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Sur la théorie, st importante sans doute, mais
pour nous st obscure, des <K groupes de Lie infinis>>>,
nous ne savons rien que ce qui trouve dans les
mémortres de Cartan, premiere exploration a travers
une jungle presque impénétrable; mais celle-ci menace
de se refermer sur les sentiers déja tracés, si l'on

ne procede bientot a un indispensable travail de

défrichement.

— André Weil, 1947




Pseudo-groups in Action

Lie — Medolaghi — Vessiot

Cartan ... Guillemin, Sternberg

Kuranishi, Spencer, Goldschmidt, Kumpera, ...

Relativity
Noether’s Second Theorem

Gauge theory and field theories

Maxwell, Yang—Mills, conformal, string, ...

Fluid Mechanics, Metereology
Euler, Navier—Stokes,

boundary layer, quasi-geostropic , ...
Linear and linearizable PDEs

Solitons  (in 2 4 1 dimensions)

K-P, Davey-Stewartson, ...
Image processing
Numerical methods — geometric integration
Kac—-Moody symmetry algebras

Lie groups!
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What’s New?

Direct constructive algorithms for:

e Invariant Maurer—Cartan forms
e Structure equations
e Moving frames
e Differential invariants
e Invariant differential operators
e Constructive Basis Theorem
e Syzygies and recurrence formulae
e Grobner basis constructions
e Further applications
—> Symmetry groups of differential equations —
Vessiot group splitting

—> Gauge theories

— (Calculus of variations
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Differential Invariants
G — transformation group acting on p-dimensional submani-
folds N ={u=f(zx)} C M

G — prolonged action on
the submanifold jet space J* = J"(M, p)

Differential invariant I:J"—R
I(g™ - (z,u™)) = I(z,u™)
—> curvature, torsion, ...

Invariant differential operators:

D,,...,D

p
— arc length derivative

* %k Z(G) — the algebra of differential invariants * %
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The Basis Theorem

Theorem. The differential invariant algebra Z(G) is gener-
ated by a finite number of differential invariants I,...,I,,
meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

D,;1,=D;D,,---D,; I

In~ K’

—> Tresse, Kumpera

< functional independence <>

*x % Constructive Version % %

—> Computational algebra & Grobner bases
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The Algebra of Differential Invariants

Key Issues:

e Minimal basis of generating invariants: I,..., I,

e Commutation formulae for
the invariant differential operators:

p .
[Djvpkz] - Z A;,k D,
1=1

—> Non-commutative differential algebra

e Syzygies (functional relations) among
the differentiated invariants:

®(...D,I. ...)=0

— Gauss—Codagzzi relations

Applications:

e Equivalence and signatures of submanifolds and characteri-
zation of moduli spaces

e Computation of invariant variational problems:

/L(... DI ...)dw

e Group splitting of PDEs
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Basic Themes

The structure of a (connected) pseudo-group is fixed by
its Lie algebra of infinitesimal generators: g

The infinitesimal generators satisfy an
overdetermined system of
linear partial differential equations
— the determining equations: F =0

The basic structure of an overdetermined system of
PDEs is fixed by the algebraic structure of its symbol
module: T

The structure of the differential invariant algebra Z(G) is
fixed by the
prolonged infinitestmal generators: g(oo)

These satisfy an overdetermined system of partial differ-
ential equations — the prolonged determining equa-
tions: H =0

The basic structure of the prolonged determining equa-
tions is fixed by the algebraic structure of its prolonged symbol
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Jets and Prolongation

Jet = Taylor polynomial/series  (Ehresmann)
ji,v. — n*order jet of a vector field
J"=J"(M,p)

— jets of p-dimensional submanifolds N € M

n)

vl — prolonged vector field on J”

The prolongation map takes (jets of) vector fields on M to
vector fields on the jet space J™.

P:j,V — v(®)
There is an induced dual prolongation map
p: J — T

on the symbol modules, which is algebraic
(at sufficiently high order).

With this “algebraic prolongation” in hand, the struct
of the prolonged symbol module, and hence the differential

ure

invariants, is algorithmically determined by the structure of

the pseudo-group’s symbol module.
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Pseudo-groups

Definition. A pseudo-group is a collection of local

diffeomorphisms ¢ : M — M such that
o [dentity: 1,, €0,
e Inverses: e teg,
e Restriction: U Cdomy = ¢ |U €q,

o Composition: ime C domy = op € G.

Definition. A Lie pseudo-group G is a pseudo-group whose
transformations are the solutions to an involutive system

of partial differential equations:
F(z,0™) =0.

e Nonlinear determining equations

—> analytic (Cartan—Kdhler)

* Kk Key complication: A Abstract object G * %
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A Non-Lie Pseudo-group

Acting on M = R?:

where ¢ € D(R).

& Cannot be characterized by a system of partial differential

equations
A(zx,y, x ) Y(")) =0

Theorem. (Johnson, Itskov)
Any non-Lie pseudo-group can be completed to a Lie

pseudo-group with the same differential invariants.

Completion of previous example:

X = 90(37)7 Y = w(y)

where ¢, € D(R).
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Infinitesimal Generators

g — Lie algebra of infinitesimal generators of

the pseudo-group G

z = (x,u) — local coordinates on M

Vector field:

V=3 ) = et D
B a=1 0z - 1=1 Oz’ a=1 v du®
Vector field jet:
juv = (=)
o OFACY Bl ¢h
CA - A a a
0z 0z - - - Oz
Infinitesimal (Linearized) Determining Equations
L(z,¢"™) =0 (%)

Remark: If G is the symmetry group of a system of differential
equations A(z,u(™) = 0, then (%) is the (involutive
completion of) the usual Lie determining equations for

the symmetry group.
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Symmetry Groups — Review

System of differential equations:
A (z,u™) =0, v=12,...,k

Prolonged vector field:

LI SF S S Ot g
Vn . gz . Q/ba .
N 7 A #J=0 ! oug
where .
§5 =D, (¢~ Yure') + Y ug,€
i=1 i=1

Infinitesimal invariance:
viW(A ) =0 whenever A=0.
Infinitesimal determining equations:
Lz, u; €™, ™) =0

Lozt oo u® €y, 0%, ...)=0
—> involutive completion
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The Korteweg—deVries equation

u, +u,,, +uu, =0

Symmetry generator:

0 0 0
\4 T(t,x,U)a+€(t,$,U)8—x+Qﬁ(t,ZE,U)%
Prolongation:
ou, ou, ou,,.
where

t 2

O =@+ up, — Uy Ty — uT, — U gy — ugug,
xr 2

¥ =Pz + Uy@Po, — WyTy — UULTy, — uazgw o uwgu

x

(IO xx:(p$$$+3uxgou+ T

Infinitesimal invariance:

XL

+up®+u,o=0
on solutions

V(S) (ut + uazazaz + uuw) - Spt =+ 2
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u, + Uy, +uu, =0

Infinitesimal determining equations:
90:575_%“7} SDu:_%Tt:_ng

Ttt:Tt:c:Tx:c: :Spuuzo

General solution:

T = ¢y + 3¢,t, § = ¢y + 3t + ¢y, © = c3 — 2c,u.

Basis for symmetry algebra:

o, 0 to.+90,  3to,+x0,—2ud,.

@’

The symmetry group G ;- is four-dimensional

(z,t,u) — (Nt+a, \x+ct+b, A *u+c)
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Moving Frames

For a finite-dimensional Lie group action, a moving frame
is defined to be a (right) equivariant map

pm g — @

where
plM (g™ - 2y = plM) (M) . g

Moving frames are explicitly constructed by choosing a
cross-section to the group orbits, and solving the normaliza-
tion equations for the group parameters.

The existence of a moving frame requires that the group
action be free, i.e., that there is no isotropy, or (locally) that
the group orbits have the same dimension as the group itself.
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Moving Frames for Pseudo—Groups

e The role of the group parameters is played by the pseudo-
group jet coordinates, while the group is replaced by a
certain principal bundle

HM ~ Jnx g™ ., Jn

e There are an infinite number of pseudo-group parameters
to normalize, which are to be done order by order. (Or
else use the Taylor series approach.) However, at each
finite order, the algebraic manipulations in the moving
frame normalization procedure are identical to the finite-
dimensional calculus.

e Since the pseudo-group G is infinite-dimensional, classical
freeness is impossible! Rather, a pseudo-group action is
said to act freely at a jet z(") € J" if the only pseudo-
group elements which fix z(") are those whose n-jet
coincides with the identity n-jet.

Theorem. If G acts freely on J” for n > 1, then it acts
freely on all J*¥ for k > n.

n* — order of freeness.
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Normalization

& To construct a moving frame :

I. Choose a cross-section to the pseudo-group orbits:

U?::CK, li:l,...,’r’n:ﬁberdimg(n)

II. Solve the normalization equations
F?:(xau(n)ag(n)) = Cx
for the pseudo-group parameters

g™ = pm (3 4, (M)

III. Invariantization maps differential functions to
differential invariants:

v: F(z,ul™) v I(z,u™) = F(p"™(z,u™) - (z,u™))

— an algebra morphism and a projection:

Lol =1L

Iz, u'™) = o(I(z,u™))
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Invariantization

A moving frame induces an invariantization process, denoted
L, that projects functions to invariants, differential operators

to invariant differential operators; differential forms to invari-
ant differential forms, etc.

Geometrically, the invariantization of an object is the unique
invariant version that has the same cross-section values.

Algebraically, invariantization amounts to replacing the group
parameters in the transformed object by their moving frame
formulas.
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Invariantization

In particular, invariantization of the jet coordinates leads to
a complete system of functionally independent differential
invariants:

W(z') = H' v(ug) =19

e Phantom differential invariants: 15" = ¢,

e The non-constant invariants form a functionally inde-
pendent generating set for the differential invariant

algebra Z(G)

e Replacement Theorem

{ Differential forms =— invariant differential forms
W(dx') = W' i=1,...,p

¢ Differential operators —
invariant differential operators

t(D,:) =D, i=1,...,p

x’l/

W 19




Recurrence Formulae

Invariantization and differentiation

* K * Kk

do not commute

The recurrence formulae connect the differentiated invariants

with their invariantized counterparts:

Di[? — I?,i + M?z

—> M§, — correction terms

O  Once established, they completely prescribe the structure
of the differential invariant algebra Z(G) — thanks
to the functional independence of the non-phantom

normalized differential invariants.

* % The recurrence formulae can be explicitly determined
using only the infinitesimal generators and linear

differential algebral
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The Key Formula

P , p L~
diy = > (Dlj)w' = I5,w' +197
=1 1=1
where
VI =u(pG) =% (... H ... I ... ... 9% ..0)

are the invariantized prolonged vector field coefficients, which

are particular linear combinations of

v% = «(¢%) — invariantized Maurer—Cartan forms

prescribed by the invariantized prolongation map.

Proposition.

The invariantized Maurer—Cartan forms are subject to the

invariantized determining equations:

CHY,...,HP, T',...)I% ... 4%, ...)=0
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p . A~
dgl§ = > If,w' +95(... 7% ...
1=1

Step 1: Solve the phantom recurrence formulas

p . ~
0=dyI§ = > I5, 0"+ 5(... 74 ..
i=1

for the invariantized Maurer—Cartan forms:

Step 2: Substitute (x) into the non-phantom recurrence
formulae to obtain the explicit correction terms.

¢ Only uses linear differential algebra based on the specifica-

tion of cross-section.

@ Does not require explicit formulas for the moving frame,
the differential invariants, the invariant differential opera-

tors, or even the Maurer—Cartan forms!
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Korteweg—deVries equation

Symmetry Group Action:
T=e3t+ X)) =0
X=eMOgt+z+ M3+ Ay =0
U=eMu+X;) =0

Prolonged Action:

Up = e~ (uy, — Aguy),

_ =3\
Uy =e Uy,

UTT - 6_8>\4 (utt - 2A3utm + Agump%

Urx = DyDpU = e (uy, — Aqu,,),

Cross Section:

Moving Frame:

1

AN =—t, A=-—x, Ag=-u, M\ =zlog(u,+uu,)

— 5
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Phantom Invariants:

Normalized differential invariants:

uCE
Loy = t(u,) = (u, + uu, )3/

2 2
Iyo = t(uy) = g T2y T M

(uy + v, )75

utm + uuwm
6/5
u, + uu, )%/

I = u(uy,) = (

u

102 = L(uacm) = (Ut + 5; )4/5
u$$$
103 = L(ugcam:) = m
t x
Replacement Theorem:
0=c(u, +uu, +u,,,)=1+1;= Uy + Uty + u:}cxx.

u, + uu,
Invariant horizontal one-forms:
w' = u(dt) = (u, + uu,)®> dt,
w? = 1(dz) = —u(u, +uu,)Y? dt + (u, + uu,)® dx.
Invariant differential operators:
D, = u(D,) = (u, + vu,) 35D, + u(u, + uu)3/°D_,

D2 - L(Dx) = (ut + U,’U,x)_l/BDx.




Recurrence formula:

 k

Invariantized Maurer—Cartan forms:

Ur) =X W =pn p)=v=v, ur)=v"=2],
Invariantized determining equations:

A

CL‘:)\’LL:/’Lu:I/t:I/$:0

Invariantizations of prolonged vector field coefficients:

L<T) = A L(ﬁ) = K, L(gp) =V, L<90t> - _101’/ -
Up®) = =LAy, L(Sﬁtt)

= —2I,,v— glzo/\t,

5
3 Aps
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Phantom recurrence formulae:
0=dy H =w'+ ),
0=dy H> =w”+pu,

0=dyly = Ilowl + IOlw2 + 1 = w! + 101w2 + v,

0=dyl=Low' + 1,0 +¢" = Lyw' + 1w — Ijv — %Aw

—> Solve for A= -w', p=-w? v=-w'-1I,w?%
Ap = % (Too + IopJw' + % (I11 + Igy)w?.
Non-phantom recurrence formulae:
dy Iy = Iyyw' + Ipgw® — Ipi Ay,
dy Iy = Isow" + Ipyw?® — 21,0 — 51y,

dy I, = Lyw' + I,0* — L,v — 21\,

dy Loy = [12‘*‘)1 + IO3W2 - %102/\157

DIIOI = I11 - 2131 - %IOIIQO’ DQIOI = 102 - %Igl - %Io1l1p

Dylyy = I59 + 211, — 2101120 - §12207 Dylyy = Iy + 20y 17 — %Iglfzo - %Illlzoa

D1y =1y + Ipy — 2101111 - 2111]2(» Dylyy = Ih1g + Ly Lgs — %131[11 - 211217

leoz - 112 - %1—01102 - %1.02[20: D2[02 = 1.03 - %131[02 - %102[117

Y 26




Generating differential invariants:

x

2
u Uy + 2un,, +uu,

x

Iy = (u,) = ( Loy = t(uy) =

Uy + Uty )35 (u, + uu,,)3/5

Invariant differential operators:
Dl - L<Dt) - (U’t + uux)_3/5Dt + U’(“t + uux)_g/sDam

DZ = L(‘Da:) = (U’t + uu$>_1/5Dac'

Commutation formula:
[D17D2] — 101 Dl

Fundamental syzygy:
Dily + 21011)1[20 — Dylyy + (% Iy + % 101) D1y

_Dzl(n - % 1011220 - % 131120 + % Igl = 0.
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The Symbol Module

Vector field:
0

o= by 9
V_agl C (Z) azb

Vector field jet:

iV = (=0 ..

a#Acb 8k<—b

b _
(A= 0z4  0zar...0za

Determining FEquations for v € g

Lz ... ¢4 ...)=0
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Duality

t=(ty,...,t ) T =(Ty,...,

Polynomial module:

a

T,.)

T = {P(t,T) =3 P,t) Ta} ~ R[t] s R™ C R[t, T

a=1

T ~ (J®°TM|)*

Dual pairing:

< Joo V' tATb > = ng-

Each polynomial

n(z;t,T):i S hi(2)t, T €T

b=1 #A<n

induces a linear partial differential equation

L(z,¢™) = (Vi n(zt,T) )
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The Linear Determining Equations

Annihilator:

L= (J%g)"

Determining Equations

<joov;77>:0 forall nel <+ veg

Symbol = highest degree terms:

m

S[L(z,¢™)] = Hln(zt,T)] = > ; hy (2) AT
b=1 #A=n

Symbol submodule:

T = H(L)

— Formal integrability (involutivity)
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Prolonged Duality

Prolonged vector field:

o R C R + 3 @5 5
1=1 a a,

' 5,), 8=(81,--,8,), S=(5,...,9,)

5=(5,...

“Prolonged” polynomial module:

S = {a(s,s, 3) = Zijl ;3; + i G (s)S° } ~RP & (R[s] «RY)

Dual pairing;:
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Algebraic Prolongation

Prolongation of vector fields:
p: J®g — gl

PR — v(%)

Dual prolongation map:

p*: S — T

(ieVip™(0) ) =(Plv)io )=(v™®:0)

* % On the symbol level, p* is algebraic * %
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Prolongation Symbols

Define the linear map 3 : R — R™

s; = 0B;(t) =t,+ > Ut g i=1,...,p,
a=1
p
Sa:Ba(T):Tp+a—Zuf‘Tl, a=1,...,q
1=1

Pull-back map
B*[o(sy,.. 385,815 +55,) ]
=0(By(t),...,B,(), By(T)...,B,(T))

Lemma. The symbols of the prolonged vector field coeffi-
cients are

SE) =T  BEe) =T
Q%) = B(57) = B,(T)

3(pG) =B"(s,5%) = B (s, -+ 5;,5%)
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Prolonged annihilator:
Z = (p*) 'L = (g

(vi®) o) =0 forall veg <— oce2Z

Prolonged symbol subbundle:

U = H(Z) c J*(M,p) xS

Prolonged symbol module:

Warning:

But
Uu" = J» when n>n*

n* — order of freeness.
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Algebraic Recurrence

Polynomial:

g(I®:5,8) =3 nJ(IM) 5,5 € S
o,J

Differential invariant:
I; = Z hg(I(k))I?

o,J

Recurrence:

667”,n>n* —— Orderlpi& = n+1

order Ri’ s<n
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Algebra — Invariants

7 symbol module
e determining equations for g
M~T /T — complementary monomials ¢ 7"
e pseudo-group parameters
e Maurer—Cartan forms
N — leading monomials s ;S5
e normalized differential invariants I
K=8/N — complementary monomials s, S”
e cross-section coordinates u% = cé}(
e phantom differential invariants I I’i—
J = (B")"NT)
Freeness: g*: K — M
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Generating
Differential Invariants

Theorem. The differential invariant algebra is generated by
differential invariants that are in one-to-one correspon-
dence with the Grobner basis elements of the prolonged
symbol module plus, possibly, a finite number of differen-

tial invariants of order < n*.
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Syzygies

Theorem. Every differential syzygy among the generating

differential invariants is either a syzygy among those of

order < n*, or arises from an algebraic syzygy among the

Grébner basis polynomials in 7.
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