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Questions I hope to address

What does the original Quillen-Suslin Theorem say?

Quillen-Suslin and K0 group of the polynomial ring?

What is the K1 analogue of Quillen-Suslin? 
Gubeladze’s generalization of Quillen-Suslin? 
coordinate ring of a toric variety is hermite (a la T.Y. Lam)

Why does Quillen-Suslin have anything to do with Digital 
Signal Processing??? Wavelets?

Unimodular Completion for Linear Phase Filter Banks?
Over D-modules? Stafford Theorem: Hildebrand-
Schmale, Leykin, Quadrat, Gago-Vargas

What is a parahermitian analogue of Quillen-Suslin?

Why can we view the Lin-Bose Conjecture as a 
generalization of Quillen-Suslin? proofs by Pommaret, 
Pa, Srinivas



Basics on Quillen-Suslin:
Module theoretic and geometric

Serre conjecture, 1955: Any (f.g. and proj.) 
module over a polynomial ring is free, or 
any vector bundle over an affine space is 
trivial. Quillen-Suslin Theorem, 1976

K0[x_1,…,x_n]=Z
Algorithmic Form: Given a (f.g. and proj.) 
module over a polynomial ring, can we find 
its free basis? Fitchas-Galligo (1990), 
Logar-Sturmfels (1992), Pa-Woodburn 
(1995), Lombardi-Yengui (2005)



Basics on Quillen-Suslin:
A motivating example

A=(1-xy, x2, y3)t ∈ R3 where R= C[x,y]. 

A is a unimodular vector over R 
By Nullstellensatz, we get an exact sequence

0 S  R3 R  0
(h1,h2,h3) a h1(1-xy)+h2x

2+h3y
3

This sequence splits 
S is projective 
S is free of rank 2 (by Quillen-Suslin). 

A syzygy computation with GB gives 
S=<(0,-y3,x2), (-y3,0,1-xy), (-x2,1-xy,0)>. 
can NOT get a minimal set of generators for 

S!!!



Suslin's Stability
An elementary matrix Eij(f): its diagonals 
are 1’s, its (i,j) entry is f, and other 
entries are 0’s.

Given: A ∈ SLp(k[x1,…,xm]) 

Problem: Write A as a product of 
elementary matrices. Or is it possible at 
all?

Suslin’s Stability Theorem (K1-analogue 
of Quillen-Suslin Theorem, 1977): Such 
factorization exists if p≥ 3. Equivalently, 

SLp(k[x1,…,xm]) = Ep(k[x1,…,xm]), ∀p≥ 3

Algorithmic Proof: Pa and Woodburn 
(1995). Uses a successive localizations 
of a ring, and GB.
A heuristic algorithm: Implemented but 
not published (by Pa).
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Example: Factor the 
following matrix into 
elementary matrices:



Suslin's Stability: 
the unfortunate case

A ∈ SL2(k[x1,…,xm])

Problem: Determine if A can be 
decomposed into elementary matrices, 
and if it can, find such a factorization.

Counter-example: 

Cohn matrix

Algorithm: Pa (1999). Uses a monomial 
order.
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Gubeladgze’s generalization
Toric analogue of Quillen-Suslin

Anderson’s Conjecture, 1978: Quillen-Suslin
holds for affine normal subrings of polynomial 
rings generated by monomials 

Gubeladze'sTheorem, 1988: Q-S holds for 
monoid rings of seminormal monoids. 

For normal monoids, this says in geometric 
language that algebraic vector bundles over 
affine toric varieties are trivial. 

IA: a toric ideal in k[x1,…,xm]. Then any (f.g. 
and proj.) modules over k[x1,…,xm]/IA are free. 
(c.f. Swan's Theorem for the case of a torus)

Algorithm: Laubenbacher-Woodburn, 1997



1-D Discrete-time Signals

A discrete-time signal is a sequence 
of real numbers, i.e.

(an)n∈ Z = (…, a-2,a-1,a0,a1,a2,…)

where an is in R and there exists an 

integer N s.t. an=0 for all n<N.

The set S of discrete-time signals 
forms an R-vector space with the 

operations of superposition and scalar 
multiplication of sequences.



1-D Discrete-time Signals

For given two signals (an) and (cn), define 
their convolution (bn):=(an)*(cn) by

The set S of discrete-time signals 
equipped with superposition and 
convolution forms a commutative ring 
with identity (en), where en =  δn,0 . The 
identity element (en) is called the impulse.
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Linear Time Invariant System

Single-Input Single-Output (SISO) System

L
(en)

impulse

(cn)
impulse response

L
(an) (an)*(cn)



Linear Time Invariant System

Multi-Input Multi-Output (MIMO) System

A p-input q-output linear time-invariant 
system is an S-module homomorphism 
from Sp to Sq defined by convolutions 
with various fixed signals.
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Algebraic Formulation

The ring S of discrete-time signals is 
isomorphic to the ring R[[z-1]]z-1 via 

the Z-transform

Linear Time Invariant System 
multiplication by f in R[[z-1]]z-1

FIR system multiplication by a 
Laurent polynomial in R[z,z-1]
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Algebraic Formulation

MIMO system 

A multiplication by a matrix, i.e.



Extensions to higher 
dimensions

An m-D discrete-time signal is a 
multiply-indexed sequence of real 
numbers, i.e. 

The ring of m-D discrete-time signals 
is naturally isomorphic to the ring 

R[[z1
-1,…,zm

-1]]z1
-1… zm

-1

via the Z-transform



Perfect Reconstruction of 
Signals

An FIR system A matrix with Laurent 
polynomial entries

A Laurent polynomial matrix A is perfect 
reconstructing or unimodular if A has a left 
inverse, i.e. there exists S s.t. S A = I.

Problem: For a given analysis system A, 
determine if A allows perfect reconstruction, 
and if it does, find all of its PR synthesis 
systems.

SA
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Perfect Reconstruction
1-D Example:

Describe all the left inverses of the matrix

That is, describe the set L of all Laurent 
polynomial triples (g1,g2,g3)'s s.t. 

g1(z) f1(z)+ g2(z) f2(z)+ g3(z) f3(z)=1.

Hilbert Nullstellensatz: A is perfect 
reconstructing iff f1(z), f2(z), f3(z) have no 
common roots in C*.

This problem can be easily solved by using 
Euclidean Division.
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Quillen-Suslin Setup

R=C[z,z-1]

0 S  R3 R  0
(h1,h2,h3) a h1f1+h2f2+h3f3

This sequence splits S is projective

By Quillen-Suslin over R, S is free of 
rank 2. ∃ a free basis {v1, v2}⊂ R3 

for the module S of sygyzies.

By GB, find a particular left inverse 
vp=(g1,g2,g3) of A=(f1,f2,f3)

t. Then the 
set of all the left inverse of A is 
{vp+a1v1+a2v2 | a1,a2∈ R}.



Perfect Reconstruction: 2-D Example

Consider the filter G(z1,z2) 

with this impulse response,

i.e. G(z1,z2) =Σgij z1
-i z2

-j

where gij is given by this 

matrix.

This filter has a diamond shaped low-pass 

frequency response.

Does this filter have

PR property? If it does,

find a matching synthesis

Filter.
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Perfect Reconstruction: 2-D Example

Let H(z1,z2) be the filter

with this impulse response. 

Then G(z1,z2) and H(z1,z2) 
together make a 2-channel 
PR filter bank  with quincunx 
sampling lattice. 
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This particular synthesis 
filter was found by an 
algorithm based on 
Gröbner bases, and by 
performing a numerical 
optimization w.r.t. syzygy
parameters.



Prime Factorization:
module theoretic formulation
V: a vector space of dim p over a field k. 

Any subspace of V can be generated by p 
vectors.

R:=k[x1,…,xm], K:= k(x1,…,xm)

M: submodule of Rp with         

generated by v1,…,vq, q≥p

Problem: When can M be generated by p 
vectors?

Answer (Pommaret, Pa, Srinivas): Iff the ideal 
generated by maximal minors of the pxq
matrix A:=(v1,…,vq) is principal.

pKMK =⊗ )(dim



A: a pxq polynomial matrix, q≥p, of normal full 

rank.

a1,…,al: maximal minors of A

d=gcd(a1,…,al)

Prob: When does A allow a prime factorization, 
i.e. when can A be factored as follows?

A =               =

where det of W:=              is d.

v1 vq

p q

w1 wq

p
p p q

w1 wq

Prime Factorization:
determinant extraction problem



Prime Factorization:
system theoretic formulation

b1,…,bl: reduced maximal minors of A, i.e. ai =d bi

Theorem (Pommaret, P, Srinivas). 
A allows (unimodular) prime factorization iff b1,…,bl have no 
common roots in kalg.

This result can be viewed as a module theoretic 
extension of Hilbert Nullstellensatz, and is trivial in 1-D 
case.
This result has been known in 2-D case since early 80’s 
(Youla, Gnavi, Guiver, Bose…)

In m-D, Lin-Bose formulated this conjecture, and proved 
the equivalence of this conjecture to various statements 
of interest.

This theorem can be re-stated as a matrix extension 
problem an extension of Q-S.



Hermitian analogue of Quillen-Suslin

Raghunathan's Theorem: Any inner 
product space over a polynomial ring 
(with respect to the polynomial 
involution) is isometric to a trivial inner 
product space, i.e. a free module with 
an inner product represented by a 
diagonal matrix.



Parahermitian analogue of Quillen-Suslin
R: a commutative ring with an involution σ
G={X1

n1X2
n2L Xm

nm | n1,n2,…, nm∈ Z}, the free abelian
group with m generators X1, X2,…,Xm.
R[X1,X1

-1,…,Xm,Xm
-1], the Laurent polynomial ring over 

R, can be viewed as the group ring R[G]
R[G] has a natural involution σp that is compatible with 
σ, i.e. 

for f=∑ ai1L im
Xi1L Xim with ai1L im

∈ R,
σp(f)=∑ σ (ai1L im

)X-i1L X-im.
 parahermitian involution

M, a f.g. projective module over R[X1,X1
-1,…,Xm,Xm

-1], 
and  < , > be a hermitian sesquilinear form on M w.r.t. 
the involution σp.
A pair (M,< , >) is called a parahermitian space over
R[G], if < , > is nonsingular, i.e. if its adjoint h: M→
M* defined by h(v)=<v, · > for v∈M is an isomorphism.



Parahermitian analogue of Quillen-Suslin

Definition: parahermitian matrix, paraunitary
matrix (group), parahermitian conjugate, etc.

Parahermitian analogue of Serre conjecture:
Is every parahermitian space isometric to a  
trivial one?
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