BOUNDS FOR ALGORITHMS IN DIFFERENTIAL ALGEBRA

Alexey Ovchinnikov

Joint research with Marina Kondratieva, Oleg Golubitsky and Marc Moreno Maza

Department of Mathematics North Carolina State University e-mail: aiovchin@ncsu.edu

May 10, 2006

1 Contents

- Introduction: basic notions of diffalg
- Usual Rosenfeld-Gröbner algorithm
- Modification of the Rosenfeld-Gröbner
- A bound for the new version and examples

2 Introduction

• **Differential ring** has differentiation

$$\Delta = \delta_1, \ldots, \delta_m.$$

When $\Delta = \delta$ we say that we are in the *ordinary* case.

• For

$$\Theta = (\delta_1^{k_1} \delta_2^{k_2} \cdots \delta_n^{k_m}, k_i \ge 0)$$

the ring of differential polynomials in $y_1, \ldots, y_n = Y$ is

$$k[\Theta Y] =: k\{y_1, \ldots, y_n\}.$$

• Differential ranking is a *total ordering* on $\{\theta y_i \mid \theta \in \Theta, 1 \leq i \leq n\}$ satisfying

$$\theta u \ge u, \quad u \ge v \Longrightarrow \theta u \ge \theta v.$$

- For $f \in k\{y_1, \ldots, y_n\} \setminus k$,
 - Leader of f is \mathbf{u}_f .
 - Initial of f is \mathbf{I}_f
 - For $\delta \in \Theta$ the initial $\frac{\partial f}{\partial \mathbf{u}_f} =: \mathbf{S}_f$ of δf is called its **separant**.
- Rank on differential polynomials. We say that

 $\operatorname{rk} f > \operatorname{rk} g$

if $\mathbf{u}_f > \mathbf{u}_g$ or $(\mathbf{u}_f = \mathbf{u}_g \text{ and } \deg_{\mathbf{u}_g} f > \deg_{\mathbf{u}_g} g)$.

- - f is partially reduced w.r.t. g if no $\delta_i^k \mathbf{u}_g$ is in f,
 - f is **reduced** w.r.t. g if f is partially reduced and $\deg_{\mathbf{u}_g} f < \deg_{\mathbf{u}_g} g$.
- A finite subset $\mathbb{A} \subset k\{y_1, \ldots, y_n\}$ is **autoreduced** if $\mathbb{A} \cap k = \emptyset$ and each element of \mathbb{A} is reduced w.r.t. all the others.

- $I_{\mathbb{A}}$ and $S_{\mathbb{A}}$ are the sets of initials and separants, $I_{\mathbb{A}} \cup S_{\mathbb{A}} =: H_{\mathbb{A}}$.
- For $S \subset k\{Y\}$ we denote S^{∞} the multiplicative set generated by S. Let $I \subset k\{Y\}$. Then

$$I: S^{\infty} = \{a \in k\{Y\} \mid \exists s \in S^{\infty} : s \cdot a \in I\}.$$

- If $\mathbb{A} = A_1 < \ldots < A_r$ and $\mathbb{B} = B_1 < \ldots < B_s$ autoreduced sets then one can define what $\mathbb{A} < \mathbb{B}$ means.
- For F ⊂ k{y₁,..., y_n} the differential and radical differential ideal generated by F are denoted by [F] and {F}, respectively.
- Let $f, g \in k\{Y\}$. Applying differentiations and pseudo divisions:
 - differential partial remainder f_1 , $sf = f_1 \mod [g]$,
 - differential remainder f_2 , $hf = f_2 \mod [g]$,

 $s \in S_g^{\infty}, h \in H_g^{\infty}.$

• An autoreduced set of the lowest rank in an ideal *I* is called a **characteristic set** of *I*.

Theorem 1. An autoreduced set \mathbb{A} is a characteristic set of a differential ideal I iff each element of I is reducible to 0 w.r.t. \mathbb{A} .

• Characterizable ideals:

 $I = [\mathbb{C}] : H^{\infty}_{\mathbb{C}},$

where \mathbb{C} is a characteristic set of I.

• One can decompose $\{F\}$ using **Rosenfeld-Gröbner**:

 $\{F\} = [\mathbb{C}_1] : H^{\infty}_{\mathbb{C}_1} \cap \ldots \cap [\mathbb{C}_k] : H^{\infty}_{\mathbb{C}_k}.$

One also uses here regular systems like $[\mathbb{C}_i] : H_i^{\infty}$:

- the set \mathbb{C}_i is a coherent (do not need in the ordinary case) autoreduced set
- the set H_i is partially reduced w.r.t. \mathbb{C}_i and contains $H_{\mathbb{C}_i}$

• Factorization-free algorithms:

- Boulier F., Lazard D., Ollivier F., Petitot M., 1995 the first algorithm
- Hubert E., 2000 clear solution separating algebraic and differential operations
- Bouziane D., Kandri Rodi A., Maârouf H., 2001 approach uses invertibility

Example.

- $F = \{y + z, x, x^2 + z\}, x > y > z$
- $\mathbb{C} := \{y + z, x\}$, the leading variables of \mathbb{C} are $\{y, x\}$
- $R := \operatorname{d-rem}(F \setminus \mathbb{C}, \mathbb{C}) = \{z\}$
- $F_1 := \mathbb{C} \cup R = \{z, y+z, x\}$
- As radical differential ideals:

$$\{y+z, x, x^2+z\} = \{z, y+z, x\} : 1^{\infty} \cap \{y+z, x, x^2+z, 1\}$$

- New $\mathbb{C} = \{z, x\}$ and the leading variables have changed!
- . . .
- Finally,

$$\{y + z, x, x^2 + z\} = [z, y, x] : 1^{\infty} = [z, y, x]$$

Algorithm 2. Modified Rosenfeld-Gröbner

- $T := \emptyset, U := \{ (F_0, \emptyset, \emptyset) \}$
- while $U \neq \emptyset$ do
 - Take and remove any $(F, \mathbb{B}, H) \in U$
 - $R := \operatorname{algrem}(F, \mathbb{B}) \setminus \{0\}$

At each step we have

$$\{F_0\} = \bigcap_{(\mathbb{A}, H) \in T} [\mathbb{A}] : H^{\infty} \cap \bigcap_{(F, \mathbb{B}, H) \in U} \{F, \mathbb{B}\} : H^{\infty}$$

 $\mathbf{Example} \ \mathrm{for} \ \mathsf{Differentiate}\&\mathsf{Autoreduce}$

- Let $F = \{x, y^2 + x', y'\}$, elimination ranking x < y
- $\mathbb{C} = x, y^2 + x', \mathbb{B} := \emptyset$
- $m_1 = m_x = 1, \ m_2 = m_y = 1$
- Then $\mathbb{B} := \mathbb{B} \cup \{x\}$ and $\mathbb{C} := \mathbb{C} \setminus \{x\}$
- Differentiate x and put the answer x' into $\mathbb B$
- Take and remove $y^2 + x'$ from $\mathbb C$
- Before putting it into \mathbb{B} we reduce $y^2 + x'$ w.r.t. x'
- So, $\mathbb{B} := \{x, x', y^2\}$
- We differentiate y^2 and put in $\mathbb{B} = \{x, x', y^2, 2yy'\}$
- The "zero level" set $\mathbb{B}^{(0)}=\{x,y^2\}$

3 Bounds for the orders.

For $F \subset k\{y_1, \ldots, y_n\}$ we let

$$m_i(F) = \max\{\operatorname{ord}_{y_i} f \mid f \in F\}$$

and

$$M(F) = \sum_{i=1}^{n} m_i(F).$$

Theorem 2. If F_0 is the input of Modified Rosenfeld-Gröbner then the output satisfies the following bound:

$$M(\mathbb{A}) \leqslant (n-1)!M(F_0)$$

for all regular systems $(\mathbb{A}, H) \in T$.