Generalizations and Variations of Quillen–Suslin Theorem and their Applications

Hyungju Park Korea Institute for Advanced Study (KIAS)

Questions I hope to address

What does the original Quillen-Suslin Theorem say? \bigcirc Quillen-Suslin and K₀ group of the polynomial ring? 0 What is the K₁ analogue of Quillen-Suslin? 0 Gubeladze's generalization of Quillen-Suslin? → coordinate ring of a toric variety is hermite (a la T.Y. Lam) Why does Quillen-Suslin have anything to do with Digital Signal Processing??? Wavelets? Unimodular Completion for Linear Phase Filter Banks? Over D-modules? \rightarrow Stafford Theorem: Hildebrand-Schmale, Leykin, Quadrat, Gago-Vargas What is a parahermitian analogue of Quillen-Suslin? Why can we view the Lin-Bose Conjecture as a \bigcirc generalization of Quillen-Suslin? \rightarrow proofs by Pommaret, Pa, Srinivas

Basics on Quillen-Suslin: Module theoretic and geometric Serre conjecture, 1955: Any (f.g. and proj.) module over a polynomial ring is free, or any vector bundle over an affine space is trivial. -> Quillen-Suslin Theorem, 1976 $K_0[x_1,\ldots,x_n] = \mathbb{Z}$

Algorithmic Form: Given a (f.g. and proj.) module over a polynomial ring, can we find its free basis? → Fitchas-Galligo (1990), Logar-Sturmfels (1992), Pa-Woodburn (1995), Lombardi-Yengui (2005)

Basics on Quillen-Suslin: A motivating example \bigcirc A=(1-xy, x², y³)^t \in R³ where R= $\mathbb{C}[x,y]$. A is a unimodular vector over R \rightarrow By Nullstellensatz, we get an exact sequence $0 \rightarrow S \rightarrow R^{3} \rightarrow R \rightarrow 0$ $(h_1, h_2, h_3) \mapsto h_1(1-xy) + h_2 x^2 + h_3 y^3$ This sequence splits \rightarrow S is projective \rightarrow S is free of rank 2 (by Quillen-Suslin). A syzygy computation with GB gives $S = <(0, -y^3, x^2), (-y^3, 0, 1-xy), (-x^2, 1-xy, 0) > .$ \rightarrow can NOT get a minimal set of generators for SIII

Suslin's Stability

- An elementary matrix E_{ij}(f): its diagonals are 1's, its (i,j) entry is f, and other entries are 0's.
 - Given: $A \in SL_p(k[x_1,...,x_m])$

not published (by Pa).

..........

0

 \odot

- **Problem:** Write A as a product of elementary matrices. Or is it possible at all?
- Suslin's Stability Theorem (K₁-analogue of Quillen-Suslin Theorem, 1977): Such factorization exists if $p \ge 3$. Equivalently, $SL_p(k[x_1,...,x_m]) = E_p(k[x_1,...,x_m]), \forall p \ge 3$ Algorithmic Proof: Pa and Woodburn (1995). Uses a successive localizations of a ring, and GB. A heuristic algorithm: Implemented but

Example: Factor the following matrix into elementary matrices:

.

$$A = \begin{pmatrix} 1 - xy & x^2 & 0 \\ -y^2 & 1 + xy & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Suslin's Stability: the unfortunate case $\bigcirc A \in SL_2(k[x_1,\ldots,x_m])$ 0Problem: Determine if A can be decomposed into elementary matrices, and if it can, find such a factorization. Counter-example: Cohn matrix $A = \begin{pmatrix} 1 - xy & x^{2} \\ -y^{2} & 1 + xy \end{pmatrix}$ Algorithm: Pa (1999). Uses a monomial order.

Gubeladgze's generalization Toric analogue of Quillen-Suslin Anderson's Conjecture, 1978: Quillen-Suslin holds for affine normal subrings of polynomial rings generated by monomials Gubeladze'sTheorem, 1988: Q-S holds for monoid rings of seminormal monoids. For normal monoids, this says in geometric language that algebraic vector bundles over affine toric varieties are trivial. \bigcirc $I_{\mathcal{A}}$: a toric ideal in k[x₁,...,x_m]. Then any (f.g. and proj.) modules over $k[x_1, \dots, x_m]/I_A$ are free. (c.f. Swan's Theorem for the case of a torus) Algorithm: Laubenbacher-Woodburn, 1997

1-D Discrete-time Signals

- A discrete-time signal is a sequence of real numbers, i.e.

 (a_n)_{n∈ Z} = (..., a₋₂, a₋₁, a₀, a₁, a₂,...)
 where a_n is in ℝ and there exists an integer N s.t. a_n=0 for all n<N.

 The set S of discrete-time signals
 - forms an \mathbb{R} -vector space with the operations of superposition and scalar multiplication of sequences.

----- 1-D Discrete-time Signals

Solution For given two signals (a_n) and (c_n) , define their convolution $(b_n) := (a_n) * (c_n)$ by

$$b_n := \sum_{i+j=n} a_i c_j$$

Solution The set S of discrete−time signals equipped with superposition and convolution forms a commutative ring with identity (e_n), where $e_n = \delta_{n,0}$. The identity element (e_n) is called the impulse.

Linear Time Invariant System

Single-Input Single-Output (SISO) System

Linear Time Invariant System

Multi-Input Multi-Output (MIMO) System

A p-input q-output linear time-invariant system is an *S*-module homomorphism from S^p to S^q defined by convolutions with various fixed signals.

Algebraic Formulation \odot The ring S of discrete-time signals is isomorphic to the ring $\mathbb{R}[[z^{-1}]]_{z^{-1}}$ via the Z-transform $(a_n) \mapsto \sum a_n z^{-n}$ $n = -\infty$ 💿 Linear Time Invariant System ightarrowmultiplication by f in $\mathbb{R}[[z^{-1}]]_{z^{-1}}$ \odot FIR system \rightarrow multiplication by a Laurent polynomial in $\mathbb{R}[z,z^{-1}]$

MIMO system $\rightarrow f : (\mathbb{R}[z^{\pm}])^p \rightarrow (\mathbb{R}[z^{\pm}])^q$ A multiplication by a matrix, i.e. $f \in \mathsf{M}_{qp}(\mathbb{R}[z^{\pm}])$

.

Extensions to higher dimensions

Solution Solution State S

An FIR system ←→ A matrix with Laurent polynomial entries
 A Laurent polynomial matrix A is perfect reconstructing or unimodular if A has a left inverse, i.e. there exists S s.t. S A = I.

Problem: For a given analysis system A, determine if A allows perfect reconstruction, and if it does, find all of its PR synthesis systems.

Perfect Reconstruction 1-D Example: Describe all the left inverses of the matrix $A := \begin{pmatrix} f_1(z) \\ f_2(z) \\ f_3(z) \end{pmatrix} = \begin{pmatrix} \frac{1}{z} + 1 + 2z \\ \frac{2}{z^2} + 1 \\ 1 - z \end{pmatrix}$ That is, describe the set L of all Laurent polynomial triples (g_1, g_2, g_3) 's s.t. $g_1(z) f_1(z) + g_2(z) f_2(z) + g_3(z) f_3(z) = 1.$ Hilbert Nullstellensatz: A is perfect \bigcirc reconstructing iff $f_1(z)$, $f_2(z)$, $f_3(z)$ have no common roots in C*. This problem can be easily solved by using

Euclidean Division.

Quillen-Suslin Setup

.

.

 $\bigcirc \mathbf{R} = \mathbb{C}[\mathbf{z}, \mathbf{z}^{-1}]$ $\bigcirc 0 \rightarrow S \rightarrow R^3 \xrightarrow{\cdot A} R \rightarrow 0$ $(h_1, h_2, h_3) \mapsto h_1 f_1 + h_2 f_2 + h_3 f_3$ \odot This sequence splits \rightarrow S is projective By Quillen-Suslin over R, S is free of rank 2. \rightarrow \exists a free basis { v_1 , v_2 } $\subset \mathbb{R}^3$ for the module S of sygyzies. By GB, find a particular left inverse
 $v_p = (g_1, g_2, g_3)$ of $A = (f_1, f_2, f_3)^t$. Then the set of all the left inverse of A is $\{v_{n}+a_{1}v_{1}+a_{2}v_{2} \mid a_{1},a_{2} \in R\}.$

Perfect Reconstruction: 2-D Example

• Consider the filter $G(z_1, z_2)$ with this impulse response, i.e. $G(z_1, z_2) = \sum g_{ii} z_1^{-i} z_2^{-j}$ where g_{ii} is given by this matrix. This filter has a diamond shaped low-pass frequency response. Does this filter have PR property? If it does, find a matching synthesis Filter.

-192

-192

-96

 $\mathbf{0}$

-96

-192

-192

-96

Perfect Reconstruction: 2-D Example • Let $H(z_1, z_2)$ be the filter 48 0 with this impulse response. 96 96 576 Then $G(z_1, z_2)$ and $H(z_1, z_2)$ 48 576 4288 576 together make a 2-channel 0 96 576 96 PR filter bank with quincunx 48 0 sampling lattice.

This particular synthesis filter was found by an algorithm based on Gröbner bases, and by performing a numerical optimization w.r.t. syzygy parameters.

 $\left(\right)$

 $\mathbf{0}$

48

0

0

0

Prime Factorization: module theoretic formulation • V: a vector space of dim p over a field k. Any subspace of V can be generated by p vectors. \bigcirc R:=k[x₁,...,x_m], K:= k(x₁,...,x_m) \bigcirc M: submodule of R^p with dim_K(M \otimes K) = p generated by $v_1, \dots, v_n, q \ge p$ Problem: When can M be generated by p vectors? Answer (Pommaret, Pa, Srinivas): Iff the ideal generated by maximal minors of the pxq

matrix $A := (v_1, \dots, v_q)$ is principal.

Prime Factorization: determinant extraction problem A: a *p*x*q* polynomial matrix, q≥p, of normal full rank.

- a_1, \dots, a_l : maximal minors of A
- $d=gcd(a_1,\ldots,a_l)$

Prob: When does A allow a prime factorization, i.e. when can A be factored as follows?

Prime Factorization: system theoretic formulation b_1, \dots, b_i : reduced maximal minors of A, i.e. $a_i = d b_i$ 0 **Theorem** (Pommaret, P, Srinivas). 0 A allows (unimodular) prime factorization iff b₁,...,b₁ have no common roots in k_{alg}. This result can be viewed as a module theoretic extension of Hilbert Nullstellensatz, and is trivial in 1-D case. This result has been known in 2-D case since early 80's (Youla, Gnavi, Guiver, Bose...) In m-D, Lin-Bose formulated this conjecture, and proved \bigcirc the equivalence of this conjecture to various statements of interest.

This theorem can be re-stated as a matrix extension problem
an extension of Q-S.

Hermitian analogue of Quillen-Sustin

Raghunathan's Theorem: Any inner product space over a polynomial ring (with respect to the polynomial involution) is isometric to a trivial inner product space, i.e. a free module with an inner product represented by a diagonal matrix.

Parahermitian analogue of Quillen-Suslin

R: a commutative ring with an involution σ
G={X₁ⁿ¹X₂ⁿ²··· X_m^{nm} | n₁,n₂,..., n_m∈ Z}, the free abelian group with m generators X₁, X₂,...,X_m.
R[X₁,X₁⁻¹,...,X_m,X_m⁻¹], the Laurent polynomial ring over R, can be viewed as the group ring R[G]
R[G] has a natural involution σ_p that is compatible with σ, i.e.

for $f=\sum a_{i_1\cdots i_m} X^{i_1}\cdots X^{i_m}$ with $a_{i_1\cdots i_m} \in R$, $\sigma_p(f)=\sum \sigma(a_{i_1\cdots i_m})X^{-i_1}\cdots X^{-i_m}$.

→ parahermitian involution

 \mathcal{M} , a f.g. projective module over $R[X_1, X_1^{-1}, \dots, X_m, X_m^{-1}]$, and \langle , \rangle be a hermitian sesquilinear form on \mathcal{M} w.r.t. the involution σ_p .

A pair ($\mathcal{M}, < , >$) is called a parahermitian space over R[G], if < , > is nonsingular, i.e. if its adjoint h: $\mathcal{M} \rightarrow \mathcal{M}^*$ defined by h(v)=<v, · > for v ∈ \mathcal{M} is an isomorphism.

Parahermitian analogue of Quillen-Suslin

Definition: parahermitian matrix, paraunitary matrix (group), parahermitian conjugate, etc.
 Parahermitian analogue of Serre conjecture: Is every parahermitian space isometric to a trivial one?