Generalizations and Variations of Quillen-Suslin Theorem and their Applications

Hyungju Park
Korea Institute for Advanced Study
(KIAS)

Questions I hope to address

© What does the original Quillen-Suslin Theorem say?
© Quillen-Suslin and K_{0} group of the polynomial ring?
© What is the K_{1} analogue of Quillen-Suslin?
Gubeladze's generalization of Quillen-Suslin? \rightarrow coordinate ring of a toric variety is hermite (a la T.Y. Lam) Why does Quillen-Suslin have anything to do with Digital Signal Processing??? Wavelets?
Unimodular Completion for Linear Phase Filter Banks? Over D-modules? \rightarrow Stafford Theorem: HildebrandSchmale, Leykin, Quadrat, Gago-Vargas
© What is a parahermitian analogue of Quillen-Suslin?
© Why can we view the Lin-Bose Conjecture as a generalization of Quillen-Suslin? \rightarrow proofs by Pommaret, Pa, Srinivas

Basics on Quillen-Suslin:

 Module theoretic and geometric© Serre conjecture, 1955: Any (f.g. and proj.) module over a polynomial ring is free, or any vector bundle over an affine space is trivial. \rightarrow Quillen-Suslin Theorem, 1976 $K_{0}[$ x_1, \ldots, x_n] $=\mathbb{Z}$
Algorithmic Form: Given a (f.g. and proj.) module over a polynomial ring, can we find its free basis? \rightarrow Fitchas-Galligo (1990), Logar-Sturmfels (1992), Pa-Woodburn (1995), Lombardi-Yengui (2005)

Basics on Quillen-Suslin:

A motivating example

(©) $A=\left(1-x y, x^{2}, y^{3}\right)^{t} \in R^{3}$ where $R=\mathbb{C}[x, y]$.
A is a unimodular vector over R
\rightarrow By Nullstellensatz, we get an exact sequence
$0 \rightarrow S \rightarrow R^{3} \rightarrow R \rightarrow 0$

$$
\left(h_{1}, h_{2}, h_{3}\right) \mapsto h_{1}(1-x y)+h_{2} x^{2}+h_{3} y^{3}
$$

This sequence splits
\rightarrow S is projective
\rightarrow S is free of rank 2 (by Quillen-Suslin).

- A syzygy computation with GB gives $S=\left\langle\left(0,-y^{3}, x^{2}\right),\left(-y^{3}, 0,1-x y\right),\left(-x^{2}, 1-x y, 0\right)\right\rangle$.
\rightarrow can NOT get a minimal set of generators for S!!!

Suslin's Stability

(o An elementary matrix $\mathrm{E}_{\mathrm{ij}}(\mathrm{A}$: its diagonals are 1 's, its (i, j) entry is f, and other entries are 0's.
Given: $A \in S L_{p}\left(k\left[x_{1}, \ldots, x_{m}\right]\right)$
Problem: Write A as a product of elementary matrices. Or is it possible at all?
Suslin's Stability Theorem (K_{1}-analogue of Quillen-Suslin Theorem, 1977): Such factorization exists if $p \geq 3$. Equivalently, $S L_{p}\left(k\left[x_{1}, \ldots, x_{m}\right]\right)=E_{p}\left(k\left[x_{1}, \ldots, x_{m}\right]\right), \forall p \geq 3$
© Algorithmic Proof: Pa and Woodburn (1995). Uses a successive localizations of a ring, and GB.
© A heuristic algorithm: Implemented but not published (by Pa).
© Example: Factor the following matrix into elementary matrices:

$$
A=\left(\begin{array}{ccc}
1-x y & x^{2} & 0 \\
-y^{2} & 1+x y & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Suslin's Stability:

 the unfortunate case© $A \in S L_{2}\left(k\left[x_{1}, \ldots, x_{m}\right]\right)$
Problem: Determine if A can be decomposed into elementary matrices, and if it can, find such a factorization.
Counter-example:

$$
\text { Cohn matrix } \quad A=\left(\begin{array}{ll}
-y^{2} & 1+x y
\end{array}\right)
$$

Algorithm: Pa (1999). Uses a monomial order.

Gubeladgze's generalization

Toric analogue of Quillen-Suslin
© Anderson's Conjecture, 1978: Quillen-Suslin holds for affine normal subrings of polynomial rings generated by monomials
Gubeladze'sTheorem, 1988: Q-S holds for monoid rings of seminormal monoids.
For normal monoids, this says in geometric language that algebraic vector bundles over affine toric varieties are trivial.
© $I_{A}:$ a toric ideal in $k\left[x_{1}, \ldots, x_{m}\right]$. Then any (f.g. and proj.) modules over $k\left[x_{1}, \ldots, x_{m}\right] / I_{\mathcal{A}}$ are free. (c.f. Swan's Theorem for the case of a torus)
© Algorithm: Laubenbacher-Woodburn, 1997
© A discrete-time signal is a sequence of real numbers, i.e.

$$
\left(a_{n}\right)_{n \in \mathbb{Z}}=\left(\ldots, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots\right)
$$

where a_{n} is in \mathbb{R} and there exists an integer N s.t. $a_{n}=0$ for all $n<N$.
The set S of discrete-time signals forms an \mathbb{R}-vector space with the operations of superposition and scalar multiplication of sequences.

1-D Discrete-time Signals

© For given two signals $\left(a_{n}\right)$ and $\left(c_{n}\right)$, define their convolution $\left(b_{n}\right):=\left(a_{n}\right) *\left(c_{n}\right)$ by

$$
b_{n}:=\sum_{i+j=n} a_{i} c_{j}
$$

© The set S of discrete-time signals equipped with superposition and convolution forms a commutative ring with identity $\left(e_{n}\right)$, where $e_{n}=\delta_{n, 0}$. The identity element $\left(e_{n}\right)$ is called the impulse.

- Linear Time Invariant System

© Single-Input Single-Output (SISO) System

- Linear Time Invariant System

Multi-Input Multi-Output (MIMO) System

A p-input q-output linear time-invariant system is an S-module homomorphism from S^{0} to S^{a} defined by convolutions with various fixed signals.

Algebraic Formulation

© The ring S of discrete-time signals is isomorphic to the ring $\mathbb{R}\left[\left[z^{-1}\right]\right]_{z^{-1}}$ via the Z-transform

$$
\left(a_{n}\right) \mapsto \sum_{n=-\infty}^{\infty} a_{n} z^{-n}
$$

© Linear Time Invariant System \rightarrow multiplication by f in $\mathbb{R}\left[\left[z^{-1}\right]\right]_{z^{-1}}$
© FIR system \rightarrow multiplication by a Laurent polynomial in $\mathbb{R}\left[z, z^{-1}\right]$

Algebraic Formulation

© MIMO system $\rightarrow f:\left(\mathbb{R}\left[z^{ \pm}\right]\right)^{p} \rightarrow\left(\mathbb{R}\left[z^{ \pm}\right]\right)^{q}$ A multiplication by a matrix, i.e.

$$
f \in \mathrm{M}_{q p}\left(\mathbb{R}\left[z^{ \pm}\right]\right)
$$

Study of Fin
NMINO System
limexiticiliavier

Extensions to higher dimensions

© An m-D discrete-time signal is a multiply-indexed sequence of real numbers, i.e.

$$
\left(a_{i_{1} \ldots i_{m}}\right)_{\left(i_{1}, \ldots, i_{m}\right) \in \mathbb{Z}^{m}}
$$

© The ring of m-D discrete-time signals is naturally isomorphic to the ring

$$
\mathbb{R}\left[\left[\mathrm{z}_{1}{ }^{-1}, \ldots, \mathrm{z}_{\mathrm{m}}{ }^{-1}\right]\right]_{\mathrm{z}_{1}^{-1} \cdots \mathrm{z}_{\mathrm{m}}{ }^{-1}}
$$

via the Z-transform

Perfect Reconstruction of Signals

© An FIR system $\rightleftarrows \rightarrow$ A matrix with Laurent polynomial entries
A Laurent polynomial matrix A is perfect reconstructing or unimodular if A has a left inverse, i.e. there exists S s.t. S A = I.

© Problem: For a given analysis system A, determine if A allows perfect reconstruction, and if it does, find all of its PR synthesis systems.

Perfect Reconstruction 1-D Example:

© Describe all the left inverses of the matrix

$$
A:=\left(\begin{array}{l}
f_{1}(z) \\
f_{2}(z) \\
f_{3}(z)
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2}+1+2 z \\
\frac{2}{z^{2}}+1 \\
1-z
\end{array}\right)
$$

That is, describe the set L of all Laurent polynomial triples $\left(g_{1}, g_{2}, g_{3}\right)$'s s.t.
$g_{1}(z) f_{1}(z)+g_{2}(z) f_{2}(z)+g_{3}(z) f_{3}(z)=1$.
© Hilbert Nullstellensatz: A is perfect reconstructing iff $f_{1}(z), f_{2}(z), f_{3}(z)$ have no common roots in \mathbb{C}^{*}.
© This problem can be easily solved by using Euclidean Division.

Quillen-Suslin Setup

© $R=\mathbb{C}\left[z, z^{-1}\right]$
© $0 \rightarrow S \rightarrow R^{3} \xrightarrow{\bullet A} R \rightarrow 0$

$$
\left(h_{1}, h_{2}, h_{3}\right) \mapsto h_{1} f_{1}+h_{2} f_{2}+h_{3} f_{3}
$$

© This sequence splits $\rightarrow S$ is projective
© By Quillen-Suslin over R, S is free of rank 2. $\rightarrow \exists$ a free basis $\left\{v_{1}, v_{2}\right\} \subset R^{3}$ for the module S of sygyzies.
© By GB, find a particular left inverse $V_{p}=\left(g_{1}, g_{2}, g_{3}\right)$ of $A=\left(f_{1}, f_{2}, f_{3}\right)^{t}$. Then the set of all the left inverse of A is $\left\{v_{p}+a_{1} v_{1}+a_{2} v_{2} \mid a_{1}, a_{2} \in R\right\}$.

Perfect Reconstruction: 2-D Example

© Consider the filter $\mathrm{G}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$ with this impulse response,
i.e. $G\left(z_{1}, z_{2}\right)=\sum g_{i j} z_{1}^{-i} z_{2}^{-j}$
where $g_{i j}$ is given by this matrix.
This filter has a diamond shaped low-pass frequency response.
© Does this filter have
PR property? If it does, find a matching synthesis Filter.

Perfect Reconstruction: 2-D Example

() Let $\mathrm{H}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$ be the filter with this impulse response.
Then $G\left(z_{1}, z_{2}\right)$ and $H\left(z_{1}, z_{2}\right)$ together make a 2-channel PR filter bank with quincunx
$\frac{1}{3585}\left(\begin{array}{ccccc}0 & 0 & 48 & 0 & 0 \\ 0 & 96 & 576 & 96 & 0 \\ 48 & 576 & 4288 & 576 & 48 \\ 0 & 96 & 576 & 96 & 0 \\ 0 & 0 & 48 & 0 & 0\end{array}\right)$ sampling lattice.

This particular synthesis filter was found by an algorithm based on Gröbner bases, and by performing a numerical optimization w.r.t. syzygy parameters.

Prime Factorization:

 module theoretic formulation© V : a vector space of dim p over a field k .
\rightarrow Any subspace of V can be generated by p vectors.
(0) $R:=k\left[x_{1}, \ldots, x_{m}\right], K:=k\left(x_{1}, \ldots, x_{m}\right)$
(0) M : submodule of R^{p} with $\operatorname{dim}_{K}(M \otimes K)=p$ generated by $v_{1}, \ldots, v_{q}, q \geq p$
© Problem: When can M be generated by p vectors?
© Answer (Pommaret, Pa, Srinivas): Iff the ideal generated by maximal minors of the $p \times q$ matrix $A:=\left(v_{1}, \ldots, v_{q}\right)$ is principal.

Prime Factorization:

determinant extraction problem

© A: a pxq polynomial matrix, $q \geq p$, of normal full rank.
a_{1}, \ldots, a_{1} : maximal minors of A
$d=\operatorname{gcd}\left(a_{1}, \ldots, a_{1}\right)$
Prob: When does A allow a prime factorization, i.e. when can A be factored as follows?

where det of $W:=\left(\begin{array}{lll}w & \cdots & m\end{array}\right)$ is d.

Prime Factorization:

system theoretic formulation

© b_{1}, \ldots, b_{i} : reduced maximal minors of A, i.e. $a_{i}=d b_{i}$ Theorem (Pommaret, P, Srinivas).
A allows (unimodular) prime factorization iff $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{l}}$ have no common roots in $\mathrm{K}_{\text {alg }}$.
This result can be viewed as a module theoretic extension of Hilbert Nullstellensatz, and is trivial in 1-D case.
This result has been known in 2-D case since early 80's (Youla, Gnavi, Guiver, Bose...)
© In m-D, Lin-Bose formulated this conjecture, and proved the equivalence of this conjecture to various statements of interest.
© This theorem can be re-stated as a matrix extension problem \rightarrow an extension of $Q-S$.

Hermitian analogue of Quillen-Sustin
© Raghunathan's Theorem: Any inner product space over a polynomial ring (with respect to the polynomial involution) is isometric to a trivial inner product space, i.e. a free module with an inner product represented by a diagonal matrix.

Parahermitian analogue of Quillen-Sustin

(o) R: a commutative ring with an involution σ
© $G=\left\{X_{1} n_{1} X_{2}{ }^{n_{2}} \ldots X_{m}{ }^{n_{m}} \mid n_{1}, n_{2}, \ldots, n_{m} \in \mathbb{Z}\right\}$, the free abelian group with m generators $X_{1}, X_{2}, \ldots, X_{m}$.
$R\left[X_{1}, X_{1}^{-1}, \ldots, X_{m}, X_{m}^{-1}\right]$, the Laurent polynomial ring over
R, can be viewed as the group ring R[G]
$R[G]$ has a natural involution σ_{p} that is compatible with σ, i.e.

$$
\begin{aligned}
& \text { for } f=\sum a_{i_{1} \ldots i_{m}} X^{i_{1} \ldots} \text { Xim with } a_{i_{1} \ldots i_{m}} \in R, \\
& \sigma_{p}(f)=\sum \sigma\left(a_{i_{1} \ldots i_{m}}\right) X^{-i_{1} \ldots X^{-i m} .}
\end{aligned}
$$

\rightarrow parahermitian involution
\mathcal{M}, a f.g. projective module over $R\left[X_{1}, X_{1}-1, \ldots, X_{m}, X_{m}^{-1}\right]$, and \langle,$\rangle be a hermitian sesquilinear form on \mathcal{M}$ w.r.t. the involution σ_{p}.
© A pair $(\mathcal{M},<,>)$ is called a parahermitian space over $R[G]$, if $<,>$ is nonsingular, i.e. if its adjoint $h: \mathcal{M} \rightarrow$ \mathcal{M}^{*} defined by $h(v)=\langle v, \cdot>$ for $v \in \mathcal{M}$ is an isomorphism.

Parahermitian analogue of Quillen-Sustin

© Definition: parahermitian matrix, paraunitary matrix (group), parahermitian conjugate, etc. Parahermitian analogue of Serre conjecture: Is every parahermitian space isometric to a trivial one?

