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1 Talk

CONTENTS

1. Modules and behaviors

2. Riquier’s decomposition

3. Hilbert functions

4. State behaviors

5. Canonical state representations
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History

1. Minimal state representations of one-
dimensional proper transfer matrices:
R. Kalman 1960s

2. First order representations of multidi-
mensional systems: E. Zerz 2000 et.al.

3. The modified Spencer form for multidi-
mensional systems: J.F. Pommaret 2004
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DATA

base field C (in this talk)

ring of operators

D := C [s1, · · · , sr] 3 f =
∑

µ∈N r

fµs
µ



1 TALK 5

function space of

formal power series

F := C N r
= C [[z1, · · · , zr]] 3

y = (y(µ))µ∈N r =
∑

µ∈N r

y(µ)zµ

Other function spaces: (locally) conver-
gent power series, entire functions of expo-
nential type, C∞−functions, distributions
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Actions of D on F or D−module struc-
ture f ◦ y of F :

1. Discrete case of partial difference
equations
by left shifts:

(sµ ◦ y)(ν) := y(ν + µ)

2. Continuous case of partial differen-
tial equations
by partial differentiation:

sρ ◦ y := ∂y/∂zρ
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BEHAVIORS

matrices

I finite index set, eg. I = {1, · · · , q}
matrix R ∈ Dk×I or R ∈ Dk×q

D1×I = module of rows, δi standard basis

F I = module of columns

polynomial modules

U := D1×kR ⊂ D1×I row module of R

M := D1×I/U factor module
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behavior, system or solution space

B := sol(M) := {w ∈ F I ; R ◦ w = 0}
B ∼= HomD(M,F)

w = (wi)i∈I ↔ (δi 7→ wi)

Malgrange 1962

categorical duality

finitely generated module DM ↔
behavior B ∼= HomD(M,F)
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Gröbner basis data

index set

I × N r 3 α = (i, µ) = (i(α), µ(α))

action

N r × (I × N r) → I × N r :

(λ, α = (i, µ)) 7→ λ + α := (i, λ + µ)

term order < on I × N r

order submodule of I × N r

deg(U) = N r + deg(U) = ]i∈I{i} × deg(U)i
computation by Buchberger’s algorithm

region below the stairs

Γ := (I × N r) \ deg(U)
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Theorem 1.1. (C. Riquier 1910,
Oberst/Pauer 2001)

Algorithmic canonical disjoint decom-
position of Γ and M :

Γ = ]α∈∆(α + N S(α)) ⇒

M = ⊕α∈∆C [(sρ)ρ∈S(α)]s
µ(α)δi(α)

with finite subset

∆ = ]i∈I{i} ×∆i ⊂ Γ

∀α ∈ ∆ : S(α) ⊂ {1, · · · , r}

N S(α) ⊂ N r (extension by zero).
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Typical picture

• ∈ deg(U)i, ◦ ∈ ∆i
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HILBERT FUNCTION

m ∈ N
D1×I
≤m := {f ∈ D1×I ; total degree of f ≤ m}

U≤m := U ∩ D1×I
≤m

Hilbert function HF (m) :=

dimC (D1×I
≤m /U≤m)

µ ∈ N r : | µ |:= µ1 + · · · + µr

S ⊂ {1, · · · , r}
| S |:= number of elements of S
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Theorem 1.2. For a graded term or-
der:

Krull dimension

dim(M) = maxα∈∆ | S(α) |

Hilbert function HF (m) :=
∑

α∈∆, |µ(α)|≤m

(
m− | µ(α) | + | S(α) |

| S(α) |
)

Hilbert polynomial HP (m) =
∑

α∈∆

(
m− | µ(α) | + | S(α) |

| S(α) |
)

Hilbert series HS :=

∞∑
m=0

HF (m)tm =

∑

α∈∆

t|µ(α)|(1− t)−|S(α)|−1.
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STATE BEHAVIOR

G := unique reduced

Gröbner basis of U ⊂ D1×I

ερ := (0, · · · , 0,
ρ

1, 0, · · · , 0) ∈ N r
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Theorem and Definition 1.3.

B = state behavior or in state form

with respect to the chosen term order : ⇔

∀g ∈ G : lt(g) = sρδi or deg(g) = (i, ερ) ⇒

S(i) := {ρ; 1 ≤ ρ ≤ r, (i, ερ) 6∈ deg(U)}. Then

∆ = {(i, 0); i ∈ I}, S(i, 0) = S(i).

Γ = ]i∈I((i, 0) + N S(i))

M = ⊕i∈IC [(sρ)ρ∈S(i)]δi
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F = C [[z1, · · · , zr]]

F(S(i)) := C [[(zρ)ρ∈S(i)]]

proj : F → F(S(i)), a 7→ a((zρ)ρ∈S(i), 0)

Assumptions for the next theorem:

(i) B in state form.

(ii) F =space of power series (analytic
case).

(ii) For the continuous case and locally
convergent power series: The term order
is graded (already [C. Riquier 1910]).
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Theorem 1.4.

B ∼=
∏

i∈I

F(S(i))

w 7→ (wi((zρ)ρ∈S(i), 0))i∈I

{
| S(i) |= r

| S(i) |< r
⇔ wi((zρ)ρ∈S(i), 0) :=

{
free component or input

initial condition or local state

w := unique solution of the

canonical Cauchy problem
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constructive solution

via Buchberger’s algorithm

Oberst 1990, Oberst/Pauer 2001

History: Cauchy/Kovalevskaya, C. Riquier
1910 (also so-called orthonormic non-
linear systems)
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Standard example

Kalman system

•
x(t) = Ax(t) + Bu(t)

w =

(
x

u

)
∈ Fn+m

x = state , u = input

x(0) = initial condition or local state

x(t) = etAx(0) +

∫ t

0

e(t−τ)Au(τ )dτ



1 TALK 20

Caution: In general, the preceding the-
orem is false in the non-analytic case
of C∞−functions or distributions without
additional growth conditions on the func-
tions, compare [Gelfand-Shilov III 1967].
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Standard counter-example

characteristic heat equation

y = y(t, x) ∈ C∞(R 2)

(s1 − s2
2) ◦ y = 0 or

∂y/∂t− ∂2y/∂x2 = 0

lexicographic term order s1 > s2

lt(s1 − s2
2) = s1, hence state form. But

∃ solution y with

support(y) = {(t, x); t ≤ 0} ⇒
y 6= 0, y(0, x) = 0
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STATE REPRESENTATION

arbitrary

D −module F , term order < and

behavior B = {w ∈ F I ; R ◦ w = 0}

Riquier’s decomposition for

M := D1×I/D1×kR :

Γ := ]α∈∆(α + N S(α))

Without loss of generality:

B has only essential components, ie.

∀i ∈ I : deg(U)i 6= N r or (i, 0) ∈ ∆
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M = ⊕α∈∆C [(sρ)ρ∈S(α)]s
µ(α)δi(α)

∀α ∈ ∆ ∀ρ 6∈ S(α) :

sρs
µ(α)δi(α) =

∑

β∈∆

fα,ρ,βs
µ(β)δi(β)

fα,ρ,β ∈ C [(sρ)ρ∈S(β)]

Computation by Buchberger’s algorithm
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new behavior in F∆

Bs := {x = (xα)α∈∆ ∈ F∆;

∀α ∈ ∆ ∀ρ 6∈ S(α) :

sρ ◦ xα =
∑

β∈∆

fα,ρ,β ◦ xβ

Bs not of the first order in general, ie.

total degree of fα,ρ,β > 1 in general
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Theorem 1.5. 1. New term order on
∆× N r (with MAPLE!):

(β, ν) < (α, µ) : ⇔
β + ν < α + µ in I × N r or

β + ν = α + µ and µ(α) <lex µ(β) in N r.

2. Bs is in state form with respect to the
term order from 1.

3. Mutually inverse system isomorphisms

Bs ∼= B, x = (xα)α∈∆ ↔ w = (wi)i∈I

wi = x(i,0), xα = sµ(α) ◦ wi(α)

w 7→ x =: state map

after [Rapisarda/Willems 1997]

4.

B controllable ⇔ Bs controllable.
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2 The Hilbert data, excerpt from [30]

The following material is taken from my paper [30] and contains the proof of
the theorem on the Hilbert data on page 13 of the present talk. It is based only
on the Riquier decomposition Γ = ]α∈∆(α+N S(α)) (see page 11) and is quoted
from [31, Section 2.2] which, in turn, is a translation of [43, pp.143-168] into
modern language. In the present talk I took the base field F = C for simplicity.

Corollary 2.1. The preceding considerations and data imply the direct sum
decompositions

D1×I = ⊕γ∈ΓFsµ(γ)δi(γ) ⊕ U =

⊕α∈∆, µ∈N S(α)Fsµ(α)+µδi(α) ⊕ U = ⊕α∈∆F [s(α)]sµ(α)δi(α) ⊕ U and

M = D1×I/U = ⊕α∈∆, µ∈N S(α)Fsµ(α)+µδi(α) = ⊕α∈∆F [s(α)]sµ(α)δi(α).

In particular, each f ∈ D1×I admits a unique representation

f = fnf + fU with the normal form

fnf =
∑

α∈∆

fαsµ(α)δi(α) =
∑

α∈∆, µ∈N S(α)

fα,µsµ(α)+µδi(α) where

fα ∈ F [s(α)] and fα,µ ∈ F.

The normal form of f ∈ D1×I depends on U and on the chosen term order on
I × N r.

The construction of a basis of M according to corollary 2.1 is due F.S.
Macaulay [51, Th. 1.1.1], [22, Th. 1.5.7]. The direct sum decomposition into
F [s(α)]−modules is called a Stanley decomposition [51, Def. 1.4.1]. Its construc-
tion is a generalization or variant of [47, Th. 5.13], [51, Prop. 1.4.3 ] and [2].
The decomposition of M also permits to compute a suitable Hilbert function,
polynomial and series in the following fashion. For µ ∈ N r let | µ |:= µ1+· · ·+µr

and for each m ∈ N define

D1×I
m := ⊕(i,µ){Fsµδi; | µ |= m} ⊆ D1×I

≤m := ⊕(i,µ){Fsmδi; | µ |≤ m} = ⊕m
l=0D1×I

l

U≤m := U ∩ D1×I
≤m , M̂m := D1×I

≤m /U≤m 3 [f ]m := f + U≤m, f ∈ D1×I
≤m

M̂ := ⊕∞m=0M̂m.

The space D1×I
≤m is that of polynomial vectors of total degree at most m. Let

s0 be an additional indeterminate. The module M̂ is a graded F [s0, s] =
F [s0, s1, · · · , sr]−module with the scalar multiplication

sρ[f ]m :=

{
[sρf ]m+1 if 1 ≤ ρ ≤ r

[f ]m+1 if ρ = 0
, f ∈ D1×I

≤m .

For | µ |≤ m we obtain [sµδi]m = s
m−|µ|
0 sµ[δi]0 . Hence M̂ is a finitely generated

F [s0, s]−module and therefore its Hilbert function

HFcM : N → N , m 7→ dimF (M̂m) = dimF (D1×I
≤m /U≤m),
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is a polynomial in m for large m, ie. there is the unique Hilbert polynomial
HPcM of M̂ such that HFcM (m) = HPcM (m) for almost all m ∈ N . Let d(M)
denote its degree. The module M̂ coincides with the s0−extension of M in the
sense of [54, p.4-5, Th. 4.2], up to isomorphism, and the numbers HFcM (m) are
called the complexity indices of the behavior B = U⊥ in [54, Def. 4.1, Th. 4.2].
The map M 7→ M̂ corresponds to projectivization in geometry.

Result 2.2. The number d(M) is the Krull dimension dim(M) of M .

It is surprising that this basic result on the Krull dimension of a polynomial
module is not explicitly contained in any of the standard references on Com-
mutative Algebra. It is, however, a consequence of [54, results 7.4-7.6] and the
literature quoted there. The graded F [s0, s]−module M̂ gives also rise to its
Hilbert power series HScM :=

∑∞
m=0 HcM (m)tm ∈ Z [[t]] ∩Q (t).

Theorem 2.3. Data as before.

1. The module M is a torsion module if and only if

maxα∈∆ | S(α) |< r = dim(F [s1, · · · , sr]).

2. If the term order is graded then

dim(M) = maxα∈∆ | S(α) |

HFcM (m) =
∑
α

{
(

m− | µ(α) | + | S(α) |
| S(α) |

)
; α = (i(α), µ(α)) ∈ ∆, | µ(α) |≤ m}

HPcM (m) =
∑

α∈∆

(
m− | µ(α) | + | S(α) |

| S(α) |
)

HScM =
∑

α∈∆

t|µ(α)|(1− t)−|S(α)|−1.

Here | S | is the number of elements of the finite set S. The term order is
graded if | µ |<| ν | implies (i, µ) < (j, ν) for all i, j.

Remark 2.4. J. Wood, P.Rocha et al. [54] observed that the Hilbert function,
polynomial and series of the module M̂ have system theoretic significance for
the behavior B = U⊥. Such a connection was, however, already established by
F.S. Macaulay [24]. Indeed, for an ideal U ⊂ F [s] and the injective cogenerator
F := F [[z]] the behavior B := U⊥ is exactly the inverse system of U and

HFcM (m) = dimF (D1×I
≤m /U≤m) = dimF (HomF (D1×I

≤m /U≤m, F ))

is the number of independent modular equations of U for degree m according
to [24, Ch.IV, pp.64-65]. The preceding computation of the Hilbert series is a
variant or generalization of such calculations in the literature, see for instance
[24, Th. 58, p.65], [51, prop.1.4.2], [1] and and the Groebner package of MAPLE.

Proof. 1. [54, Th. 7.6].
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2. If f ∈ D1×I is a non-zero vector of degree deg(f) = α = (i, µ) and | µ |≤ m
then f ∈ D1×I

≤m . This follows from the assumed gradedness of the term
order. Consider the decomposition

D1×I = V ⊕ U, V := ⊕γ=(i,µ)∈ΓFsµδi, in particular

sνδj = f + g, f := nf(sνδj) where sνδj ∈ D1×I
≤m , | ν |≤ m,

(1)

is any basis vector of D1×I
≤m . Since deg(f) ∈ Γ ] {−∞} and deg(g) ∈

deg(U) ] {−∞} these degrees are distinct and hence

α := (j, ν) = deg(sνδj) = max(deg(f), deg(g)),

say α = deg(f) > deg(g) and hence f, g ∈ D1×I
≤m

D1×I
≤m = V≤m ⊕ U≤m with V≤m := V ∩ D1×I

≤m = ⊕γ=(i,µ)∈Γ, |µ|≤mFsµδi

V≤m
∼= D1×I

≤m /U≤m, HFcM (m) = dimF (V≤m).

From

V = ⊕(i,µ)∈ΓFsµδi = ⊕α=(i(α),µ(α))∈∆F [s(α)]sµ(α)δi(α) we infer

V≤m = ⊕α∈∆, |µ(α)|≤m, ⊕µ∈N S(α) {Fsµ(α)+µδi(α); | µ |≤ m− | µ(α) |} and

HFcM (m) =
∑

α∈∆, |µ(α)|≤m,

| {µ ∈ N S(α); | µ |≤ m− | µ(α) |} | .

For s, k ∈ N the standard formulas

| {µ ∈ N s; | µ |≤ k} |=
(

k + s

s

)
and tk(1−t)−s−1 =

∑

m≥k

(
m− k + s

s

)
tm

hold. For | µ(α) |≤ m these imply

| {µ ∈ N S(α); | µ |≤ m− | µ(α) |} |=
(

m− | µ(α) | + | S(α) |
| S(α) |

)
and

∑

|µ(α)|≤m

| {µ ∈ N S(α); | µ |≤ m− | µ(α) |} | tm = t|µ(α)|(1− t)−|S(α)|−1

and thus the expressions for the Hilbert function, polynomial and series.
Since

(
k+s

s

)
is a polynomial of degree s in k the Hilbert polynomial has

the degree dim(M) = d(M) = maxα∈∆ | S(α) |.

3 The Cauchy problem, excerpt from [30]

The following material is taken from the paper [30] where F denotes an arbitrary
field. It is assumed that the system is in state form as in theorem 1.4 of this
talk where the set ∆ of this section is denoted by I. The subset ∆0 consists of
those indices α for which the support set S(α) is not all of {1, · · · , r} and ∆free

is its complement.
In the following theorem we use the space

FN
r

= F [[z]] = F [[z1, · · · , zr]] 3 y = (yµ)µ∈N r =
∑

µ∈N r

yµzµ.
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of multi-sequences or formal power series. For α ∈ ∆ we denote z(α) =
(zρ)ρ∈S(α) and identify F [[z(α)]] as F [s(α)]-submodule of F [[z]]. For y ∈ F [[z]]
and α ∈ ∆ we define y(z(α), 0) :=

∑
µ∈N S(α) yµzµ. If F = R or F = C and if y

is a convergent power series and therefore an analytic function on R r resp. C r

in the neighborhood of zero the power series y(z(α), 0) is exactly the function
on R S(α) resp. C S(α) where all variables zρ, ρ 6∈ S(α), are set to zero.

Assumption 3.1. We assume that the function D−module F is a subspace of
F [[z]] on which D = F [s] acts either by left shifts, ie. (sρ ◦ y)µ = yµ+ερ

, or by
partial differentiation, ie. sρ ◦ y = ∂y/∂zρ, and consider the following five cases
which were treated in [31].

1. F is a field of arbitrary characteristic and F := F [[z]] with the action by
left shifts [31, th.15]

2. F is a field of characteristic zero and F = F [[z]] with the action by partial
differentiation [31, th.16]

3. F is the field of real or complex numbers and F = F 〈z〉 is the algebra of
(locally) convergent power series with the action by left shifts [31, th.24].
A power series y =

∑
µ∈N r yµzµ is convergent if and only if its coefficients

satisfy a growth condition

| yµ |≤ Caµ1
1 ∗ · · · ∗ aµr

r for all µ ∈ N r

where C and the aρ, ρ = 1, · · · , r, are positive real numbers.

4. F is the field of real or complex numbers and F = F 〈z〉 is the algebra
of convergent power series with the action by partial differentiation [31,
th.29] and the term order is graded (compare theorem 2.3). The solution
of the Cauchy problem in this case is the main result in C. Riquier’s
book [43], even for certain, so-called orthonomic non-linear systems. The
Cauchy-Kovalevskaya theorem was a predecessor of Riquier’s results.

5. F := C is the field of complex numbers and F := O(C r, exp) ∈ C 〈z〉 is the
algebra of entire holomorphic functions of exponential type with the action
by partial differentiation [31, th.26]. An entire holomorphic function y is
called of exponential type if it satisfies a growth condition

| y(z) |≤ C exp(a1 | z1 | + · · ·+ ar | zr |) for all z ∈ C r

where C and the aρ, ρ = 1, · · · , r, are positive real numbers.

If S is a subset of [r] and if F is any of the function spaces of the preceding
assumption let F(S) = F [[(zρ)ρ∈S ]] denote the corresponding function space in
the indeterminates or variables zρ, ρ ∈ S.

Result 3.2. (The Cauchy problem [31]) Assume that F is one of the function
spaces from assumption 3.1. Then for arbitrary functions vα ∈ F(S(α)), α ∈ ∆,
there is a unique trajectory w ∈ B such that wα(z(α), 0) = vα for all α ∈ ∆. In
other terms, the map

B →
∏

α∈∆0

F(S(α))×F∆free
, w =

(
x

u

)
7→

(
xα(z(α), 0)α∈∆0

u

)
, (2)



3 THE CAUCHY PROBLEM, EXCERPT FROM [30] 30

is an isomorphism.
The component vα is called an input resp. an initial condition if α ∈ ∆ belongs
to ∆free resp. to ∆0. The vectors x = (wα)α∈∆0 resp. (xα(z(α), 0))α∈∆0 are
called the global resp. the local state of the system B. Hence the input and the
initial condition or local state give rise to a unique trajectory of the system.

Proof. The proof of this theorem is a special case of the theorems in [31], the
exact references being given in assumption 3.1.

Remarks 3.3. 1. The preceding state definition generalizes the state prop-
erty of x in the Kalman system

•
x = Ax + Bu as explained in the intro-

duction.

2. The following remarks are taken from the literature and concern the
Cauchy problem for linear systems of partial differential equations with
constant coefficients for function spaces like C∞−functions or distribu-
tions which do no consist of formal or convergent power series as assumed
in result 3.2. The general behaviors of the present paper have not been
treated in this context. The preceding theorem does not hold in general,
but requires additional conditions on the system or the initial data. How-
ever, the theorem is applicable to entire functions of exponential type and
to convergent power series with a graded term order and therefore sug-
gests the formulation of the Cauchy problem also for more general function
spaces. One has to distinguish between uniqueness and correctness results
[9, ch. II, ch. III]. Correctness or well-posedness of the Cauchy problem
signifies that it is uniquely solvable and that the solution depends con-
tinuously on the initial data. In general, uniqueness results require initial
data with bounded growth at ∞ [9, Th.1, p.42], [32, ch.VI, §6.2]. If the
function space is an injective cogenerator it suffices to solve the Cauchy
problem for autonomous systems as for instance in [9].

3. V. Palamodov has proven a quite general uniqueness result for weakly
hypoelliptic autonomous systems R ◦w = 0 [32, ch.VI, §6.2 ]. In this case
the sets S(α) do not depend on α ∈ ∆0.

4. Most systems treated in the literature [9, ch.II, §3, (1)], [49, (15.1)] are of
or can be easily reduced to the form

(idn ∂/∂z1 + PII(i∂/∂zII)x = 0, PII ∈ C [sII ]n×n, x ∈ Fn,

sII = (s2, · · · , sr), zII = (z2, · · · , zr).
(3)

The distinguished variable z1 is usually interpreted as time. The constant
i :=

√−1 in front of ∂/∂zII is just a convention in connection with the
Fourier transform in the zII−space. For the lexicographic order s1 > s2 >
· · · > sr the matrix P := s1 idn +PII(isII) is a Gröbner matrix since the
S-polynomials of the rows

Pj− = s1δj + PII,j−(isII) ∈ C [s]1×n

are zero by definition. In particular, the autonomous system P ◦ x = 0
and its inhomogeneous counter-part P ◦x = u are in state space form and
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the isomorphism

{
(

x

u

)
∈ Fn+n; P ◦ x = u} ∼= F(zII)n ×Fn,

(
x

u

)
7→

(
x(0, zII)

u

)
,

holds for F = O(C r, exp). In general, the isomorphism does not hold for
locally convergent power series since the pure lexicographic term order is
not graded. A counter-example [5, ch.1, §2.2] is given by the heat equation

yz1 − yz2z2 = 0, y(0, z2) = (1− z2)−1

whose unique formal power series solution y satisfies y(z1, 0) =
∑∞

k=0(2k)!zk
1

and is not convergent.

5. For the heat equation (s1 − s2
2) ◦ y = yz1 − yz2z2 = 0, F := C∞(R 2)

and the lexicographic term order s1 > s2 the map (2) y 7→ y(0, z2) is
not injective. Indeed, there is a solution y whose support is exactly the
half-space {z ∈ R 2; z1 = z • δ1 ≤ 0} [16, Th. 8.6.7]. The reason is that
{z1 = z • δ1 = 0} is a characteristic hyper-plane (line).
For F := C∞(R 2) and indeed any C [s]−module the system isomorphism

{y ∈ F ; (s1 − s2
2) ◦ y = 0} ∼= {x =

(
x1

x2

)
∈ F2;

(
s2 −1
s1 −s2

)
◦ x = 0}

y = x1 ↔ x =
(

y

s2 ◦ y

)

holds. The preceding non-uniqueness also applies to this first order au-
tonomous system with a square-matrix. These examples underline the
necessity of growth conditions on the function spaces for uniqueness re-
sults as mentioned in item 2.

6. As usual, the order of a polynomial matrix and of the behavior which it
defines is the maximum of the total degrees of its entries.

7. We specialize the systems of (3) to first order ones, ie. we consider systems
[49, ch.15, (15.1)]

P ◦ x = u with P := s1 idn−
r∑

ρ=2

sρAρ −A0, Aσ ∈ C n×n, x, u ∈ Fn

B := {
(

x

u

)
∈ Fn+n; P ◦ x = u}, B0 := {x ∈ Fn; P ◦ x = 0}.

(4)
The determinant of P is the characteristic polynomial of

∑r
ρ=2 sρAρ +A0

and of the form

χ = χn + · · ·+ χ0, χn = sn
1 + · · ·

where χk is the homogeneous component of degree k of χ. Any x ∈ B0

also satisfies χ ◦ x = 0. The vector δ1 := (1, 0, · · · , 0) is non-characteristic
for χ, ie. χn(δ1) = 1n 6= 0. Holmgren’s theorem and its consequence
[16, Cor. 8.6.9] imply that any distributional solution of χ ◦ y = 0 whose
support lies in the right half-space {z ∈ R r; z1 = z • δ1 ≥ 0} is indeed
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zero. If x is a C1−solution of P ◦x = 0 with initial condition x(0, zII) = 0
the continuous function x+ defined by

x+(z) :=

{
x(z) if z1 ≥ 0
0 if z1 ≤ 0

satisfies P ◦ x+ = 0 in D′(R r)

and is zero by the preceding remarks. This argument uses the first order
property of P ; I learned it from my colleague Peter Wagner. Hence the
map

{x ∈ C1(R r)n; P ◦ x = 0} → C1(R r−1)n, x 7→ x(0, zII),

is injective [5, Ch.1, pp.34-36]. This argument can be extended to distri-
butional solutions in C1(R ,D′(R r−1)) ⊂ D′(R r).
Correctness of the Cauchy problem in the present context characterizes
hyperbolicity. Indeed, according to [49, ch.15, Def. 15.1, Th. 15.1, Th.
15.2] the following assertions are equivalent:

(a) For F := C∞(R r) the map (2)

B → C∞(R r−1)n ×Fn, w =
(

x

u

)
7→

(
x(0, zII)

u

)

is an isomorphism.

(b) The system (4) is hyperbolic. This signifies that there is constant
C > 0 such that for every matrix A := A2ξ2 + · · ·Arξr − iA0, ξ ∈
R r, i :=

√−1, and every eigenvalue λ of A the inequality | im(λ) |≤
C holds.

Hyperbolicity for single equations is thoroughly discussed in [17, ch.XII].
Hyberbolic systems of the form (3) are defined and investigated in [9,
Ch. III, §3]. To my knowledge hyperbolicity has not been defined for the
general behaviors of the present paper.

Remark 3.4. (First order representations) In [55, section 6.1] E. Zerz proves
that any polynomial matrix R ∈ F [s1, · · · , sr]k×l admits an LFT- representation
(linear fractional transformation)

R = D + C∆(s)(idn−A∆(s))−1B where
n := n1 + · · ·+ nr, ∆(s) = diag(s1 idn1 , · · · , sr idnr )

A ∈ Fn×n, B ∈ Fn×l, C ∈ F k×n, D ∈ F k×l

det(idn−A∆(s)) = 1.

(5)

The latter condition is automatically satisfied if A is a strictly lower triangular
matrix, and hence representations (5) can be randomly generated for experi-
mental purposes. The polynomial matrix idn−A∆(s) is invertible and gives
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rise to the mutually inverse system isomorphisms

Blin := {
(

x

w

)
∈ Fn+l; Rlin ◦

(
x

w

)
= 0} ∼= {w ∈ F l; R ◦ w = 0}

(
x

w

)
=

(
(idn−A∆(s))−1 ◦Bw

w

)
↔ w

where Rlin :=
(

idn−A∆(s) −B
C∆(s) D

)
= (MR0) with

M =
(

idn−A∆(s)
C∆(s)

)
, R0 :=

(−B
D

)
,

hence Blin = {
(

x

w

)
∈ Fn+l; M ◦ x + R0w = 0}.

(6)

The system Blin is a first order system and a state system with state x and
manifest variables w in the sense of J.C. Willems [52, problem 1.12,p.56], but
not in the sense of the present paper. No analogue of result 3.2 holds in this
situation. For the solution of the Cauchy problem of R◦w = 0 the isomorphism
Blin

∼= B is of little use only since, in general, the canonical state representation
of Blin is not of the first order although the matrix Rlin is.

4 Discussion of Professor Pommaret’s remarks
and historical comments

1. In the very short discussion after my talk Professor J.-F. Pommaret from
the École Normale des Ponts et Chaussées, Champs sur Marne, stated, first in
public and then privately, that my talk and my paper [30] were prehistoric math-
ematics, were superseded by Janet, Spencer or Pommaret and altogether very
bad. Of course, I am of a different opinion, and I object against the use of such
vague arguments in a negative judgement of a mathematical paper. Defense
against such general derogatory statements is difficult. Since I was not the only,
but certainly the oldest participant of the conferences D2 and D3 who suffered
from this type of attack I nevertheless try to refute Pommaret’s assertions on
the basis of some details which he was so friendly to provide me orally.
2. I never heard of prehistoric mathematics before since I believe that people
had other problems in these times. But from Pommaret’s utterances in this
direction I conclude that non-prehistoric mathematics is that which was either
produced or quoted by him. I am grateful that some of my papers belong to
this group.
I object against Pommaret’s repeated statements, in particular at the D2 or D3
conferences and in context with my talk and submitted paper, that everything
essential has already been done by Janet, Spencer or Pommaret, and other peo-
ple have only copied their good ideas. I will address specific points below.
Around ten years ago in Innsbruck Pommaret gave us the valuable hint at
Riquier’s fundamental book [43] from 1910 and recommended it warmly so that
we invited his then PhD-student Quadrat to give us a mini-course with an in-
troduction to it which took place in 1998. We are grateful to both for this
enrichment of our knowledge. It is incomprehensible why these outstanding
mathematics should suddenly be prehistoric.
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Below I will expose my views of the history of the subject which often deviate
from those of Pommaret, and these may, of course, also be erroneous since I am
not a historian of mathematics. I apologize in advance for any mistakes. The
last items concern the particular results of my paper [30].
3. The following remark is taken from the introduction of Pommaret’s first book
[35] from 1978 which was dedicated to Professor Janet on the occasion of his
88th birthday. We quote some lines from pages 2 and 3 with slight changes of
the quotations and omissions to adapt them to the present situation.

Remark 4.1. (Begin of the quotation of [35, p.2,3])

1. p.2, lines 6−ff: The methods of Riquier [43], used again by Janet [18], a
student of Hilbert, in 1920 and modernized by Thomas and Ritt are quite
different and give an operational process that can be accomplished in a
finite number of steps in order to study any linear or nonlinear system of
PDE.

2. p.3, lines 2+ff.: [....] by differentiating as many times as necessary a given
finite number of PDE. This gives a way of computing certain derivatives
called principal as functions of the variables and of the other variables
called parametric. The method can be used both in the differentiable and
analytic cases but we have to suppose that certain regularity conditions
are fulfilled.
The problem is thus to know what are the principal and the parametric
terms in the Taylor formal expansion of any solution in a neighbourhood
of a given point.

3. p.3, lines 10−ff: Janet used a total ordering of the derivatives by means
of sets of integers, called cotes. Then, to any principal derivative, he
associated in a non-intrinsic way depending on the coordinate system, cer-
tain of the variables called multiplicative variables (the others being called
non-multiplicative).

4. p.3, lines 17+ff.: If this was done with respect to the non-multiplicative
variables, the elimination of the principal derivative obtained twice, was
used in order to start the elimination process and look for the compatibility
of the system. If two such computations done by any method gave the
same expression for any given principal derivative, the system was said to
be passive.

5. p.3, lines 20−ff.: Moreover, in the case of inhomogeneous linear systems
with second members, Janet employed a very important construction [18].
He proved in fact that, if the system was passive with zero second member,
then it was also passive with nonzero second member, if and only if the
second member itself satisfied certain differential conditions called integra-
bility conditions that could be considered as a new passive linear system
of PDE, and so on.

Remark 4.2. 1. Item 1. of the preceding remark shows that at the time of
writing [35] Pommaret still considered Riquier as the principal source of
the ideas. Pommaret’s attribution to Janet of the important terms princi-
pal, parametric, total ordering, passive, integrability condition is erroneous.
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All these terms were introduced and essentially used already by Riquier.
In a survey talk in Amsterdam in 2000 [29] I discussed Riquier’s termi-
nology in section 9. I use the notations of the present talk to explain the
connection. In this context the introduction of [43] is also enlightening.
However, anybody who reads [43] will notice that a translation of this
fundamental work into modern language is a substantial task.

2. total ordering, cotes: [43, p. XI, §102/103, p.195/196, §104, p.201], [31,
Assumption 28 on p.287], [30, Remark 3.2 on p.13]. In the Gröbner ter-
minology Riquier uses the most general graded term order.

3. passive: [43, §101, p.193]. In the Gröbner basis terminology and with the
notations of the present talk (pp.7-10) the system is called passive if the
rows of Ri−, i = 1, · · · , k are a reduced Gröbner basis of U . I also interpret
Pommaret’s Remark 4.1, (4), in this fashion.

4. principal, parametric: [43, p.169], [29, section 9]. For a passive system
and in the Gröbner basis terminology and with the notations of this talk
(pp.7-10) the principal resp. parametric derivatives correspond to the
lattice points in deg(U) resp. in Γ. Riquier attributes the terminology
to Meray (1880). The term parametric is motivated, for instance, by
theorem 1.4 or its more general form in [31] since the Taylor coefficients
(=free parameters) for the unique solution w of the Cauchy problem can
be freely prescribed for the lattice points in Γ.

5. dérivée cardinale: [43, §92, p.174]. In the Gröbner basis terminology the
cardinal derivatives are the S−polynomials.

6. compatibility, integrability condition: [43, Introduction, p.XIX,line 11+,
p.195].

4. In [35] Pommaret referred to [43], [18], the thesis of Quillen (1964) and
the long paper by Spencer (1965) on overdetermined linear systems of partial
differential equations. Thus the revival of Riquier’s and Janet’s work is obvi-
ously due to Pommaret. Another important contribution to this renaissance
was the paper [46] by Schwarz. In the mean-time many colleagues have written
papers which translate Riquier’s and Janet’s work into today’s language and
elaborate the algorithmic aspects of their work. In particular, this was done by
Pommaret and by myself.
What Pommaret does not mention at all are the preceding fundamental papers
on linear systems of partial differential equations with constant coefficients by
L. Ehrenpreis [7], B. Malgrange [25] and V. Palamodov [32] which were written
in the beginning sixties, the cited books followed later. Pommaret always, espe-
cially in [41, p.5, line 8+], shifts Palamodov’s important work into the seventies.
Hörmander [15] and Björk [3] exposed essential parts of this work with partially
simpler proofs. In my opinion Björk’s book is still the best source in this field
and much easier to understand than all of Pommaret’s books (compare MR
0549189).
These papers laid the foundations of true algebraic analysis in the sense that
much algebra was used for the solution of analytic problems. Of course, much
earlier Riquier and Janet and also Gröbner [13] worked in this area and their
work was not mentioned by the just cited authors.
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The term algebraic analysis was introduced, to my knowledge, by M. Kashiwara
et.al. in [21] where they exposed Sato’s hyperfunctions (analysis!!) and their
application to linear systems of partial differential equations with variable coef-
ficients. That hyperfunctions cannot be avoided in this context was also shown
for ordinary differential equations and one-dimensional systems theory in [8]. In
contrast, algebraic analysis or the formal theory of partial differential equations
in the sense of Pommaret are purely algebraic and are usually called D−module
theory [10] in the linear case. His books and papers contain few, if any, results
on the existence and uniqueness of solutions of systems of partial differential
equations in reasonable function spaces (compare Remark 3.3, item 2.)
5. The most important results on linear systems of partial differential equa-
tions with constant coefficients for C∞−functions or distributions by Ehrenpreis
et.al. are the so-called integral representation theorem, ie. the representation of
solutions as integrals over polynomial-exponential solutions, and the so-called
fundamental principle or injectivity of these function modules over the ring of
differential operators with constant coefficients. The fundamental principle sig-
nifies that a non-homogeneous linear system of partial differential equations
admits a solution if, in Riquier’s, Janet’s or Pommaret’s language, the neces-
sary compatibility or integrability conditions are satisfied (compare Remark 4.1,
item (5)). These compatibility conditions can be computed via Janet’s algo-
rithm [18]. In 1989 I used Buchberger’s algorithm for this purpose [27]. At this
time I was in the good company of many mathematicians who had no idea of
the work of Riquier and Janet.

The fundamental principle fails completely for variable coefficients and for-
mal power series contrary to Pommaret’s assertion, for instance in [41, p.4,
lines 4− − 1−], and therefore such a result was certainly not proven by Janet
or applied to generalize theorem 1.4. To see this consider one linear partial
differential equation P (z, ∂/∂z)(y(z)) = u(z) where u, y are formal power series
and P is a non-zero operator in the r−dimensional Weyl algebra. Since the
latter is an integral domain there are no compatibility conditions, and therefore
the fundamental principle for power series would imply that there is always a
solution y for given u. The simple ordinary differential equation z1y

′(z1) = 1
with the solution log(z1) 6∈ C [[z1]] shows that this is false.
Of course, if the system is analytic and if according to Remark 4.1, item (2), cer-
tain regularity conditions are satisfied and if, in particular, the singular points
are omitted then local solutions exist and have already been constructed by
Riquier. For the formal power series of [41, p.4, lines 4− − 1−] such an omis-
sion makes no sense because, in general, a formal power series has no Taylor
development at a point different from zero. Also universal differential fields are
injective modules over the corresponding rings of differential operators, so that
the fundamental principle is valid in them. But solutions in them are uninter-
esting according to [36, Rem. 3.27, p.228], especially for engineers.
The introduction of Malgrange’s new article [26, Introduction, p.1, line2+, p.3,
lines 20+ ff.] also contains an interesting historical survey. Its second line says
”...sur l’involutivité générique des systèmes différentiels analytiques” or, in other
terms, generically, such a system has a solution if the compatibility conditions
are satisfied. In contrast to, for instance, theorem 1.4 generic signifies that so-
lutions exist in most cases, but not in all, and that, in particular, the behavior
of solutions in singular points is not discussed.
The fundamental principle is valid for ordinary linear differential equations and
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hyperfunctions, but not for distributions [8].
At the conference D2 several colleagues talked on the solution of one inhomoge-
neous linear partial differential or difference equation with polynomial or power
series coefficients in various function spaces of polynomials, formal or convergent
power series, hypergeometric functions etc. or, equivalently, on the divisibility
of these function spaces over various rings of differential or difference operators,
among these S. Abramov, C. Christopher, F. Castro, S. Gann, H. Hauser, M.
Petkovsek, G. Reid, F. Schwarz, N. Takayama, S. Tsarev, J.M. Ucha. Janet,
Spencer or Pommaret did definitely not have any algorithm for the solution of
their problems.

6. Pommaret insinuates that theorem 1.2 on the Hilbert function, series and
polynomial (=theorem 2.3 above or [30, Th. 3.5]) is contained in his books.
This is false.
The context of the theorem and in particular its relation to other work is de-
scribed in detail and with various references in section 2 where also its one
page proof from [30] is reproduced. Pommaret criticizes in particular that I
do not mention the characters, ie. the coefficients of his Hilbert polynomial
which were actually introduced by Hilbert himself [Math. Annalen 36 (1890)].
I learned them and their history in 1972 from Gröbner’s excellent description
in [14, pp.159-167, in particular (1.25 a-d) ].
In the first book [35] Pommaret defines the characters αi

q [35, p.95, line 12−,
Def. 3.2.5] and refers [35, Rem. 2.3 on p.94] to [18] in this context. The fur-
ther text uses δ−regular coordinate systems [35, Def. 3.2.7 on p.96] and equa-
tions of class i. The pages pp.98 also describe, for δ−regular coordinates, a
method of computing the characters by means of other numbers βi

q, principal
and parametric derivatives, multiplicative and non-multiplicative variables etc.
The Hilbert polynomial and characters are also treated in in [36, pp.251] and
[38, p.277] without algorithms, in [39, Cor. 2.35 on p.330] with essentially the
same derivation as the one quoted from [35] and shortly also in [41, section I.3.3
and after Th. 6.14] where again the classes, multiplicative variables etc. are
used. Moreover additional elementary combinatorics is needed for the compu-
tation of the Hilbert polynomial [39, p.330, line 6−]. Also the exact assumptions
of [39, Cor. III.2.35] are very hard to extract from [39] if at all. Pommaret’s
descriptions are not algorithms in today’s (non-prehistoric) understanding and
their derivation can moreover be understood only by reading and understand-
ing the pages [39, pp.298-330]. There he lays the foundations for the theory of
non-linear systems of partial differential equations on differentiable manifolds
in a language which is absolutely unnecessary for the Hilbert function of poly-
nomial modules and in particular for my paper. Although almost thirty years
have passed since the publication of [35] and although in the mean-time vari-
ous people know about this and other books of the author apparently nobody
has ever used his presentation for actually computing the Hilbert polynomial.
Why? This is all the more surprising since today’s young computer algebraists
are always keen on learning new algorithms and on implementing them as, in
particular, the conferences D2 and D3 have shown.
In contrast, theorem 1.2 gives a closed formula for all values HF (m),m ∈ N , of
the Hilbert function and thus for the Hilbert series and not only for the Hilbert
polynomial, of course based on Riquier’s decomposition Γ = ]α∈∆(α + N S(α))
from theorem 1.1, (compare section 2) which is obtained by Buchberger’s algo-
rithm and elementary combinatorics [31, section 2.2] and which also represents
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a (non-trivial) translation of Riquier’s work into modern language. The com-
plete proof of theorem 1.2 including all the preparatory and historical remarks
requires three pages, compare section 2 above. I agree that my closed formulas
and Pommaret’s derivations described above have something in common. This
is not surprising at all since I rely on the Riquier decomposition of Γ and Pom-
maret refers to the work of Janet who used and knew Riquier’s work according
to Pommaret’s remarks 4.1, item (1). But my proof uses only the set Γ of para-
metric derivatives, its Riquier decomposition and the corresponding basis de-
composition of the module M whereas the multiplicative and non-multiplicative
variables used in Pommaret’s derivation refer to the set of principal derivatives
according to Pommaret’s remarks 4.1, item (3). So Pommaret’s and my deriva-
tions do certainly not coincide. D. Robertz in his talk and software presentation
during the conference D2 described an implementation of (a variant of) Riquier’s
decomposition and this can be used to compute the Hilbert data [33], [44]. The
paper [33] appeared one year ago when I submitted [30]. The authors knew [31]
and present a survey of Janet’s and not of Riquier’s work.
7. Pommaret insinuates that theorem 1.4 (=theorem 3.2 in section 3) on the
Cauchy problem was shown by Janet, Pommaret etc. This is false.
Its context is described in section 3 and in particular in items 1-7 of Remarks
3.3 with many references to the literature on partial differential equations, in
particular to the treatises of the outstanding analysts Gelfand and Shilov [9],
Hörmander [16], [17], Palamodov [32] and Egorov and Shubin [5], [6]. The the-
orem was quoted from [31] where we improved and extended the corresponding
work in [27].
The proof of the unique existence theorem [43, Théorème d’Existence, p.254]
for (passive and orthonomic non-linear) systems of partial differential equations
and locally convergent power series is due to Riquier and not to Janet. Ten
years later [18] Janet gave a new proof of Riquier’s result and in particular a
simpler algorithm after he had studied more algebra with Hilbert. Compare
Pommaret’s remarks 4.1, item (1), above.
In [31, th.29] we also gave a new proof of Riquier’s theorem, only for linear
systems of partial differential equations with constant coefficients, but in mod-
ern language and with a much shorter proof, and we acknowledged our debt to
Riquier in several papers and in particular in [31] and my talk. In [27, pp.98-99]
we proved the unique solvability of the Cauchy problem for linear systems of
partial difference equations with constant coefficients for formal power series and
described a solution algorithm which used Buchberger’s algorithm. The paper
[31, th.24] contains a better solution algorithm which was presented by Pauer
at the conference D2 and the same result for locally convergent power series.
Difference equations were not treated by Riquier, Janet, Spencer or Pommaret,
but are as important for multidimensional systems and signal processing as
their differential counter-part. By looking at those mathematical or engineering
books on difference equations which also treat partial difference equations and
multivariate functions, sequences or signals everybody can convince themselves
that the results of [27] and [31] have added quite a bit in this important field of
engineering mathematics.
8. My paper [30] on Canonical State Representations presents the definition
and construction of these. Pommaret considers these inappropriate and rejects
them since they are not of the first order.
To start the discussion on this matter I again quote from Pommaret’s publica-
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tions in italics and give my comment right away.

Remark 4.3. 1. (i) [37, p.310, line 1−−]: We deal first with the state in
order to convince the reader that the state representation must be avoided
by any means. (ii) [40, text before prop.3]: Having understood that the
concept of state is just a way to bring formally integrable (involutive)
systems to formally integrable (involutive) first order systems with no zero
order equation [....] (iii) [41, p.26, line 9−] We shall prove that the Kalman
form is nothing else but a particular case of the Spencer form [.....] No
reference to control theory is needed [....] It is not so well known that such
a method, which allows to bring a system (Rq) of order q to a system of
order 1, is only truly useful when Rq is formally integrable. Indeed, in this
case and only in this case, Rq+1 can be considered as a first order system
over Rq without equations of order zero.
Should the state be considered or should it not, that is the question.

2. [37, p.311, line 1+−]: Indeed state is what must be given in order to
integrate the control system whenever the input is given.
This is exactly what theorem 1.4 says for signals in various spaces of power
series. In contrast and to my knowledge Pommaret’s books do not contain
any results in this direction since integration of a system or, in other terms,
construction of solutions in reasonable signal spaces is not addressed at
all.

3. Pommaret’s modified Spencer form as a generalization of the Kalman form
[40, Def.4] is a first order system and therefore obviously different from
my canonical state representation which, in general, is not of the first
order. As quoted in [30] and in section 3 (compare equations (5) and (6))
Zerz [55] and Willems [52], [45] also consider and construct first order
representations of linear systems with constant coefficients. But neither
Pommaret nor these authors show an analogue of theorem 1.4 for their
first order systems.

4. In Theorem 1.5 and its original [30, Th. 5.12, Th. 5.14] I show that
every multidimensional system is isomorphic to a system in state form to
which Theorem 1.4 is applicable. In my opinion, but also according to
Pommaret’s remark (2), this property is a decisive property for a state
representation, and I prefer it to the first-order property of the system.
Example [30, 5.16] shows that first-order systems may hide non-apparent
complications.

5. My state systems apply to partial differential, partial difference and also to
delay-partial differential linear systems with constant coefficients. They
are generalizations of those non-first-order systems considered in [9] as
explained in remark 3.3, item 4. Also the books [16], [17], [5], [6] show
that leading analysts do not solve partial differential equations by first
reducing them to first order. The constant coefficient linear systems which
I consider and the even variable coefficient linear systems which Pommaret
investigates have not yet been studied in so much detail, and the future
will show which reductions to state form are preferable. Everybody is
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invited to study and understand these different approaches and to make
their choice.

9. Janet’s paper [18]: In a very recent message to me F. Castro, Sevilla,
points out that Riquier’s decomposition is also explicitly contained in Janet’s
paper. Therefore I add some remarks on it although I have never used Janet’s
results in my papers and therefore did not read [18] in detail. As the foundation
of my algorithms I primarily used Buchberger’s Gröbner basis theory [27] and
later also Riquier’s work [31]. Colleagues like Apel, Blinkov, Castro, Gerdt,
Plesken, Pommaret et.al. could discuss Janet’s contributions in more detail.
In the introduction of [18] Janet quotes early papers of Riquier and the book
[43] and writes:
(i) p.66, line 11+ff.:Cette forme canonique générale est due à M. Riquier, qui a
le premier, en 1892, démontré l’existence des solutions d’un système différentiel
quelconque.
(ii) p.66, lines 11−, 12−: Le présent travail a pour objet principal l’exposition
simple des résultats de M. Riquier. Cette exposition nous conduira naturelle-
ment à certains résultats de nature algébrique qui complètent la théorie des
formes donnée par M. Hilbert.
Surprisingly and as far as I can see, Janet does not distinguish between Riquier’s
and his own original contributions in his paper, in particular he does not refer
to the precise sections of [43] from which he extracted the ideas for his simplifi-
cation of Riquier’s work. An exception is the reference to the cotes [18, p.102,
footnote].
Below I compare some of Janet’s results from [18] with those of the present
talk with the notations from pages 9 ff. Of course, I use the Gröbner basis the-
ory whereas Janet had to develop its analogue on the basis of Riquier’s work.
The colleagues just mentioned have, in particular, translated Janet’s work into
modern language, but may have missed at various instances that Riquier is the
original source of many of Janet’s results.
(a) In Chapter I of [18] and also in Chapter II Janet discusses the combinatorial
theory of the monoid N r, of its ideals N = N + N r, called modules in [18,
Section 3, p.70], and, more generally, of order submodules

N := N + N r ⊂ I × N r and their complement Γ := (I × N r) \N, (7)

the principal application being that to N := deg(U). In our generalization and
translation [31, Section 2.2, pp.269-274] of Riquier’s results from [43, pp.143-168]
the main result is the canonical disjoint decomposition

I × N r = Γ ]N, Γ := ]α∈∆Γ(α + N S(α)), N := ]α∈∆N
(α + N S(α)),

∆N ]∆Γ = finite subset of I × N r.
(8)

In the quoted pages Riquier treats only the decomposition of Γ which is sufficient
for the purposes of the present paper, but not for the derivation of the Janet
algorithm for the ring of linear differential operators. Our proof proceeds by
induction as does Janet’s derivation discussed in the following lines.
In [18, §6,§7,§8 on pp.74-79, §13 on pp.88-91] Janet uses a finite subset M⊂ N r

and the order ideal N := M+N r generated byM, essentially proves the disjoint
decomposition (8) ifM is complete [18, p.79, line 7−], and describes a completion
algorithm [18, Section 9, pp.80-83]. With the notations from (8) the sets

C(α) := {sα+µ; µ ∈ N S(α)}, α ∈ ∆N ]∆Γ ⊂ N r (9)
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are called classes of size m if S(α) has m elements. The indeterminates

si,

{
i ∈ S(α)
i 6∈ S(α)

are called

{
multiplicative
non-multiplicative

with respect to C(α).

(10)
However, Janet introduces this terminology also for a finite set sµ, µ ∈ M, of
monomials which is not complete. Compare [18, p.75, line 1−, p.89, line 8+]
for multiplicative and [18, p.76, line 8−, p.89, line 11+] for class. This is the
reason that the details of Janet’s derivation of (8) differ quite a bit from our
presentation in [31, Section 2.2]. I emphasize again that both Janet’s deriva-
tions and also [31] are only translations of Riquier’s work into the language of
the time. I believe that our presentation in [31] based on the Gröbner basis
theory is easier to understand for today’s readership than the important, but
also difficult paper [18].
Contrary to Pommaret’s remark 4.1, item (3), the preceding discussion shows
that Janet used the multiplicative variables not only for N = deg(U) or the
principal derivatives, but also for Γ or the parametric derivatives.
(b) The following quotations are taken from [18, Chapter II]:
(i) p.98, line 8+: Afin de simplifier le langage, nous les supposerons linéaires;
mais tout ce que nous dirons pourra s’étendre à des équations quelconques, sous
réserve des conditions de régularité habituelles..
(ii) p.98, line 11+ ff.: Les combinaisons d’équations que nous considérons seront
toujours de combinaisons linéaires homogènes (résultats obtenues en addition-
nant ces équations membre à membre après les avoir éventuellement multipliées
par des fonctions des variables indépendantes.
(iii) p.98, line 13− ff.: Il ne s’agira dans cette étude, comme l’exige la généralité
du problème, que de fonctions développables en série de Taylor.
In my interpretation and today’s language this signifies that the solutions and
the coefficients of the linear differential operators belong to the space C {z1, · · · , zr}
of (locally) convergent power series or of analytic functions in a neighborhood
of some point in C r.
p.107, line 3+ ff.: Si, par dérivations et combinaisons, on ne peut tirer de (C)
aucune relation entre les seules dérivées paramétriques (et variables indépendantes),
on dira que le système est complètement intégrable.
This notion is also due to Riquier. For linear systems with constant coeffi-
cients complete integrability signifies that the rows of R are a Gröbner basis of
U = C [s]1×kR and that the necessary compatibility conditions are satified [29,
Cor.16].
p.116, footnote: Dans ce genre de raisonnements, il est sous-entendu que l’on
se place au voisinage d’un système de valeurs (des variables indépendantes et
des dérivées des premières classes) pour lequel toutes les résolutions successives
supposées dans le texte sont possibles conformément à la théorie générale des
fonctions implicites.
In my interpretation this sentence signifies that Janet’s reduction of a system
to completely integrable form is only generically true. This agrees with the re-
sults of Malgrange [26], but contradicts Pommaret’s repeated statements that
the linear systems of partial differential equations with variable coefficients are
always solvable in formal power series if the algebraic compatibility conditions
are satisfied. Compare the simple counter-example in paragraph 5 above. The
reason is that the used resolutions of linear equations with variable coefficients
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for the highest derivative require a division in general, and the resulting mero-
morphic coefficients are analytic only in the complement of an analytic set. The
implicit function theorem is used if a non-linear equation is solved for the high-
est derivative.
(c) In [18, Ch. II, §13] Janet applies his theory to the polynomial algebra
(C [s1, · · · , sr] in my talk) or to linear differential operators with constant coef-
ficients in a short discussion. Like Hilbert he considers forms or homogeneous
polynomials and ideals only and not arbitrary finitely generated polynomial
modules as in Theorem 1.2(=Th. 2.3). The main result is Hilbert’s syzygy the-
orem.
The Hilbert polynomial (compare [18, p.121, line 1+]), but not the whole Hilbert
function as in Th. 1.2 is considered in [18, Ch.I, §14 on p.91 and Ch.II, pp.121-
122], but no closed formulas as in Th. 1.2 are exhibited. Paragraph §14 on p.121
describes the highest term of the Hilbert polynomial of the homogeneous ideal.
With the notations of the more general theorem 1.2 it is shown that

HPM =
µ

d!
td + · · · , d = dim(M) = maxα∈∆ | S(α) |,

µ = number of S(α) with | S(α) |= d.
(11)

The natural numbers d resp. µ are interpreted as the dimension of the associated
variety resp. its multiplicity. It is again surprising that Macaulay’s treatise [24]
is not mentioned in context with these considerations.
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