Bounds for Algorithms in Differential Algebra

## Alexey Ovchinnikov

Joint research with Marina Kondratieva, Oleg Golubitsky and Marc Moreno Maza

Department of Mathematics
North Carolina State University
e-mail: aiovchin@ncsu.edu

MAY 10, 2006

## 1 Contents

- Introduction: basic notions of diffalg
- Usual Rosenfeld-Gröbner algorithm
- Modification of the Rosenfeld-Gröbner
- A bound for the new version and examples


## 2 Introduction

- Differential ring has differentiation

$$
\Delta=\delta_{1}, \ldots, \delta_{m}
$$

When $\Delta=\delta$ we say that we are in the ordinary case.

- For

$$
\Theta=\left(\delta_{1}^{k_{1}} \delta_{2}^{k_{2}} \cdots \delta_{n}^{k_{m}}, k_{i} \geq 0\right)
$$

the ring of differential polynomials in $y_{1}, \ldots, y_{n}=Y$ is

$$
k[\Theta Y]=: k\left\{y_{1}, \ldots, y_{n}\right\} .
$$

- Differential ranking is a total ordering on $\left\{\theta y_{i} \mid \theta \in \Theta, 1 \leqslant i \leqslant n\right\}$ satisfying

$$
\theta u \geqslant u, \quad u \geqslant v \Longrightarrow \theta u \geqslant \theta v
$$

- For $f \in k\left\{y_{1}, \ldots, y_{n}\right\} \backslash k$,
- Leader of $f$ is $\mathbf{u}_{f}$.
- Initial of $f$ is $\mathbf{I}_{f}$
- For $\delta \in \Theta$ the initial $\frac{\partial f}{\partial \mathbf{u}_{f}}=: \mathbf{S}_{f}$ of $\delta f$ is called its separant.
- Rank on differential polynomials. We say that

$$
\operatorname{rk} f>\operatorname{rk} g
$$

if $\mathbf{u}_{f}>\mathbf{u}_{g}$ or $\left(\mathbf{u}_{f}=\mathbf{u}_{g}\right.$ and $\left.\operatorname{deg}_{\mathbf{u}_{g}} f>\operatorname{deg}_{\mathbf{u}_{g}} g\right)$.

-     - $f$ is partially reduced w.r.t. $g$ if no $\delta_{i}^{k} \mathbf{u}_{g}$ is in $f$,
- $f$ is reduced w.r.t. $g$ if $f$ is partially reduced and $\operatorname{deg}_{\mathbf{u}_{g}} f<\operatorname{deg}_{\mathbf{u}_{g}} g$.
- A finite subset $\mathbb{A} \subset k\left\{y_{1}, \ldots, y_{n}\right\}$ is autoreduced if $\mathbb{A} \cap k=\emptyset$ and each element of $\mathbb{A}$ is reduced w.r.t. all the others.
- $I_{\mathbb{A}}$ and $S_{\mathbb{A}}$ are the sets of initials and separants, $I_{\mathbb{A}} \cup S_{\mathbb{A}}=: H_{\mathbb{A}}$.
- For $S \subset k\{Y\}$ we denote $S^{\infty}$ the multiplicative set generated by $S$. Let $I \subset k\{Y\}$. Then

$$
I: S^{\infty}=\left\{a \in k\{Y\} \mid \exists s \in S^{\infty}: s \cdot a \in I\right\}
$$

- If $\mathbb{A}=A_{1}<\ldots<A_{r}$ and $\mathbb{B}=B_{1}<\ldots<B_{s}$ autoreduced sets then one can define what $\mathbb{A}<\mathbb{B}$ means.
- For $F \subset k\left\{y_{1}, \ldots, y_{n}\right\}$ the differential and radical differential ideal generated by $F$ are denoted by $[F]$ and $\{F\}$, respectively.
- Let $f, g \in k\{Y\}$. Applying differentiations and pseudo divisions:
- differential partial remainder $f_{1}, s f=f_{1} \bmod [g]$,
- differential remainder $f_{2}, h f=f_{2} \bmod [g]$,
$s \in S_{g}^{\infty}, h \in H_{g}^{\infty}$.
- An autoreduced set of the lowest rank in an ideal $I$ is called a characteristic set of $I$.
Theorem 1. An autoreduced set $\mathbb{A}$ is a characteristic set of a differential ideal I iff each element of $I$ is reducible to 0 w.r.t. $\mathbb{A}$.
- Characterizable ideals:

$$
I=[\mathbb{C}]: H_{\mathbb{C}}^{\infty}
$$

where $\mathbb{C}$ is a characteristic set of $I$.

- One can decompose $\{F\}$ using Rosenfeld-Gröbner:

$$
\{F\}=\left[\mathbb{C}_{1}\right]: H_{\mathbb{C}_{1}}^{\infty} \cap \ldots \cap\left[\mathbb{C}_{k}\right]: H_{\mathbb{C}_{k}}^{\infty}
$$

One also uses here regular systems like $\left[\mathbb{C}_{i}\right]: H_{i}^{\infty}$ :

- the set $\mathbb{C}_{i}$ is a coherent (do not need in the ordinary case) autoreduced set
- the set $H_{i}$ is partially reduced w.r.t. $\mathbb{C}_{i}$ and contains $H_{\mathbb{C}_{i}}$
- Factorization-free algorithms:
- Boulier F., Lazard D., Ollivier F., Petitot M., 1995 - the first algorithm
- Hubert E., 2000 - clear solution separating algebraic and differential operations
- Bouziane D., Kandri Rodi A., Maârouf H., 2001 - approach uses invertibility

Algorithm 1. Rosenfeld-Gröbner
InPut: a finite set of differential polynomials $F_{0}$.
Output: a finite set $T$ of regular systems such that

$$
\left\{F_{0}\right\}=\bigcap_{(\mathbb{A}, H) \in T}[\mathbb{A}]: H^{\infty}
$$

- $T:=\varnothing, U:=\left\{\left(F_{0}, \varnothing, \varnothing\right)\right\}$
- while $U \neq \varnothing$ do
- Take and remove any $(F, \mathbb{C}, H) \in U ; R:=\mathrm{d}-\operatorname{rem}(F, \mathbb{C}) \backslash\{0\}$
- if $R=\varnothing$ then $T:=T \cup\left(\mathbb{C}, H \cup H_{\mathbb{C}}\right)$ else
* $\overline{\mathbb{C}}:=$ characteristic set of $\mathbb{C} \cup R ; \bar{F}:=(\mathbb{C} \cup R) \backslash \overline{\mathbb{C}}$
* $U:=U \cup\left\{\left(\bar{F}, \overline{\mathbb{C}}, H \cup H_{\overline{\mathbb{C}}}\right)\right\}$
- Let $U=U \cup\left\{(F \cup\{h\}, \mathbb{C}, H) \mid h \in H_{\overline{\mathbb{C}}}, h \notin k\right\}$
- return $T$


## Example.

- $F=\left\{y+z, x, x^{2}+z\right\}, x>y>z$
- $\mathbb{C}:=\{y+z, x\}$, the leading variables of $\mathbb{C}$ are $\{y, x\}$
- $R:=\mathrm{d}-\operatorname{rem}(F \backslash \mathbb{C}, \mathbb{C})=\{z\}$
- $F_{1}:=\mathbb{C} \cup R=\{z, y+z, x\}$
- As radical differential ideals:

$$
\left\{y+z, x, x^{2}+z\right\}=\{z, y+z, x\}: 1^{\infty} \cap\left\{y+z, x, x^{2}+z, 1\right\}
$$

- New $\mathbb{C}=\{z, x\}$ and the leading variables have changed!
- ...
- Finally,

$$
\left\{y+z, x, x^{2}+z\right\}=[z, y, x]: 1^{\infty}=[z, y, x]
$$

Algorithm 2. Modified Rosenfeld-Gröbner

- $T:=\varnothing, U:=\left\{\left(F_{0}, \varnothing, \varnothing\right)\right\}$
- while $U \neq \varnothing$ do
- Take and remove any $(F, \mathbb{B}, H) \in U$
$-R:=\operatorname{algrem}(F, \mathbb{B}) \backslash\{0\}$
- if $R=\varnothing$ then $T:=T \cup\left(\mathbb{B}^{(0)}, H\right)$ else
* $\mathbb{C}:=$ weak d-triangular subset of $\mathbb{B}^{(0)} \cup R$ of the lowest rank
* $\bar{F}:=\left(\mathbb{B}^{(0)} \cup R\right) \backslash \overline{\mathbb{C}}$
* $\overline{\mathbb{B}}:=$ Differentiate\&Autoreduce $\left(\mathbb{C},\left\{m_{i}\left(R \cup \mathbb{B}^{(0)} \cup H\right)\right\}_{i=1}^{n}\right)$
$* U:=U \cup\left\{\left(\bar{F}, \overline{\mathbb{B}}, \operatorname{algrem}(H, \overline{\mathbb{B}}) \cup H_{\overline{\mathbb{B}}}\right)\right\}$
$-U:=U \cup\left\{(F \cup\{h\}, \mathbb{B}, H) \mid h \in H_{\overline{\mathbb{B}}}, h \notin k\right\}$
- return $T$

At each step we have

$$
\left\{F_{0}\right\}=\bigcap_{(\mathbb{A}, H) \in T}[\mathbb{A}]: H^{\infty} \cap \bigcap_{(F, \mathbb{B}, H) \in U}\{F, \mathbb{B}\}: H^{\infty}
$$

## Example for Differentiate\&Autoreduce

- Let $F=\left\{x, y^{2}+x^{\prime}, y^{\prime}\right\}$, elimination ranking $x<y$
- $\mathbb{C}=x, y^{2}+x^{\prime}, \mathbb{B}:=\varnothing$
- $m_{1}=m_{x}=1, m_{2}=m_{y}=1$
- Then $\mathbb{B}:=\mathbb{B} \cup\{x\}$ and $\mathbb{C}:=\mathbb{C} \backslash\{x\}$
- Differentiate $x$ and put the answer $x^{\prime}$ into $\mathbb{B}$
- Take and remove $y^{2}+x^{\prime}$ from $\mathbb{C}$
- Before putting it into $\mathbb{B}$ we reduce $y^{2}+x^{\prime}$ w.r.t. $x^{\prime}$
- So, $\mathbb{B}:=\left\{x, x^{\prime}, y^{2}\right\}$
- We differentiate $y^{2}$ and put in $\mathbb{B}=\left\{x, x^{\prime}, y^{2}, 2 y y^{\prime}\right\}$
- The "zero level" set $\mathbb{B}^{(0)}=\left\{x, y^{2}\right\}$


## 3 Bounds for the orders.

For $F \subset k\left\{y_{1}, \ldots, y_{n}\right\}$ we let

$$
m_{i}(F)=\max \left\{\operatorname{ord}_{y_{i}} f \mid f \in F\right\}
$$

and

$$
M(F)=\sum_{i=1}^{n} m_{i}(F)
$$

Theorem 2. If $F_{0}$ is the input of Modified Rosenfeld-Gröbner then the output satisfies the following bound:

$$
M(\mathbb{A}) \leqslant(n-1)!M\left(F_{0}\right)
$$

for all regular systems $(\mathbb{A}, H) \in T$.

