Difference Equations, Inverse Systems and Gröbner Bases

Franz Pauer

Institut für Mathematik, Universität Innsbruck

2006-05-15

The inverse system of a polynomial ideal

Let F be a field,
$F[s]:=F\left[s_{1}, \ldots, s_{n}\right]$ the algebra of n-variate polynomials over F ,
I an ideal in $F[s]$.

The inverse system of I is

$$
I^{\perp}:=\left\{f \in \operatorname{Hom}_{F}(F[s], F)|f|_{I}=0\right\}
$$

An F-basis of I^{\perp} is a dual basis of I.
(Related: Implicit form of a subspace of a vector-space).

Advantage of a dual basis e.g.: decide " $f \in I$?" for $f \in F[s]$.

Note that

$$
I^{\perp} \cong \operatorname{Hom}_{F}(F[s] / I, F)
$$

I^{\perp} is a finite-dimensional F-vectorspace iff the ideal I is zero-dimensional.

History

- Macaulay(1915): inverse system
- Gröbner(1938): differential operators associated to I
- Oberst(1990): in the context of multidimensional linear system theory
- Marinari, Möller, Mora(1991,1993,1996); Möller, Tenberg(1999): Gauß-basis (set of zeroes of I is known and contained in F^{n})
- Mourrain(1997); Mourrain, Ruatta(2002): local inverse system (set of zeroes of I is known and contained in F^{n}), application to interpolation
- Heiß, Oberst, Pauer (2002, 2006): application to square-free decomposition of zero-dimensional ideals

Representation of elements of I^{\perp}

Let \leq be a term order on \mathbb{N}^{n} and

$$
\Gamma:=\mathbb{N}^{n} \backslash \operatorname{deg}(I)
$$

Then
$F[s]=I \oplus \bigoplus F s^{\gamma}, \quad h=(h-\mathrm{nf}(h))+\mathrm{nf}(h)$.
($\mathrm{nf}(h)$ is the normal form of h with respect to I and \leq).

Describe $\varphi \in I^{\perp}$ by:

$$
\left(\varphi\left(s^{\gamma}\right)\right)_{\gamma \in \Gamma} \quad \text { and }\left.\quad \varphi\right|_{I}=0
$$

Let $h \in F[s]$ and $\operatorname{nf}(h)=\sum_{\gamma \in \Gamma} c_{\gamma} s^{\gamma}$. Then

$$
\varphi(h)=\varphi(\mathrm{nf}(h))=\sum_{\gamma \in \Gamma} c_{\gamma} \varphi\left(s^{\gamma}\right)
$$

An F-Basis of I^{\perp} (if Γ is finite):

Let $e_{\gamma} \in I^{\perp}$ be defined by

$$
\begin{aligned}
e_{\gamma}\left(s^{\gamma}\right) & =1 \\
e_{\gamma}\left(s^{\alpha}\right) & =0 \quad \text { if } \alpha \in \Gamma, \alpha \neq \gamma \\
\left.e_{\gamma}\right|_{I} & =0
\end{aligned}
$$

The family $\left(e_{\gamma}\right)_{\gamma \in \Gamma}$ is an F-basis of I^{\perp}.

For $\varphi \in I^{\perp}$ we have:

$$
\varphi=\sum_{\gamma \in \Gamma} \varphi\left(s^{\gamma}\right) e_{\gamma}
$$

If we identify I^{\perp} and $\operatorname{Hom}_{F}(F[s] / I, F)$, then the basis $\left(e_{\gamma}\right)_{\gamma \in \Gamma}$ is dual to the F-basis $\left(\bar{s}^{\gamma}\right)_{\gamma \in \Gamma}$.

Example 1

$$
\begin{aligned}
I:= & \mathbb{Q}\left[s_{1}, s_{2}\right]<s_{2}^{4},-s_{2}^{3}+s_{1} s_{2}^{2} \\
& s_{2} s_{1}^{2}, s_{1}^{3}-s_{2}^{2}+s_{2} s_{1}> \\
& \leq \text { gr. lex. term-order, } s_{1}>s_{2} \\
\Gamma= & \{(0,0),(1,0),(0,1) \\
& (2,0),(1,1),(0,2),(0,3)\} \\
I^{\perp}:= & \mathbb{Q}<e_{\gamma} \mid \gamma \in\{(0,0),(1,0),(0,1) \\
& (2,0),(1,1),(0,2),(0,3)\}>
\end{aligned}
$$

The values of $e_{(0,3)}$:

Example 2

$$
\begin{aligned}
I:= & <6 s_{1}^{2} s_{2}+s_{1} s_{2}^{2}-s_{2}^{3}, \\
& 3 s_{1} s_{2}^{3}+2 s_{1} s_{2}^{2}-2 s_{2}^{3}, \\
& 12 s_{1}^{3}-12 s_{2}^{2}+12 s_{2} s_{1}-5 s_{2}^{3}+5 s_{1} s_{2}^{2}, \\
& 3 s_{2}^{4}-4 s_{1} s_{2}^{2}+4 s_{2}^{3}>\subseteq \mathbb{Q}\left[s_{1}, s_{2}\right] \\
\Gamma= & \{(0,0),(1,0),(0,1), \\
& (2,0),(1,1),(0,2),(1,2),(0,3)\}
\end{aligned}
$$

Computation of the normal forms $\operatorname{nf}\left(s^{\alpha}\right)$ for $\alpha \in \mathbb{N}^{2} \backslash \Gamma,|\alpha|=\alpha_{1}+\alpha_{2} \leq 4$ yields

s^{α}	s_{1}^{3}	$s_{1}^{2} s_{2}$	s_{2}^{4}	s_{1}^{4}	$s_{1}^{3} s_{2}$	$s_{1}^{2} s_{2}^{2}$	$s_{1} s_{2}^{3}$
$e_{(0,0)}\left(s^{\alpha}\right)$	0	0	0	0	0	0	0
$e_{(1,0)}\left(s^{\alpha}\right)$	0	0	0	0	0	0	0
$e_{(0,1)}\left(s^{\alpha}\right)$	0	0	0	0	0	0	0
$e_{(2,0)}\left(s^{\alpha}\right)$	0	0	0	0	0	0	0
$e_{(1,1)}\left(s^{\alpha}\right)$	-1	0	0	0	0	0	0
$e_{(0,2)}\left(s^{\alpha}\right)$	1	0	0	0	0	0	0
$e_{(1,2)}\left(s^{\alpha}\right)$	$\frac{3}{4}$	$\frac{-1}{6}$	$\frac{4}{3}$	$\frac{3}{4}$	$\frac{-1}{6}$	$\frac{1}{3}$	$\frac{-2}{3}$
$e_{(0,3)}\left(s^{\alpha}\right)$	$\frac{1}{4}$	$\frac{1}{6}$	$\frac{-4}{3}$	$\frac{1}{4}$	$\frac{1}{6}$	$\frac{-1}{3}$	$\frac{2}{3}$

I^{\perp} as $F[s]$-module

$\operatorname{Hom}_{F}(F[s], F)$ is an $F[s]$-module by
$(f \circ \varphi)(g):=\varphi(f g)$, where $f, g \in F[s]$,
$\varphi \in \operatorname{Hom}_{F}(F[s], F)$.
I is an ideal, hence I^{\perp} is an $F[s]$-submodule.

Let $R:=\operatorname{Rad}(I)$. Compute $V \leq_{F} I^{\perp}$ with $V \oplus \operatorname{Rad}(I) \circ I^{\perp}=I^{\perp}$.

If I is primary and F-rational: each F-basis of V is a system of $F[s]$-generators of I^{\perp} of minimal length (Nakayama's Lemma).

If the primary decomposition of I is known, we can compute a system of $F[s]$-generators of I^{\perp} of minimal length for any zero-dimensional ideal I.

Example 3

$$
\begin{aligned}
& I:=_{\mathbb{Q}[s]}<s_{2} s_{1}-s_{2} \\
& \quad s_{1}^{5}-5 s_{1}^{4}+10 s_{1}^{3}-10 s_{1}^{2}+5 s_{1}-1, s_{2}^{2}> \\
& \operatorname{Rad}(I)=<s_{2}, s_{1}-1>
\end{aligned}
$$

\mathbb{Q}-basis of I^{\perp} :
$\left\{e_{(0,0)}, e_{(1,0)}, e_{(0,1)}, e_{(2,0)}, e_{(3,0)}, e_{(4,0)}\right\}$
\mathbb{Q}-basis of $\operatorname{Rad}(I) \circ I^{\perp}$:
$\left\{e_{(0,0)}-e_{(4,0)}, e_{(1,0)}+4 e_{(4,0)}\right.$,
$\left.e_{(2,0)}-6 e_{(4,0)}, e_{(3,0)}+4 e_{(4,0)}\right\}$
\mathbb{Q}-basis of V :
$E=\left\{e_{(0,0)}, e_{(0,1)}\right\}$

Linear Systems of Partial Difference
 Equations with Constant Coefficients

Given:

- a family

$$
(R(\mu))_{\mu \in \mathbb{N}^{n}}
$$

of columns $R(\mu):=\left(R_{i}(\mu)\right)_{1 \leq i \leq k}$, in $F^{k \times 1}$, where only finitely many $R(\bar{\mu})$ are $\neq 0$

- a map $v=\left(v_{1}, \ldots, v_{k}\right): \mathbb{N}^{n} \rightarrow F^{k \times 1}$,
where k, n are positive integers.

Wanted:

all maps (signal vectors) $w: \mathbb{N}^{n} \rightarrow F$ such that

$$
\begin{equation*}
\sum_{\mu \in \mathbb{N}^{n}} R(\mu) w(\mu+\nu)=v(\nu) \tag{1}
\end{equation*}
$$

$$
\text { for all } \nu \in \mathbb{N}^{n}
$$

(" system of k partial difference equations with constant coefficients for 1 unknown w')

Questions

- How can we decide whether system (1) is solvable or not?
- How can we find a canonical subset $\Gamma \subseteq \mathbb{N}^{n}$ such that for every initial condition $x: \Gamma \rightarrow F$ there is exactly one solution w with $w \mid \Gamma=x$?
- If w is such a solution, how can we compute $w(\mu)$ for any $\mu \in \mathbb{N}^{n}$?

Represent data by polynomials

$F[s]:=F\left[s_{1}, \ldots, s_{n}\right], s^{\mu}:=s_{1}^{\mu_{1}} s_{2}^{\mu_{2}} \cdots s_{n}^{\mu_{n}}$.
For $\mu \in \mathbb{N}^{n}$ and $w: \mathbb{N}^{n} \rightarrow F, \nu \mapsto w(\nu)$, let

$$
\left(s^{\mu} \circ w\right)(\nu):=w(\mu+\nu), \quad \text { for all } \nu \in \mathbb{N}^{n}
$$

(left shift action).
By $w\left(s^{\mu}\right):=w(\mu)$ we consider $w: \mathbb{N}^{n} \longrightarrow F$ as an F-linear map $w: F[s] \longrightarrow F$.
Then $\left(s^{\mu} \circ w\right)(\nu)=w(\mu+\nu)=w\left(s^{\mu} s^{\nu}\right)$.

Hence

$$
\begin{gathered}
\sum_{\mu \in \mathbb{N}^{n}} R_{i}(\mu) w(\mu+\nu)=\sum_{\mu \in \mathbb{N}^{n}} R_{i}(\mu) w\left(s^{\mu} s^{\nu}\right)= \\
=w\left(\sum_{\mu \in \mathbb{N}^{n}} R_{i}(\mu) s^{\mu} s^{\nu}\right)=w\left(s^{\nu} R_{i}\right)
\end{gathered}
$$

where

$$
R_{i}:=\sum_{\mu \in \mathbb{N}^{n}} R_{i}(\mu) s^{\mu} \in F[s] .
$$

Thus equation (1) gets the simple form

$$
\begin{gather*}
w\left(s^{\nu} R_{i}\right)=v_{i}(\nu) \tag{2}\\
\text { for } i=1, \cdots, k \text { and all } \nu \in \mathbb{N}^{n}
\end{gather*}
$$

or

$$
R_{i} \circ w=v_{i}, 1 \leq i \leq k
$$

In the homogeneous case $(v=0)$ this means

$$
w \in I^{\perp},
$$

where I is the ideal generated by R_{1}, \ldots, R_{k}.

Example 4

(compare Example 2)
Find $w: \mathbb{N}^{2} \longrightarrow \mathbb{Q}$ such that for all $\nu \in \mathbb{N}^{2}$:

$$
\begin{gathered}
6 w((2,1)+\nu)+w((1,2)+\nu)-w((0,3)+\nu)=0 \\
3 w((1,3)+\nu)+2 w((1,2)+\nu)-2 w((0,3)+\nu)=0 \\
12 w((3,0)+\nu))-12 w((0,2)+\nu)+12 w((1,1)+\nu)- \\
-5 w((0,3)+\nu)+5 w((1,2)+\nu)=0 \\
3 w((0,4)+\nu)-4 w((1,2)+\nu)+4 w((0,3)+\nu)=0
\end{gathered}
$$

A canonical subset is $\Gamma:=$
$=\{(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),(1,2),(0,3)\}$

For $\mu \in \mathbb{N}^{2}$:

$$
w(\mu):=w\left(\operatorname{nf}\left(s^{\mu}\right)\right)
$$

(see Example 2).

Non-homogeneous Case

Existence of Solutions

Compute a system of generators L_{1}, \ldots, L_{p} of the $F[s]$-submodule

$$
\left\{u \in F[s]^{k} \mid \sum_{i=1}^{k} u_{i} R_{i}=0\right\} \leq F[s]^{k}
$$

Then: A solution of (1) exists iff

$$
\sum_{j=1}^{k} L_{i j} \circ v_{j}=0,1 \leq i \leq p
$$

Solutions
If solutions w exist:
$w(\mu)$ can be chosen arbitrarily, if $\mu \in \Gamma$.
For $\mu \neq \Gamma$ compute
$\mathrm{nf}\left(s^{\mu}\right)=\sum_{\alpha \in \Gamma} c_{\alpha} s^{\alpha}$ and
$s^{\mu}-\mathrm{nf}\left(s^{\mu}\right)=\sum_{\nu, i} d_{\nu, i} s^{\nu} R_{i}$.
Then

$$
w(\mu)=\sum_{\alpha \in \Gamma} c_{\alpha} w(\alpha)+\sum_{\nu, i} d_{\nu, i} v_{i}(\nu)
$$

Represent signal vectors by power series

Let $F[[z]]:=F\left[\left[z_{1}, \ldots, z_{n}\right]\right]$ be the F-algebra of n-variate formal power-series over F, $z^{\mu}:=z_{1}^{\mu_{1}} z_{2}^{\mu_{2}} \cdots z_{n}^{\mu_{n}}$.

We now write maps $w: \mathbb{N}^{n} \longrightarrow F$ in the form

$$
w=\sum_{\nu \in \mathbb{N}^{n}} w(\nu) z^{\nu} \in F[[z]],
$$

then $s^{\mu} \circ w=\sum_{\nu \in \mathbb{N}^{n}} w(\nu+\mu) z^{\nu}$.
In particular, $s^{\mu} \circ z^{\pi}=z^{\pi-\mu}$, if $\pi-\mu \in \mathbb{N}^{n}$, and $s^{\mu} \circ z^{\pi}=0$, otherwise.

Example $5 F=\mathbb{Q}, n=2, k=2$.

$$
\begin{gathered}
R:=\binom{2 s_{1}^{2} s_{2}+1}{3 s_{1} s_{2}^{2}+2} \\
v:=\binom{13 z_{2}^{2}+5 z_{1}^{2} z_{2}^{3}}{6 z_{2}^{2}+10 z_{1}^{2} z_{2}^{3}+15 z_{1} z_{2}}
\end{gathered}
$$

Here $p=1$ and
$L=\left(-R_{2}, R_{1}\right)=\left(-3 s_{1} s_{2}^{2}-2,2 s_{1}^{2} s_{2}+1\right)$,
$L \circ v=0$, hence the system $R \circ w=v$ is solvable.

A Gröbner basis of the ideal

$$
U:=\left\langle R_{1}, R_{2}\right\rangle=\left\langle 2 s_{1}^{2} s_{2}+1,3 s_{1} s_{2}^{2}+2\right\rangle
$$

in $F\left[s_{1}, s_{2}\right]$ with respect to the graded lexicographic order $\left(s_{1}>s_{2}\right)$ is

$$
\left\{4 s_{1}-3 s_{2}, 9 s_{2}^{3}+8\right\}
$$

and hence

$$
\Gamma=\{(0,0),(0,1),(0,2)\}
$$

Let $\mu:=(2,3)$. Then
$s_{1}^{2} s_{2}^{3}=-\frac{1}{2} s_{2}^{2}+\left(-\frac{3}{4} s_{1} s_{2}^{4}\right) R_{1}+\left(\frac{1}{2} s_{1}^{2} s_{2}^{3}+\frac{1}{4} s_{2}^{2}\right) R_{2}$.
Hence

$$
\begin{gathered}
w(2,3)= \\
=-\frac{1}{2} x(0,2)-\frac{3}{4} v_{1}(1,4)+\frac{1}{2} v_{2}(2,3)+\frac{1}{4} v_{2}(0,2)= \\
=-\frac{1}{2} x(0,2)+\frac{13}{2} .
\end{gathered}
$$

Convergent power series

Let

$$
\mathbb{C}\langle z\rangle:=\mathbb{C}\left\langle z_{1}, \ldots, z_{n}\right\rangle
$$

be the algebra of (locally) convergent power series (i.e. power series $\sum_{\mu} a(\mu) z^{\mu}$ such that there are $C>0$ and $d_{1}>0, \ldots, d_{n}>0$ with $|a(\mu)| \leq C d^{\mu}$ for all $\left.\mu \in \mathbb{N}^{n}\right)$.

Consider signal vectors as vectors of power series. Then the solution of

$$
R_{i} \circ w=v_{i}, 1 \leq i \leq k, w \mid \Gamma=x
$$

is convergent if the data x and $v_{i}, 1 \leq i \leq k$, are so.

Differential equations

For $\mu \in \mathbb{N}^{n}, a \in F[[z]]$ consider

$$
s^{\mu} \bullet a:=\partial^{\mu} a=\frac{\partial^{|\mu|} a}{\partial z_{1}^{\mu_{1}} \cdots \partial z_{n}^{\mu_{n}}}
$$

The map

$$
\begin{aligned}
(\mathbb{C}[[z]], \circ) & \rightarrow(\mathbb{C}[[z]], \bullet) \\
\sum_{\mu} a(\mu) z^{\mu} & \mapsto \sum_{\mu} \frac{a(\mu)}{\mu!} z^{\mu}
\end{aligned}
$$

is an isomorphism of the $F[s]$-modules ($F[[z]], \circ$) and ($F[[z]], \bullet$) (Borel-isomorphism).

Let

$$
O\left(\mathbb{C}^{r} ; \exp \right)
$$

be the algebra of entire holomorphic functions of exponential type (i.e. holomorphic functions $b=\sum_{\mu \in \mathbb{N}^{n}} b(\mu) z^{\mu}$ on \mathbb{C}^{n} such that there are $C>0$ and $d_{1}>0, \ldots, d_{n}>0$ with $|b(\mu)| \leq C \exp \left(\sum_{i=1}^{r} d_{i}\left|\mu_{i}\right|\right)$ for all $\left.\mu \in \mathbb{N}^{n}\right)$.
The Borel isomorphism induces the isomorphism

$$
(\mathbb{C}\langle z\rangle, \circ) \cong\left(O\left(\mathbb{C}^{n} ; \exp \right), \bullet\right)
$$

Thus results for the discrete case can be translated to the continuous case.

Extension to $\mathrm{F}[\mathrm{s}]$-Modules

Let U be an $F[s]$-submodule of $F[s]^{\ell}$.

The inverse system of U is

$$
U^{\perp}:=\left\{f \in \operatorname{Hom}_{F}\left(F[s]^{\ell}, F\right)|f|_{U}=0\right\} .
$$

A system of k difference equations in ℓ unknowns is given by a family of $k \times \ell$-matrices

$$
(R(\mu))_{\mu \in \mathbb{N}^{n}}
$$

where only finitely many matrices $R(\mu) \in F$ are $\neq 0$, and a map

$$
\left(v_{1}, \ldots, v_{k}\right): \mathbb{N}^{n} \rightarrow F^{k \times 1}
$$

where k, ℓ, n are positive integers.

Wanted: all ℓ-columns w of functions (signal vectors) $w_{i}: \mathbb{N}^{n} \rightarrow F, 1 \leq i \leq \ell$ such that

$$
\sum_{j=1}^{\ell} \sum_{\mu \in \mathbb{N}^{n}} R_{i j}(\mu) w_{j}(\mu+\nu)=v_{i}(\nu)
$$

for $i=1, \cdots, k$ and all $\nu \in \mathbb{N}^{n}$.

Consider w as F-linear map $w:=F[s]^{\ell} \longrightarrow F$ by $w(0, \ldots, 0, \underbrace{s^{\mu}}_{i}, 0, \ldots, 0):=w_{i}(\mu)$.

Use Gröbner bases for modules (instead of ideals).

Extension to signal vectors defined on (a submonoid of) \mathbb{Z}^{n}

Consider signal vectors $w: M \longrightarrow F$, where M is a finitely generated submonoid of \mathbb{Z}^{n} (instead of $M=\mathbb{N}^{n}$), e.g. $M=\mathbb{Z}^{n}$.
Then w induces

$$
w: F[M] \longrightarrow F
$$

where $F[M]$ is a finitely generated subalgebra of the algebra $F\left[s, s^{-1}\right.$] of Laurentpolynomials, e.g. $F[M]=F\left[s, s^{-1}\right]$.

Hence: extend theory of Gröbner bases to Laurent polynomials.

Pauer, F., Unterkircher, A.: Groebner Bases for Ideals in Laurent Polynomial Rings and their Application to Systems of Difference Equations. AAECC 9/4 (1999), 271-291.

Zerz,E., Oberst, U.: Acta Applicandae Mathematicae 31 (1993), 249-273.

References

Riquier, C.: Les Systèmes d'Équations aux Dérivées Partielles. Gauthier-Villars, Paris: 1910.

Oberst, U.: Multidimensional Constant Linear Systems. Acta Appl. Math. 20 (1990), 1-175.

Oberst, U., Pauer, F.: The Constructive SoIution of Linear Systems of Partial Difference and Differential Equations with Constant Coefficients.
Multidim. Systems and Signal Processing 12 (2001), 253-308.

