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The inverse system of a polynomial

ideal

Let F be a field,

F [s] := F [s1, . . . , sn] the algebra of n-variate

polynomials over F,

I an ideal in F [s].

The inverse system of I is

I⊥ := {f ∈ HomF (F [s], F ) | f |I = 0} .

An F -basis of I⊥ is a dual basis of I .

(Related: Implicit form of a subspace of a

vector-space).

Advantage of a dual basis e.g.:

decide ”f ∈ I?” for f ∈ F [s].
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Note that

I⊥ ∼= HomF (F [s]/I, F ) .

I⊥ is a finite-dimensional F -vectorspace iff

the ideal I is zero-dimensional.
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History

• Macaulay(1915): inverse system

• Gröbner(1938): differential operators
associated to I

• Oberst(1990): in the context of
multidimensional linear system theory

• Marinari, Möller, Mora(1991,1993,1996);
Möller, Tenberg(1999): Gauß-basis
(set of zeroes of I is known and contained
in Fn)

• Mourrain(1997); Mourrain, Ruatta(2002):
local inverse system (set of zeroes of I is
known and contained in Fn), application
to interpolation

• Heiß, Oberst, Pauer (2002, 2006): ap-
plication to square-free decomposition of
zero-dimensional ideals
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Representation of elements of I⊥

Let ≤ be a term order on Nn and

Γ := Nn \ deg(I) .

Then

F [s] = I⊕
⊕

γ∈Γ

Fsγ , h = (h−nf(h)) + nf(h).

(nf(h) is the normal form of h with respect

to I and ≤).

Describe ϕ ∈ I⊥ by:

(ϕ(sγ))γ∈Γ and ϕ|I = 0 .

Let h ∈ F [s] and nf(h) =
∑

γ∈Γ cγsγ. Then

ϕ(h) = ϕ(nf(h)) =
∑

γ∈Γ

cγϕ(sγ) .
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An F -Basis of I⊥ (if Γ is finite):

Let eγ ∈ I⊥ be defined by

eγ(s
γ) = 1

eγ(s
α) = 0 if α ∈ Γ, α 6= γ

eγ|I = 0

The family (eγ)γ∈Γ is an F -basis of I⊥.

For ϕ ∈ I⊥ we have:

ϕ =
∑

γ∈Γ

ϕ(sγ)eγ .

If we identify I⊥ and HomF (F [s]/I, F ),

then the basis (eγ)γ∈Γ is dual to the F -basis

(s̄γ)γ∈Γ.
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Example 1

I := Q[s1,s2]
< s42,−s32 + s1s22,

s2s21, s31 − s22 + s2s1 >

≤ gr. lex. term-order, s1 > s2

Γ = {(0,0), (1,0), (0,1),

(2,0), (1,1), (0,2), (0,3)}
I⊥ := Q < eγ | γ ∈ {(0,0), (1,0), (0,1),

(2,0), (1,1), (0,2), (0,3)} >

The values of e(0,3):
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Example 2

I := < 6s21s2 + s1s22 − s32,

3s1s32 + 2s1s22 − 2s32,

12s31 − 12s22 + 12s2s1 − 5s32 + 5s1s22,

3s42 − 4s1s22 + 4s32 >⊆ Q[s1, s2]

Γ = {(0,0), (1,0), (0,1),
(2,0), (1,1), (0,2), (1,2), (0,3)}

Computation of the normal forms nf(sα) for
α ∈ N2 \ Γ, |α| = α1 + α2 ≤ 4 yields

sα s3
1 s2

1s2 s4
2 s4

1 s3
1s2 s2

1s
2
2 s1s3

2

e(0,0)(s
α) 0 0 0 0 0 0 0

e(1,0)(s
α) 0 0 0 0 0 0 0

e(0,1)(s
α) 0 0 0 0 0 0 0

e(2,0)(s
α) 0 0 0 0 0 0 0

e(1,1)(s
α) −1 0 0 0 0 0 0

e(0,2)(s
α) 1 0 0 0 0 0 0

e(1,2)(s
α) 3

4
−1
6

4
3

3
4

−1
6

1
3

−2
3

e(0,3)(s
α) 1

4
1
6

−4
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1
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1
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2
3
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I⊥ as F [s]-module

HomF (F [s], F ) is an F [s]-module by

(f ◦ ϕ)(g) := ϕ(fg) , where f, g ∈ F [s],

ϕ ∈ HomF (F [s], F ).

I is an ideal, hence I⊥ is an F [s]-submodule.

Let R := Rad(I). Compute V ≤F I⊥ with

V ⊕Rad(I) ◦ I⊥ = I⊥.

If I is primary and F -rational: each F -basis

of V is a system of F [s]-generators of I⊥ of

minimal length (Nakayama’s Lemma).

If the primary decomposition of I is known,

we can compute a system of F [s]-generators

of I⊥ of minimal length for any zero-dimensi-

onal ideal I.
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Example 3

I :=Q[s]< s2s1 − s2,

s51 − 5s41 + 10s31 − 10s21 + 5s1 − 1, s22 >

Rad(I) =< s2, s1 − 1 >

Q-basis of I⊥ :
{e(0,0), e(1,0), e(0,1), e(2,0), e(3,0), e(4,0)}

Q-basis of Rad(I) ◦ I⊥ :
{e(0,0) − e(4,0), e(1,0) + 4e(4,0),

e(2,0) − 6e(4,0), e(3,0) + 4e(4,0)}

Q-basis of V:
E = {e(0,0), e(0,1)}
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Linear Systems of Partial Difference
Equations with Constant Coefficients

Given:

• a family

(R(µ))µ∈Nn

of columns R(µ) := (Ri(µ))1≤i≤k, in F k×1,
where only finitely many R(µ) are 6= 0

• a map v = (v1, . . . , vk) : Nn → F k×1 ,

where k, n are positive integers.

Wanted:

all maps (signal vectors) w : Nn → F such
that ∑

µ∈Nn

R(µ)w(µ + ν) = v(ν)

for all ν ∈ Nn .

(1)

(”system of k partial difference equations with
constant coefficients for 1 unknown w”)
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Questions

• How can we decide whether system (1)

is solvable or not?

• How can we find a canonical subset

Γ ⊆ Nn such that for every initial condi-

tion x : Γ → F there is exactly one solu-

tion w with w|Γ = x?

• If w is such a solution, how can we com-

pute w(µ) for any µ ∈ Nn?
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Represent data by polynomials

F [s] := F [s1, . . . , sn], sµ := s
µ1
1 s

µ2
2 · · · sµn

n .

For µ ∈ Nn and w : Nn → F , ν 7→ w(ν), let

(sµ ◦ w)(ν) := w(µ + ν), for all ν ∈ Nn

(left shift action).

By w(sµ) := w(µ) we consider w : Nn −→ F

as an F -linear map w : F [s] −→ F .

Then (sµ ◦ w)(ν) = w(µ + ν) = w(sµsν).

Hence
∑

µ∈Nn

Ri(µ)w(µ + ν) =
∑

µ∈Nn

Ri(µ)w(sµsν) =

= w(
∑

µ∈Nn

Ri(µ)sµsν) = w(sνRi) ,

where

Ri :=
∑

µ∈Nn

Ri(µ)sµ ∈ F [s] .
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Thus equation (1) gets the simple form

w(sνRi) = vi(ν)

for i = 1, · · · , k and all ν ∈ Nn .
(2)

or

Ri ◦ w = vi ,1 ≤ i ≤ k.

In the homogeneous case (v = 0) this means

w ∈ I⊥ ,

where I is the ideal generated by R1, . . . , Rk.
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Example 4

(compare Example 2)

Find w : N2 −→ Q such that for all ν ∈ N2:

6w((2,1) + ν) + w((1,2) + ν)− w((0,3) + ν) = 0

3w((1,3) + ν) + 2w((1,2) + ν)− 2w((0,3) + ν) = 0

12w((3,0) + ν))− 12w((0,2) + ν) + 12w((1,1) + ν)−
−5w((0,3) + ν) + 5w((1,2) + ν) = 0

3w((0,4) + ν)− 4w((1,2) + ν) + 4w((0,3) + ν) = 0

A canonical subset is Γ :=

= {(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), (1,2), (0,3)}

For µ ∈ N2:

w(µ) := w(nf(sµ))

(see Example 2).
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Non-homogeneous Case

Existence of Solutions

Compute a system of generators L1, . . . , Lp

of the F [s]-submodule

{u ∈ F [s]k |
k∑

i=1

uiRi = 0} ≤ F [s]k .

Then: A solution of (1) exists iff

k∑

j=1

Lij ◦ vj = 0 , 1 ≤ i ≤ p .

Solutions

If solutions w exist:

w(µ) can be chosen arbitrarily, if µ ∈ Γ.

For µ 6= Γ compute

nf(sµ) =
∑

α∈Γ cαsα and

sµ − nf(sµ) =
∑

ν,i dν,is
νRi.

Then

w(µ) =
∑

α∈Γ

cαw(α) +
∑

ν,i

dν,ivi(ν) .
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Represent signal vectors by power series

Let F [[z]] := F [[z1, . . . , zn]] be the F -algebra

of n-variate formal power-series over F ,

zµ := z
µ1
1 z

µ2
2 · · · zµn

n .

We now write maps w : Nn −→ F in the form

w =
∑

ν∈Nn

w(ν)zν ∈ F [[z]],

then sµ ◦ w =
∑

ν∈Nn w(ν + µ)zν.

In particular, sµ ◦ zπ = zπ−µ, if π − µ ∈ Nn,

and sµ ◦ zπ = 0, otherwise.
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Example 5 F = Q, n = 2, k = 2.

R :=

(
2s21s2 + 1
3s1s22 + 2

)

v :=

(
13z2

2 + 5z2
1z3

2
6z2

2 + 10z2
1z3

2 + 15z1z2

)
.

Here p = 1 and

L = (−R2, R1) = (−3s1s22 − 2,2s21s2 + 1),

L ◦ v = 0, hence the system R ◦ w = v is

solvable.

A Gröbner basis of the ideal

U := 〈R1, R2〉 = 〈2s21s2 + 1, 3s1s22 + 2〉
in F [s1, s2] with respect to the graded lexico-

graphic order (s1 > s2) is

{4s1 − 3s2,9s32 + 8}
and hence

Γ = {(0,0), (0,1), (0,2)} .
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v

v

N2

~

Γ

Let µ := (2,3). Then

s21s32 = −1

2
s22+(−3

4
s1s42)R1+(

1

2
s21s32+

1

4
s22)R2 .

Hence

w(2,3) =

= −1

2
x(0,2)−3

4
v1(1,4)+

1

2
v2(2,3)+

1

4
v2(0,2) =

= −1

2
x(0,2) +

13

2
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Convergent power series

Let

C〈z〉 := C〈z1, . . . , zn〉
be the algebra of (locally) convergent power

series (i.e. power series
∑

µ a(µ)zµ such that

there are C > 0 and d1 > 0, . . . , dn > 0 with

|a(µ)| ≤ Cdµ for all µ ∈ Nn).

Consider signal vectors as vectors of power

series. Then the solution of

Ri ◦ w = vi ,1 ≤ i ≤ k, w|Γ = x

is convergent if the data x and vi,1 ≤ i ≤ k,

are so.
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Differential equations

For µ ∈ Nn, a ∈ F [[z]] consider

sµ • a := ∂µa =
∂|µ|a

∂z
µ1
1 · · · ∂z

µn
n

.

The map

(C[[z]], ◦) → (C[[z]], •)
∑
µ

a(µ)zµ 7→
∑
µ

a(µ)

µ!
zµ

is an isomorphism of the F [s]−modules

(F [[z]], ◦) and (F [[z]], •) (Borel-isomorphism).
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Let

O(Cr; exp)

be the algebra of entire holomorphic func-

tions of exponential type (i.e. holomorphic

functions b =
∑

µ∈Nn b(µ)zµ on Cn such that

there are C > 0 and d1 > 0, . . . , dn > 0 with

|b(µ)| ≤ C exp(
∑r

i=1 di|µi|) for all µ ∈ Nn).

The Borel isomorphism induces the isomor-

phism

(C〈z〉, ◦) ∼= (O(Cn; exp), •) .

Thus results for the discrete case can be

translated to the continuous case.
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Extension to F[s]-Modules

Let U be an F [s]-submodule of F [s]`.

The inverse system of U is

U⊥ := {f ∈ HomF (F [s]`, F ) | f |U = 0} .

A system of k difference equations in ` un-

knowns is given by a family of k× `-matrices

(R(µ))µ∈Nn

where only finitely many matrices

R(µ) ∈ F are 6= 0, and a map

(v1, . . . , vk) : Nn → F k×1 ,

where k, `, n are positive integers.
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Wanted: all `-columns w of functions (signal

vectors) wi : Nn → F ,1 ≤ i ≤ ` such that

∑̀

j=1

∑

µ∈Nn

Rij(µ)wj(µ + ν) = vi(ν) ,

for i = 1, · · · , k and all ν ∈ Nn.

Consider w as F -linear map w := F [s]` −→ F

by w(0, . . . ,0, sµ︸︷︷︸
i

,0, . . . ,0) := wi(µ).

Use Gröbner bases for modules (instead of

ideals).
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Extension to signal vectors defined on

(a submonoid of) Zn

Consider signal vectors w : M −→ F , where
M is a finitely generated submonoid of Zn

(instead of M = Nn), e.g. M = Zn.
Then w induces

w : F [M ] −→ F ,

where F [M ] is a finitely generated subalgebra
of the algebra F [s, s−1] of Laurentpolynomi-
als, e.g. F [M ] = F [s, s−1].

Hence: extend theory of Gröbner bases to
Laurent polynomials.

Pauer, F., Unterkircher, A.: Groebner Bases
for Ideals in Laurent Polynomial Rings and
their Application to Systems of Difference
Equations. AAECC 9/4 (1999), 271-291.

Zerz,E., Oberst, U.: Acta Applicandae Math-
ematicae 31 (1993), 249-273.
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