rings

polynomial rings K[x1, . . . , xn]

localizations K[x1, . . . , xn]M
M maximal ideal

factor rings K[x1, . . . , xn]/J oder K[x1, . . . , xn]M/J

non-commutative G–algebras
K〈x1, . . . , xn | xjxi = Cijxixj + Dij〉
Cij ∈ K , LM(Dij) < xixj

factor algebras of G–algebras by two-sided ideals

tensor products of the rings above
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Algorithms in the Kernel (C/C++)

Standard basis algorithms (Buchberger, SlimGB, factorizing
Buchberger, FGLM, Hilbert–driven Buchberger, ...)

Syzygies, free resolutions (Schreyer, La Scala, ...)

Multivariate polynomial factorization

absolute factorization (factorization over algebraically closed
fields)

Ideal theorie (intersection, quotient, elimination, saturation)

combinatorics (dimension, Hilbert polynomial, multiplicity, ...)

Characteritstic sets (Wu)
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Examples for libraries

primdec.lib

absfact.lib

normal.lib

resol.lib

homolog.lib

solve.lib

surf.lib

control.lib

dynamic modules
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History

1983
Greuel/Pfister: Exist singularities (not quasi-homogeneous and
complete intersection) with exact Poincaré-complex?
1984
Neuendorf/Pfister: Implementation of the Gröbner basis algo-
rithm in basic at ZX-Spectrum

2002

Book: A SINGULAR Introduction to Commutative Algebra

(G.-M. Greuel and G. Pfister, with contributions by O. Bachmann,

C. Lossen and H. Schönemann).
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History

2004

Jenks Price

for:

Excellence in Software Engineering

awarded at ISSAC in Santander

http://www.singular.uni-kl.de

Supported by: Deutsche Forschungsgemeinschaft, Stiftung Rheinland-Pfalz für
Innovation, Volkswagen Stiftung

SINGULAR is free software (Gnu Public Licence)
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Team

T. Wichmann, C. Lossen, G.-M. Greuel, H. Schönemann,

W. Pohl, G. Pfister, V. Levandovskyy, E. Westenberger,

A. Frühbis-Krüger, Oscar, K. Krüger

Kaiserslautern

Saarbrücken

Cottbus

Berlin

Mainz

Dortmund

Valladolid

La Laguna

Buenos Aires
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Saito’s result

Theorem (K. Saito 1971): Let (X, 0) be the germ of an isolated
hypersurface singularity. The following conditions are equivalent:

(X, 0) is quasi-homogeneous.

µ(X, 0) = τ(X, 0).

The Poincaré complex of (X, 0) is exact.

We wanted to generalize this theorem to the case of
isolated complete intersection singularities.
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Poincaré complex

Let (Xl,k, 0) be the germ of the unimodal space curve singularity
FTk,l of the classification of Terry Wall defined by the equations

xy + zl−1 = 0

xz + yz2 + yk−1 = 0

4 ≤ l ≤ k, 5 ≤ k.

The Poincaré complex

0 −→ C −→ OXl,k,0 −→ Ω1
Xl,k,0 −→ Ω2

Xl,k,0 −→ Ω3
Xl,k,0 −→ 0

is exact.
But (Xl,k, 0) is not quasi-homogeneous:

µ(X, 0) = τ(X, 0) + 1 = k + l + 2.
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µ and τ

Let (X, 0) be a germ of a space curve singularity defined by
f = g = 0, with f, g ∈ C{x, y, z}

µ(X, 0) = dimC(Ω1
X,0/dO(X,0))

τ(X, 0) = dimC(C{x, y, z}/ < f, g, M1, M2, M3 >)

here the Mi are the 2-minors of the Jacobian matrix of f, g.

Reiffen: The Poincaré complex is exact if and only if

< f, g > Ω3
C3,0 ⊂ d(< f, g > Ω2

C3,0)

and
µ(X, 0) = dimC(Ω2

X,0) − dimC(Ω3
X,0)
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Zariski’s conjecture

Conjecture (Zariski 1971) :
A µ–constant deformation of an iso-
lated hypersurface singularity is a de-
formation with constant multiplicity.
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Zariski’s conjecture

Ft = xa + yb + z3c + xc+2yc−1 + xc−1yc−1z3 + xc−2yc(y2 + tx)2

(a, b, c) = (40, 30, 8)
µ(F0) = 10661
µ(Ft) = 10655
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Applications

mathematical
experimental tool
proving theorems

non–mathematical
engineering (glas melting, robotics, chemical models,
analog and digital microelectronics)
equilibrian problems in economics
theoretical physics
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Computeralgebra and finite Groups

Problem: Characterize the class of finite solvable groups G by
2–variable identities.

Example:

G is abelian ⇔ xy = yx ∀ x, y ∈ G

(Zorn, 1930) A finite group G is nilpotent ⇔ ∃ n ≥ 1, such that
vn(x, y) = 1 ∀ x, y ∈ G

(Engel Identity)

v1 := [x, y] = xyx−1y−1 (commutator)
vn+1 := [vn, y]
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nilpotent groups

Let G be a finite group

G(1) := [G, G] = 〈aba−1b−1 | a, b ∈ G〉 .

Let G(i) := [G(i−1), G], then G is called nilpotent, if G(m) = {e} for a
suitable m.

abelian groups are nilpotent.

if the order of the group is a power of a prime it is nilpotent.

G ist nilpotent ⇔ it is the direct product of its Sylow groups.

S3 is not nilpotent.
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solvable groups

Let

G(i) := [G(i−1), G(i−1)],

then G is called solvable, if G(m) = {e} for a suitable m.

nilpotente groups are solvable.

S3, S4 are solvable.

groups of odd order are solvable.

S5, A5 are not solvable.
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Main result

Theorem (T. Bandman, G.-M. Greuel, F. Grunewald, B. Kunyavsky,
G. Pfister, E. Plotkin)

U1 = U1(x, y) := x2y−1x,

Un+1 = Un+1(x, y) = [xUnx−1, yUny−1].

A finite group G is solvable ⇔ ∃ n, such that Un(x, y) = 1 ∀ x, y ∈ G.

U1(x, y) = 1 ⇔ y = x−1

U1(x, y) = U2(x, y)

⇔ x−1yx−1y−1x2 = yx−2y−1xy−1

Let x, y ∈ G such that y 6= x−1 and
U1(x, y) = U2(x, y) ⇒ Un(x, y) 6= 1 ∀ n ∈ N.
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Proof

G solvable ⇒ Identity is true (by definition).

Idea of ⇐

Theorem (Thompson, 1968)
Let G minimally not solvable. Then G is one of the following groups:

PSL(2, Fp), p a prime number ≥ 5

PSL(2, F2p), p a prime number

PSL(2, F3p), p a prime number

PSL(3, F3)

Sz(2p) p a prime number.

If is enough to prove (for G in Thompson’s list): ∃ x, y ∈ G, such that
y 6= x−1 and U1(x, y) = U2(x, y).
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Motivation of the choice of the word

Let w be a word in X, Y, X−1, Y −1 and

U1 = w

Un+1 = [XUnX−1, Y UnY −1].

A Computer–search through the 10,000 shortest words in
X, X−1, Y, Y −1 found the following four words such that the equation
U1 = U2 has a non-trivial solution in PSL(2, p) for all p < 1000:

w1 = X−2Y −1X

w2 = X−1Y XY −1X

w3 = Y −2X−1

w4 = XY −2X−1Y X−1
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PSL

PSL(2, K) = SL(2, K)/
{
( a 0

0 a )
∣∣ a2 = 1

}

especially

PSL(2, F5) = {[( a11 a12

a21 a22
)] , a11a22 − a21a12 = 1}

[( a11 a12

a21 a22
)] =

{
( a11 a12

a21 a22
) ,
(

4a11 4a12

4a21 4a22

)}
.

It holds:

PSL(2, F5) ∼= PSL(2, F4) ∼= A5
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Translation to algebraic Geometry

Let us consider G = PSL(2,FpFpFp), p ≥ 5

Consider the matrices

x =

(
t 1

−1 0

)
y =

(
1 b

c 1 + bc

)

x−1 =
(

0 −1
1 t

)
implies y 6= x−1 for all (b, c, t) ∈ F3

p.
It is enough to prove that the equation

U1(x, y) = U2(x, y), i.e.
x−1yx−1y−1x2 = yx−2y−1xy−1

has a solution (b, c, t) ∈ F3
p.
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The equations

The entries of U1(x, y) − U2(x, y) are the following polynomials in
Z[b, c, t] Let I =< p1, . . . , p4 > and I(p) the induced ideal over Z/p:

p1 = b3c2t2 + b2c2t3 − b2c2t2 − bc2t3 − b3ct + b2c2t + b2ct2 + 2bc2t2

+bct3 + b2c2 + b2ct + bc2t − bct2 − c2t2 − ct3 − b2t + bct + c2t

+ct2 + 2bc + c2 + bt +2 ct + c + 1

p2 = −b3ct2 − b2ct3 + b2c2t + bc2t2 + b3t − b2ct − 2bct2 − b2c + bct

+c2t + ct2 − bt − ct − b − c − 1

p3 = b3c3t2 + b2c3t3 − b2c2t3 − bc2t4 − b3c2t + b2c3t +2 b2c2t2

+2bc3t2 +2 bc2t3 + b2c2t +2 b2ct2 + bc2t2 − c2t3 − ct4 − 2b2ct

+bc2t + c3t + bct2 + 2c2t2 + ct3 − b2c − b2t + bct + c2t + bt2

+3ct2 + bc − bt − b − c + 1

p4 = −b3c2t2 − b2c2t3 + b2c2t2 + bc2t3 + b3ct − b2c2t − b2ct2 − 2bc2t2

−bct3 − 2b2ct + c2t2 + ct3 + b2t − bct − c2t − ct2 + b2 − bt

−2ct − b − t + 1
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Hasse–Weil–Theorem

Theorem von Hasse–Weil (generalized by Aubry and Perret for
singulare curves):

Let C ⊆ An be an absolutely irreducible affine curve defined over
the finite field Fq and C ⊂ Pn its projective closure ⇒

#C(Fq) ≥ q + 1 − 2pa
√

q − d

(d = degree, pa = arithmetic genus of C).

The Hilbert–polynomial of C, H(t) = d · t − pa + 1, can be computed
using the ideal Ih of C:
We obtain H(t) = 10t − 11 ⇒ d = 10, pa = 12.
Since p + 1 − 24

√
p − 10 > 0 if p > 593, we obtain the result.
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absolute irreduciblity

Proposition: V (I(p)) is absolutely irreducibel for all primes p ≥ 5.

proof:

Using SINGULAR we show:

〈f1, f2〉 : h2 = I.

f1 = t2b4 + (t4 − 2t3 − 2t2)b3 − (t5 − 2t4 − t2 − 2t − 1)b2

−(t5 − 4t4 + t3 + 6t2 + 2t)b + (t4 − 4t3 + 2t2 + 4t + 1)

f2 = (t3 − 2t2 − t)c + t2b3 + (t4 − 2t3 − 2t2)b2

−(t5 − 2t4 − t2 − 2t − 1)b − (t5 − 4t4 + t3 + 6t2 + 2t)

h = t3 − 2t2 − t
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We give explicitely matrices M and N with entries in Z[b, c, t] such

that
M




p1

...
p4


 =

(
f1

f2

)
and

N

(
f1

f2

)
=




h2p1

...
h2p4




We obtain for all fields K

IK[b, c, t] =
(
〈f1, f2〉K[b, c, t]

)
: h2 .
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Schritt 2

f2 is linear in c , it is enough to show, that f1 is absolutely
irreducibel.

algebraically the following is equivalent:

IK[b, c, t] is prime

〈f1, f2〉K(t)[b, c] prime

f1 irreducibel in K(t)[b] resp. in K[t, b].

geometrically:
Curve V (I) is irreducibel, if the projection to the b, t–plane is
irreducibel.
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Let P (x) := t2J [1]|b=x/t then P is monic of degree 4.

x4 + (t3 − 2t2 − 2t)x3 − (t5 − 2t4 − t2 − 2t − 1)x2−
(t6 − 4t5 + t4 + 6t3 + 2t2)x + (t6 − 4t5 + 2t4 + 4t3 + t2).

We prove, that the induced polynomial P ∈ Fp[t, x] is absolutely
irreducibel for all primes p ≥ 2.
(Using the lemma of Gauß this is equivalent to P being irreducibel in
Fp(t)[x].)
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Ansatz

(∗) P = (x2 + ax + b)(x2 + gx + d)

a, b, g, d polynomials in t with variable coefficients

a(i), b(i), g(i), d(i) .

The decomposition (∗) with a(i), b(i), g(i), d(i) ∈ Fp does
not exist iff the ideal C generated by the coefficients with respect to
x, t of P − (x2 + ax + b)(x2 + gx + d) has no solution in Fp . This is
equivalent to the fact that 1 ∈ C.
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The ideal of the coefficients of C:
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Using SINGULAR, one shows that over
Z
[
{a(i)}, {b(i)}, {g(i)}, {d(i)}

]

4 =

24∑

i=1

Mi C[i] .
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Suzuki groups

This case is much more complicated.
We have to prove that on a surface U any odd power of a certain
endomorphism θ has fixed points.

Here we use the Lefschetz–Weil–Grothendieck trace formulae
generalized by Deligne–Lusztig, Th. Zink, Pink, Katz and
Adolphson–Sperber:

2n − b1(U) · 2
3
4n − b2(U) · 2

1
2n ≤ # Fix (θn, U)

for n sufficientely large.
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Model for a national economy

F. Kubler (Mannheim)
K. Schmedders (Kellogg School of Mathematics)

General problem:

Study a computer model of a national economy

especially study equilibria

Mathematical problem:
Find the positive real roots of a given system of polynomial
equations
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A small example

This example could be solved by the economists themselves
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A hard example
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A hard example

Problem:

a purely numerical approach was not sucessful

automatical symbolical preprocessing was not sucessful

Computer-Human solution:

using factorization to split the problem

Subsitution of variables

choose suitable field extensions to simplify the problem
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A degenerate example
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Resolution of X = V (z2 − x2y2) ⊂ K3

resolve.lib
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Sheaf cohomology

Let S = K[x0, . . . , xn] and M be a finitely generated graded
S–module.
We want to compute

Hj(M̃(k))

Using non-commutative methods will be 50 times faster then
the direct (commutative) approach.
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Robotics and the Cycloheptane Molecule

A.H.M. Levelt
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The Heptagon

Equations for the vectors:

(a1, a2) = (a2, a3) = . . . =

(a7, a1) = c

(a1, a1) = (a2, a2) = . . . =

(a7, a7) = 1

a1 + a2 + . . . + a7 = 0

c = cos(α) and (, ) is the scalar product.

For c = 0: equations for the configuration space of a robot

For c = 1

3
: equations for the configurations space of a molecule
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The Molecule

Equations for the configuration space (in SINGULAR ):

� � �� ��� �� � &� �� 
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The Projection

The equations describe a curve in R5. The projection to the w, x–plane is difficult to
compute:

13343098629642274643741505w20x16+18458805154059402163602552w20x15

+12528539096440613433050772w19x16-307469543636682571308498792w20x14
-308745089273555811810514188w19x15-335770469789305978523636514w18x16

.

.

.

-57603722394732542788396875000w2x-56209703485755917382271875000wx2
-29459059311819369252628125000x3-3456386878638867977468750000w2
-388065077492910629437500000wx-3500955605594366547468750000x2
+1264097844032306972500000000w+1126578705265908772500000000x
+240658492841196850000000000
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Projection of the curve to the w, x–plane

ideal K = eliminate(I,vyz);

LIB’’surf.lib’’;

plot(K[1]);

The curve shows the possible w, x–coordinates of the molecule.
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Electronics: Analog circuits

The sizing leads to the following system of equations:
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Electronics

Elimination of variables: The resistors R1, . . . , R8 and the capacities
C3 in terms of currents and voltages:.

+ � % � + � � � � � � � � �
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Control theory

D = K[∂1, . . . , ∂n] R ∈ Dg×q A = C∞(Rn, K)

B = Ker(R) = {ω ∈ Aq | Rω = 0}

B controllable ⇐⇒ B = im(M) for some M ∈ Dq×l

system module M = Dq/DgR , N = Dg/RDq

the transposed one

B controllable ⇐⇒ M torsion free

⇐⇒ Ext1
D

(N ,D) = 0
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Genus of a Curve

Let C be a projective curve, and let HC(t) = d(C)t − pa(C) + 1
be its Hilbert polynomial, then

d(C) =: degree of the curve C

pa(C) =: arithmetic genus of the curve.

The geometric genus g(C) is the arithmetic genus of the
normalization Cn of C:

g(C) := pa(Cn)

If we are able to compute the normalization, we can compute
the geometric genus. But this is very time consuming.
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Genus of a Curve

The procedure we implemented is based on the following
knowledge:

pa(C) = g(C) + δ(C), where δ(C) is the sum over the local δ-
invariants in the singular points.

There exist a projection C −→ D to a plane curve D with
degree d(D) = d(C), such that Cn = Dn. Then

g(C) = pa(Cn) = pa(Dn) = g(D).
Almost every projection has this property.

Let C be a plane projective curve. We compute the geometric
genus by a local analysis of the singularities.
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Genus of a Curve

Assume the plane curve C is defined by f=0.
We know:

the ideal Sing(f) :=< f, fx, fy > defines the singular locus

the ideal Sing(Sing(f)) :=< f, fx, fy, det(Hess(f)) > defines the
non-nodal locus

the ideal S := Sing(Sing(Sing(f))) defines the
non-nodal-cuspidal locus

δ(C, x) = 1 in nodal or cuspidal singularities, so we just have to
count them.

the singular points different from cusps and nodes are obtained
by a primary decomposition of S.

The primary decomposition is done over Q. To obtain the
points, we have to extend the field.
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Genus of a Curve

We know:

µ(f) = dim(C[[x, y]]/ < fx, fy >) = 2δ - number of branches + 1,

To compute the number of (local) branches, we proceed as follows:

Test for Ak- and Dk-singularities.

Compute the Newton Polygon.

If the Newton Polygon is non-degenerate, then the number of branches can
be computed combinatorically from the faces.

If the Newton Polygon is degenerate and has more than one face, then f can
be splitted (modulo analytic equivalence) into a product.

If the Newton Polygon is degenerate and has only one face, then we use the
Puiseux expansion to compute the number of branches.

Needs:

Puiseux expansion

Primary decomposition

Field extensions

Newton polygon.
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