Difference Equations, Inverse Systems and Gröbner Bases

Franz Pauer

Institut für Mathematik, Universität Innsbruck

2006-05-15

The inverse system of a polynomial ideal

Let F be a field, $F[s] := F[s_1, \ldots, s_n]$ the algebra of n-variate polynomials over F, I an ideal in F[s].

The **inverse system** of *I* is

 $I^{\perp} := \{ f \in Hom_F(F[s], F) \mid f|_I = 0 \}$. An *F*-basis of I^{\perp} is a **dual basis** of *I*.

(Related: Implicit form of a subspace of a vector-space).

Advantage of a dual basis e.g.: decide " $f \in I$?" for $f \in F[s]$. Note that

$I^{\perp} \cong Hom_F(F[s]/I, F)$.

 I^{\perp} is a finite-dimensional *F*-vectorspace iff the ideal *I* is zero-dimensional.

History

- Macaulay(1915): inverse system
- Gröbner(1938): differential operators associated to *I*
- Oberst(1990): in the context of multidimensional linear system theory
- Marinari, Möller, Mora(1991,1993,1996);
 Möller, Tenberg(1999): Gauß-basis (set of zeroes of *I* is known and contained in *Fⁿ*)
- Mourrain(1997); Mourrain, Ruatta(2002): local inverse system (set of zeroes of I is known and contained in Fⁿ), application to interpolation
- Heiß, Oberst, Pauer (2002, 2006): application to square-free decomposition of zero-dimensional ideals

Representation of elements of ${\it I}^{\perp}$

Let \leq be a term order on \mathbb{N}^n and

$$\Gamma := \mathbb{N}^n \setminus deg(I) \ .$$

Then

$$F[s] = I \oplus \bigoplus_{\gamma \in \Gamma} Fs^{\gamma}, \quad h = (h - nf(h)) + nf(h).$$

(nf(h) is the normal form of h with respect to I and \leq).

Describe $\varphi \in I^{\perp}$ by: $(\varphi(s^{\gamma}))_{\gamma \in \Gamma}$ and $\varphi|_{I} = 0$.

Let
$$h \in F[s]$$
 and $nf(h) = \sum_{\gamma \in \Gamma} c_{\gamma} s^{\gamma}$. Then
 $\varphi(h) = \varphi(nf(h)) = \sum_{\gamma \in \Gamma} c_{\gamma} \varphi(s^{\gamma})$.

An *F*-Basis of I^{\perp} (if Γ is finite):

Let $e_{\gamma} \in I^{\perp}$ be defined by

$$e_{\gamma}(s^{\gamma}) = 1$$

 $e_{\gamma}(s^{\alpha}) = 0$ if $\alpha \in \Gamma, \alpha \neq \gamma$
 $e_{\gamma}|_{I} = 0$

The family $(e_{\gamma})_{\gamma \in \Gamma}$ is an *F*-basis of I^{\perp} .

For $\varphi \in I^{\perp}$ we have:

$$\varphi = \sum_{\gamma \in \Gamma} \varphi(s^{\gamma}) e_{\gamma} \; .$$

If we identify I^{\perp} and $Hom_F(F[s]/I, F)$, then the basis $(e_{\gamma})_{\gamma \in \Gamma}$ is dual to the *F*-basis $(\bar{s}^{\gamma})_{\gamma \in \Gamma}$.

Example 1

$$\begin{split} I &:= &_{\mathbb{Q}[s_1,s_2]} < s_2^4, -s_2^3 + s_1 s_2^2, \\ &s_2 s_1^2, s_1^3 - s_2^2 + s_2 s_1 > \\ &\leq & \text{gr. lex. term-order, } s_1 > s_2 \\ \Gamma &= & \{(0,0), (1,0), (0,1), \\ &(2,0), (1,1), (0,2), (0,3)\} \\ I^{\perp} &:= & & \\ \mathbb{Q} < e_{\gamma} \mid \gamma \in \{(0,0), (1,0), (0,1), \\ &(2,0), (1,1), (0,2), (0,3)\} > \end{split}$$

The values of $e_{(0,3)}$:

Example 2

 $I := < 6s_1^2s_2 + s_1s_2^2 - s_2^3,$ $3s_1s_2^3 + 2s_1s_2^2 - 2s_2^3,$ $12s_1^3 - 12s_2^2 + 12s_2s_1 - 5s_2^3 + 5s_1s_2^2,$ $3s_2^4 - 4s_1s_2^2 + 4s_2^3 > \subseteq \mathbb{Q}[s_1, s_2]$

 $\Gamma = \{(0,0), (1,0), (0,1), \\ (2,0), (1,1), (0,2), (1,2), (0,3)\}$

Computation of the normal forms $nf(s^{\alpha})$ for $\alpha \in \mathbb{N}^2 \setminus \Gamma, |\alpha| = \alpha_1 + \alpha_2 \leq 4$ yields

s^{lpha}	s_1^3	$s_1^2 s_2$	s_{2}^{4}	s_{1}^{4}	$s_1^3 s_2$	$s_1^2 s_2^2$	$s_1 s_2^3$
$e_{(0,0)}(s^{lpha})$	0	0	0	0	0	0	0
$e_{(1,0)}(s^{lpha})$	0	0	0	0	0	0	0
$e_{(0,1)}(s^{lpha})$	0	0	0	0	0	0	0
$e_{(2,0)}(s^{lpha})$	0	0	0	0	0	0	0
$e_{(1,1)}(s^{lpha})$	-1	0	0	0	0	0	0
$e_{(0,2)}(s^{lpha})$	1	0	0	0	0	0	0
$e_{(1,2)}(s^{\alpha})$	<u>3</u> 4	$\frac{-1}{6}$	$\frac{4}{3}$	<u>3</u> 4	$\frac{-1}{6}$	$\frac{1}{3}$	$\frac{-2}{3}$
$e_{(0,3)}(s^{lpha})$	$\frac{1}{4}$	$\frac{1}{6}$	$\frac{-4}{3}$	$\frac{1}{4}$	$\frac{1}{6}$	$\frac{-1}{3}$	<u>2</u> 3

I^{\perp} as F[s]-module

$$Hom_F(F[s], F)$$
 is an $F[s]$ -module by $(f \circ \varphi)(g) := \varphi(fg)$, where $f, g \in F[s],$ $\varphi \in Hom_F(F[s], F).$

I is an ideal, hence I^{\perp} is an F[s]-submodule.

Let R := Rad(I). Compute $V \leq_F I^{\perp}$ with $V \oplus Rad(I) \circ I^{\perp} = I^{\perp}$.

If I is primary and F-rational: each F-basis of V is a system of F[s]-generators of I^{\perp} of minimal length (Nakayama's Lemma).

If the primary decomposition of I is known, we can compute a system of F[s]-generators of I^{\perp} of minimal length for any zero-dimensional ideal I.

Example 3

$$\begin{split} I &:=_{\mathbb{Q}[s]} < s_2 s_1 - s_2, \\ s_1^5 - 5 s_1^4 + 10 s_1^3 - 10 s_1^2 + 5 s_1 - 1, s_2^2 > \\ Rad(I) &= < s_2, s_1 - 1 > \\ \mathbb{Q}\text{-basis of } I^\perp : \\ \{e_{(0,0)}, e_{(1,0)}, e_{(0,1)}, e_{(2,0)}, e_{(3,0)}, e_{(4,0)}\} \\ \mathbb{Q}\text{-basis of } Rad(I) \circ I^\perp : \\ \{e_{(0,0)} - e_{(4,0)}, e_{(1,0)} + 4 e_{(4,0)}, \\ e_{(2,0)} - 6 e_{(4,0)}, e_{(3,0)} + 4 e_{(4,0)}\} \\ \mathbb{Q}\text{-basis of } V: \\ E &= \{e_{(0,0)}, e_{(0,1)}\} \end{split}$$

Linear Systems of Partial Difference Equations with Constant Coefficients

Given:

• a family

 $(R(\mu))_{\mu \in \mathbb{N}^n}$ of columns $R(\mu) := (R_i(\mu))_{1 \le i \le k}$, in $F^{k \times 1}$, where only finitely many $R(\mu)$ are $\neq 0$

• a map
$$v = (v_1, \ldots, v_k) : \mathbb{N}^n \to F^{k \times 1}$$
,

where k, n are positive integers.

Wanted:

all maps (signal vectors) w : $\mathbb{N}^n \to F$ such that

$$\sum_{\mu \in \mathbb{N}^n} R(\mu) w(\mu + \nu) = v(\nu)$$
for all $\nu \in \mathbb{N}^n$. (1)

("system of k partial difference equations with constant coefficients for 1 unknown w")

Questions

- How can we decide whether system (1) is solvable or not?
- How can we find a *canonical subset* $\Gamma \subseteq \mathbb{N}^n$ such that for every *initial condition* $x : \Gamma \to F$ there is exactly one solution w with $w|\Gamma = x$?
- If w is such a solution, how can we compute $w(\mu)$ for any $\mu \in \mathbb{N}^n$?

Represent data by polynomials

 $F[s] := F[s_1, \ldots, s_n], \ s^{\mu} := s_1^{\mu_1} s_2^{\mu_2} \cdots s_n^{\mu_n}.$

For $\mu \in \mathbb{N}^n$ and $w : \mathbb{N}^n \to F$, $\nu \mapsto w(\nu)$, let

 $(s^{\mu} \circ w)(\nu) := w(\mu + \nu), \text{ for all } \nu \in \mathbb{N}^n$ (left shift action).

By $w(s^{\mu}) := w(\mu)$ we consider $w : \mathbb{N}^n \longrightarrow F$ as an *F*-linear map $w : F[s] \longrightarrow F$. Then $(s^{\mu} \circ w)(\nu) = w(\mu + \nu) = w(s^{\mu}s^{\nu})$.

Hence

$$\sum_{\mu \in \mathbb{N}^n} R_i(\mu) w(\mu + \nu) = \sum_{\mu \in \mathbb{N}^n} R_i(\mu) w(s^\mu s^\nu) =$$
$$= w(\sum_{\mu \in \mathbb{N}^n} R_i(\mu) s^\mu s^\nu) = w(s^\nu R_i),$$

where

$$R_i := \sum_{\mu \in \mathbb{N}^n} R_i(\mu) s^{\mu} \in F[s] .$$

13

Thus equation (1) gets the simple form $w(s^{\nu}R_i) = v_i(\nu)$ for $i = 1, \dots, k$ and all $\nu \in \mathbb{N}^n$. (2)

or

$$R_i \circ w = v_i, 1 \le i \le k.$$

In the homogeneous case (v = 0) this means

$$w \in I^{\perp}$$
,

where I is the ideal generated by R_1, \ldots, R_k .

Example 4

(compare Example 2)

Find $w : \mathbb{N}^2 \longrightarrow \mathbb{Q}$ such that for all $\nu \in \mathbb{N}^2$:

$$6w((2,1) + \nu) + w((1,2) + \nu) - w((0,3) + \nu) = 0$$

$$3w((1,3) + \nu) + 2w((1,2) + \nu) - 2w((0,3) + \nu) = 0$$

$$12w((3,0) + \nu)) - 12w((0,2) + \nu) + 12w((1,1) + \nu) - -5w((0,3) + \nu) + 5w((1,2) + \nu) = 0$$

$$3w((0,4) + \nu) - 4w((1,2) + \nu) + 4w((0,3) + \nu) = 0$$

A canonical subset is $\Gamma :=$ = {(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), (1,2), (0,3)}

For $\mu \in \mathbb{N}^2$:

$$w(\mu) := w(\mathsf{nf}(s^{\mu}))$$

(see Example 2).

Non-homogeneous Case

Existence of Solutions

Compute a system of generators L_1, \ldots, L_p of the F[s]-submodule

$$\{u \in F[s]^k \mid \sum_{i=1}^k u_i R_i = 0\} \le F[s]^k$$

Then: A solution of (1) exists iff

$$\sum_{j=1}^{k} L_{ij} \circ v_j = 0 , \ 1 \le i \le p .$$

Solutions

If solutions w exist: $w(\mu)$ can be chosen arbitrarily, if $\mu \in \Gamma$. For $\mu \neq \Gamma$ compute $nf(s^{\mu}) = \sum_{\alpha \in \Gamma} c_{\alpha} s^{\alpha}$ and $s^{\mu} - nf(s^{\mu}) = \sum_{\nu,i} d_{\nu,i} s^{\nu} R_{i}$. Then

$$w(\mu) = \sum_{\alpha \in \Gamma} c_{\alpha} w(\alpha) + \sum_{\nu,i} d_{\nu,i} v_i(\nu) .$$

16

Represent signal vectors by power series

Let $F[[z]] := F[[z_1, ..., z_n]]$ be the *F*-algebra of *n*-variate formal power-series over *F*, $z^{\mu} := z_1^{\mu_1} z_2^{\mu_2} \cdots z_n^{\mu_n}$.

We now write maps $w: \mathbb{N}^n \longrightarrow F$ in the form

$$w = \sum_{\nu \in \mathbb{N}^n} w(\nu) z^{\nu} \in F[[z]],$$

then $s^{\mu} \circ w = \sum_{\nu \in \mathbb{N}^n} w(\nu + \mu) z^{\nu}$. In particular, $s^{\mu} \circ z^{\pi} = z^{\pi - \mu}$, if $\pi - \mu \in \mathbb{N}^n$, and $s^{\mu} \circ z^{\pi} = 0$, otherwise.

Example 5
$$F = \mathbb{Q}, n = 2, k = 2.$$

$$R := \begin{pmatrix} 2s_1^2s_2 + 1\\ 3s_1s_2^2 + 2 \end{pmatrix}$$

$$v := \begin{pmatrix} 13z_2^2 + 5z_1^2z_2^3\\ 6z_2^2 + 10z_1^2z_2^3 + 15z_1z_2 \end{pmatrix}$$

Here p = 1 and $L = (-R_2, R_1) = (-3s_1s_2^2 - 2, 2s_1^2s_2 + 1),$ $L \circ v = 0$, hence the system $R \circ w = v$ is solvable.

A Gröbner basis of the ideal

$$U := \langle R_1, R_2 \rangle = \langle 2s_1^2 s_2 + 1, \, 3s_1 s_2^2 + 2 \rangle$$

in $F[s_1, s_2]$ with respect to the graded lexicographic order $(s_1 > s_2)$ is

$$\{4s_1 - 3s_2, 9s_2^3 + 8\}$$

and hence

$$\Gamma = \{(0,0), (0,1), (0,2)\} .$$

Let
$$\mu := (2,3)$$
. Then
 $s_1^2 s_2^3 = -\frac{1}{2}s_2^2 + (-\frac{3}{4}s_1s_2^4)R_1 + (\frac{1}{2}s_1^2s_2^3 + \frac{1}{4}s_2^2)R_2$.
Hence

$$w(2,3) =$$

$$= -\frac{1}{2}x(0,2) - \frac{3}{4}v_1(1,4) + \frac{1}{2}v_2(2,3) + \frac{1}{4}v_2(0,2) =$$

$$= -\frac{1}{2}x(0,2) + \frac{13}{2}.$$

Convergent power series

Let

$$\mathbb{C}\langle z\rangle := \mathbb{C}\langle z_1, \ldots, z_n\rangle$$

be the algebra of (locally) convergent power series (i.e. power series $\sum_{\mu} a(\mu) z^{\mu}$ such that there are C > 0 and $d_1 > 0, \ldots, d_n > 0$ with $|a(\mu)| \leq Cd^{\mu}$ for all $\mu \in \mathbb{N}^n$).

Consider signal vectors as vectors of power series. Then the solution of

$$R_i \circ w = v_i, 1 \le i \le k, \ w | \Gamma = x$$

is convergent if the data x and $v_i, 1 \leq i \leq k,$ are so.

Differential equations

For
$$\mu \in \mathbb{N}^n$$
, $a \in F[[z]]$ consider
 $s^{\mu} \bullet a := \partial^{\mu} a = \frac{\partial^{|\mu|} a}{\partial z_1^{\mu_1} \cdots \partial z_n^{\mu_n}}$.

The map

$$(\mathbb{C}[[z]], \circ)
ightarrow (\mathbb{C}[[z]], ullet)$$

 $\sum_{\mu} a(\mu) z^{\mu} \mapsto \sum_{\mu} rac{a(\mu)}{\mu!} z^{\mu}$

is an isomorphism of the F[s]-modules $(F[[z]], \circ)$ and $(F[[z]], \bullet)$ (Borel-isomorphism).

Let

$$O(\mathbb{C}^r; exp)$$

be the algebra of entire holomorphic functions of exponential type (i.e. holomorphic functions $b = \sum_{\mu \in \mathbb{N}^n} b(\mu) z^{\mu}$ on \mathbb{C}^n such that there are C > 0 and $d_1 > 0, \ldots, d_n > 0$ with $|b(\mu)| \leq C \exp(\sum_{i=1}^r d_i |\mu_i|)$ for all $\mu \in \mathbb{N}^n$). The Borel isomorphism induces the isomorphism

$$(\mathbb{C}\langle z\rangle,\circ)\cong (O(\mathbb{C}^n;\exp),\bullet)$$
.

Thus results for the discrete case can be translated to the continuous case.

Extension to F[s]-Modules

Let U be an F[s]-submodule of $F[s]^{\ell}$.

The inverse system of U is

 $U^{\perp} := \{ f \in Hom_F(F[s]^{\ell}, F) \mid f|_U = 0 \}$.

A system of k difference equations in ℓ unknowns is given by a family of $k \times \ell$ -matrices

 $(R(\mu))_{\mu\in\mathbb{N}^n}$

where only finitely many matrices $R(\mu) \in F$ are $\neq 0$, and a map

 $(v_1,\ldots,v_k):\mathbb{N}^n\to F^{k\times 1}$,

where k, ℓ, n are positive integers.

Wanted: all ℓ -columns w of functions (signal vectors) $w_i : \mathbb{N}^n \to F, 1 \leq i \leq \ell$ such that

$$\sum_{j=1}^{\ell}\sum_{\mu\in\mathbb{N}^n}R_{ij}(\mu)w_j(\mu+\nu)=v_i(\nu) ,$$

for $i = 1, \cdots, k$ and all $\nu \in \mathbb{N}^n$.

Consider w as F-linear map $w := F[s]^{\ell} \longrightarrow F$ by $w(0, \dots, 0, \underbrace{s^{\mu}}_{i}, 0, \dots, 0) := w_{i}(\mu).$

Use Gröbner bases for modules (instead of ideals).

Extension to signal vectors defined on (a submonoid of) \mathbb{Z}^n

Consider signal vectors $w : M \longrightarrow F$, where M is a finitely generated submonoid of \mathbb{Z}^n (instead of $M = \mathbb{N}^n$), e.g. $M = \mathbb{Z}^n$. Then w induces

 $w: F[M] \longrightarrow F$,

where F[M] is a finitely generated subalgebra of the algebra $F[s, s^{-1}]$ of Laurentpolynomials, e.g. $F[M] = F[s, s^{-1}]$.

Hence: extend theory of Gröbner bases to Laurent polynomials.

Pauer, F., Unterkircher, A.: Groebner Bases for Ideals in Laurent Polynomial Rings and their Application to Systems of Difference Equations. AAECC 9/4 (1999), 271-291.

Zerz, E., Oberst, U.: Acta Applicandae Mathematicae 31 (1993), 249-273.

References

Riquier, C.: Les Systèmes d'Équations aux Dérivées Partielles. Gauthier-Villars, Paris: 1910.

Oberst, U.: Multidimensional Constant Linear Systems. Acta Appl. Math. 20 (1990), 1-175.

Oberst, U., Pauer, F.: The Constructive Solution of Linear Systems of Partial Difference and Differential Equations with Constant Coefficients.

Multidim. Systems and Signal Processing 12 (2001), 253-308.