A Gröbner basis approach to list decoding of Reed-Solomon and Algebraic Geometry Codes.

Henry O’Keeffe and Patrick Fitzpatrick
Boole Centre for Research in Informatics,
National University of Ireland, Cork,
Ireland.
{h.okeeffe,p.fitzpatrick}@ucc.ie

“Gröbner Bases in Cryptography, Coding Theory, and Algebraic Combinatorics”

A Gröbner basis approach to list decoding of Reed-Solomon and Algebraic Geometry Codes.

Overview

- List Decoding
- Sudan’s algorithm
 - Reed-Solomon codes
 - 1–Point Algebraic Geometry codes
 - The algorithm and variations
 - module formulation for the interpolation step
 - soft decision
- Gröbner Basis module solution
 - Gröbner Bases for modules
 - general module algorithm/term orders
 - common decoding algorithm
Term Orders

Let F be any field and $A = F[x_1, \ldots, x_s]$ be the polynomial ring in s indeterminates over F. The terms of A are power products $x_1^{n_1}, \ldots, x_s^{n_s}$.

A^L is a free A-module and has a standard basis $\{e_1, \ldots, e_L\}$.

The terms of A^L are of the form

$$We_j, j \in [L], W \text{ a term of } A.$$

We define a term order $<$ on the terms of A^L as a total order with the following properties

$$X < WX, W \neq 1 \text{ a term of } A, X \text{ any term of } A^L.$$

and

$$WX < WY, W \text{ any term of } A, X, Y \text{ any terms of } A^L \text{ with } X < Y.$$
A Gröbner basis approach to list decoding of Reed-Solomon and Algebraic Geometry Codes.

List decoding

For a block linear block code . . .

- Complete (*nearest neighbour*) decoding is an NP–complete problem

- If we assume a bound on the number of errors (*bounded decoding*)
 - does not exceed half the minimum distance
 * unique codeword produced
 * efficient algorithms exist for many codes (e.g. B-M, BMS)
 - otherwise
 * Elias (1957) and Wozencraft (1958)
 * codeword not always unique – hence a *list*
 * until recently, no efficient algorithms
A Gröbner basis approach to list decoding of Reed-Solomon and Algebraic Geometry Codes.

Sudan’s algorithm

Sudan (1997) presented a polynomial-time algorithm for the list decoding of (low rate) Reed-Solomon codes. It has two steps:-
1) find a polynomial by interpolation
2) factorise that polynomial to yield the list of valid codewords.

Its applicability was extended to (low rate) 1-point AG codes by Shokrollahi and Wasserman (1999).

Guruswami and Sudan (1999) enhanced the algorithm to address RS and AG codes of all rates.

Pellikaan and Wu (2004) shows that Reed-Müller codes of certain orders can be described by 1-point AG codes.
Reed Solomon codes

Let F_q be the finite field with q elements and $F_q[x]$ the ring of polynomials in one indeterminate over F_q. A Reed-Solomon code of dimension k and length $n = q - 1$ can viewed as the evaluation of polynomials in $F_q[x]$ with degree less than k at the n non-zero elements of F_q. We can define the Reed-Solomon code as the subspace

$$C_q(n, k) = \{(f(\delta_1), \ldots, f(\delta_n)) | f \in F_q[x], \partial f < k\}.$$
Let χ be an absolutely irreducible curve of genus g over F_q. Denote the $n + 1$ F_q-rational points on χ by $P_1, \ldots, P_n, P_\infty$ and the field of rational functions on χ by $F(\chi)$.

Define

- R_∞ the ring of elements of $F(\chi)$ with poles only at P_∞
- $\mathcal{L}(\ell P_\infty)$ the subset of R_∞ whose pole order at P_∞ is at most ℓ.

A 1-point AG code can be defined as the vector space (over F_q)

$$C_\chi(\ell, P_\infty) = \{(f(P_1), \ldots, f(P_n)) | f \in \mathcal{L}(\ell P_\infty)\}.$$

(with dimension $\ell - g + 1$)
The received word and the interpolation step

Suppose \((c_1, \ldots, c_n)\) is transmitted and \((y_1, \ldots, y_n)\) is received.

- For a RS (resp. AG) code, each element of a codeword \(c_j\) takes value of a polynomial (resp. rational function) at a corresponding field element \(\delta_j\) (resp. rational point \(P_j\)).

- The first step in Sudan-type list decoding involves finding a non-zero polynomial \(Q\) which pass through the points \((y_j, \delta_j)\) (resp. \((y_j, P_j)\)) “\(m\)” times. The choice of multiplicity \(m\) and related contraints on the degree of \(Q\) guarantees that the polynomials (resp. rational functions) which generate the required codewords are to be found among the factors of \(Q\).
A Gröbner basis approach to list decoding of Reed-Solomon and Algebraic Geometry Codes.

Multiplicity – Reed Solomon code case

- \(Q \in F_q[x, y] \) such that coefficients of \(Q(x + \delta_j, y + y_j) \) are zero for terms of total degree less than \(m \).
A Gröbner basis approach to list decoding of Reed-Solomon and Algebraic Geometry Codes.

Multiplicity – Algebraic Geometry code case

- $\mathcal{K} = \bigcup_{r=0}^{\infty} \mathcal{L}(rP_\infty)$ is a field and $\mathcal{L}(\ell P_\infty)$ is a vector space of dimension $\ell - g + 1$ over F_q
 - At the point P_∞ there is a basis of functions $\phi_i \in \mathcal{K}$ with increasing pole order at P_∞.
 - At each rational point P_j there is a (vector space) basis of functions $\psi_{i,j} \in \mathcal{K}$ with increasing zero order at P_j.

- $Q \in \mathcal{K}[y]$, expanded around a basis with respect to P_∞, such that coefficients of $Q(y + y_j)$ expanded with respect to P_j are zero for terms $y^{j_1} \psi_{j_2,j}$ where $j_1 + (j_2 - 1) < m$.

(By inserting the zero function in the g “gaps”, these bases can be extended to ones with $\ell + 1$ elements. As we shall see, the soft decision problem uses the latter and the hard decision the former)
A Gröbner basis approach to list decoding of Reed-Solomon and Algebraic Geometry Codes.

"Degree" constraints

- **RS**
 - For $Q \in F_q[x, y]$ the (a, b)–degree(Q) is the maximum value of $ai + bj$ among all terms $x^i y^j$ with non-zero coefficients of Q.
 - A limit K on the $(1, k)$–degree(Q) combined with the multiplicity requirements ensure the existence of the interpolating polynomial.

- **AG**
 - $\alpha = k + g - 1$, $s = \lfloor \frac{\ell - g}{\alpha} \rfloor$ and $L = \ell - g + 1$
 - $Q[y]$ is required to have the form
 $$Q[y] = \sum_{i=0}^{s} \sum_{j=1}^{L-\alpha i} q_{ij} \phi_j y^i$$
Module formulation

With these constraints, the solutions to the interpolations can be viewed as elements of free modules $F_q[x]^L$.

- **RS**
 - A limit on the $(1, k)$-degree(Q) means that the maximum value of the exponent of y is less than L for some $L \in \mathbb{N}_0$.
 - On that subset of $F_q[x, y]$, define $\mu : F_q[x, y] \to F_q[x]^L$
 \[
 \mu(x^i y^j) = x^i e_{j+1}
 \]
 and extend by linearity.
 - Define $H : F_q[x]^L \to F_q[x]^L$
 \[
 H(b) = \mu(\mu^{-1}(b)(x + \delta_j, y + y_j))
 \]
A Gröbner basis approach to list decoding of Reed-Solomon and Algebraic Geometry Codes.

- H is F_q linear and
 \[H(xb) = (x + \delta_j)H(b). \]

- The transformed problem then seeks elements $b \in F_q[x]^L$ where, for each interpolation “point”,
 * all the terms $x^i e_j$ of b satisfy $ik + (j - 1) < K$
 * coefficients of $H(b)$ are zero for terms $x^i e_j$ with $i + (j - 1) < m$.

- **AG**
 - By associating ϕ_i with e_i, we can view Q as an element Q_M of $F_q[y]^L$.
 - Similarly, by associating $\psi_{i,j}$ with e_i, $Q(y + y_j)$ expanded at point P_j can be viewed as an element $Q_M^{(j,y_j)}$ of $F_q[y]^L$.
 - Define $H : F_q[y]^L \to F_q[y]^L$ as the function that maps Q_M to $Q_M^{(j,y_j)}$.
A Gröbner basis approach to list decoding of Reed-Solomon and Algebraic Geometry Codes.

- H is F_q linear and

$$H(yb) = (y + y_j)H(b).$$

- The solutions sought are elements $b \in F_q[y]^L$ where, for each interpolation “point”,
 * all the terms $y^i e_j$ of b satisfy $\alpha i + (j - 1) < L$
 * coefficients of $H(b)$ are zero for terms $y^i e_j$ with $i + (j - 1) < m$.

- For single indeterminate z, $\langle \{z^i e_j | i + (j - 1) = m\} \rangle$ is a submodule of $F_q[z]^L$.
A Gröbner basis approach to list decoding of Reed-Solomon and Algebraic Geometry Codes.

Soft-decision

Instead of a “hard” received word \((y_1, \ldots, y_n)\), the channel (or inner code) may present *reliability* information.

Kötter and Vardy (2000)
- a soft-decision list decoding algorithm
- Reed Solomon and 1-point AG codes
- modelled on Sudan’s algorithm
A Gröbner basis approach to list decoding of Reed-Solomon and Algebraic Geometry Codes.

Reliability to multiplicities

- An RS (resp. AG) code of length n defined over $F_q = \{\alpha_1, \ldots, \alpha_q\}$.
- Reliability information leads to a $q \times n$ reliability matrix Π of posterior probabilities

 $\pi_{ij} = Pr(\alpha_i \text{ sent} | y_j \text{ received}), i \in [q], j \in [n]$.

- (qn) multiplicities m_{ij} are derived from Π via a greedy algorithm.
- Require Q to “pass through” the points (δ_j, α_i) (resp. (P_j, α_i)) m_{ij} times.
- This is a more general form but essentially the same problem as the hard information case.
A Gröbner basis approach to list decoding of Reed-Solomon and Algebraic Geometry Codes.

A choice of term order for these problems

A term order \(<_{c,w} \) of the module \(F[z]^L \) can be defined by using a
weight-vector \(w = (w_1, \ldots, w_L) \in \mathbb{N}^L \) and \(c \geq 1 \in \mathbb{N} \)
as follows:

\[
z^n e_j <_w z^m e_i
\]

when \(cn + w_j < cm + w_i \) or \(cn + w_j = cm + w_i \) and \(i < j \).

Ignoring the degree constraints, the solution set to these problems
forms a submodule of \(F_q[z]^L \). Since the existence of a solution
satisfying the degree constraints is guaranteed, \textit{a fortiori} a minimal
element (contained in a Gröbner basis with respect an instance of
this term order) will also be a solution.
The *leading term* of a module element f is the greatest of its terms with respect to the term order and will be denoted by $lt(f)$.

For M a submodule of A^L, let $< lt(M) >$ be the submodule generated by the leading terms of the elements of M.

A set $G = \{ g_1, \ldots, g_t \}$ is a Gröbner basis for M if $< lt(M) > = < lt(g_1), \ldots, lt(g_t) >$.

G has the following properties:
- it is a generating set for M
- it contains an element which is minimal with respect to $<$.

A *strictly ordered* Gröbner basis is one which is ordered by the leading terms of its elements and those leading terms are strictly increasing.
The general problem

Again, let $A = F[x_1, \ldots, x_s]$. We seek solutions $b \in A^L$ which satisfy a sequence of p congruences

$$H^{(k)}(b) \equiv 0 \text{ mod } M^{(k)}, \ k = 1, \ldots, p$$

where $M^{(k)}$ are A–modules.

Each $H^{(k)}$ is an F–linear function such that for each $i, 1 \leq i \leq s$ there exists $\gamma_i^{(k)} \in F$ satisfying

$$H^{(k)}(x_i b) = (x_i + \gamma_i^{(k)})H^{(k)}(b)$$

for all $b = (b_1, \ldots, b_L) \in A^L$. The solution set is a submodule of A^L.
The Module Sequence

Our general algorithm is applicable providing that for each $M^{(k)}$ we have a (descending) chain of modules

$$M_0^{(k)}, \ldots, M_\ell^{(k)}, \ldots, M_{N_k}^{(k)} = M^{(k)}$$

with F–homomorphisms θ_ℓ so that for each ℓ

$$M_\ell^{(k)} \supseteq M_{\ell+1}^{(k)}$$

$$\theta_\ell^{(k)} : M_\ell^{(k)} \rightarrow F, \ker(\theta_\ell^{(k)}) = M_{\ell+1}^{(k)}.$$ \hspace{1cm} (1)

As a consequence, there are constants $\beta_i^{(\ell,k)}$ where

$$(x_i - \beta_i^{(\ell,k)})M_\ell^{(k)} \subseteq M_{\ell+1}^{(k)}, \ 1 \leq i \leq s.$$ \hspace{1cm} (2)
The Incremental Step

Theorem 1 Let M be an A–module and let $M_{\ell} \supseteq M_{\ell+1}$ be submodules of M satisfying (1) for suitable θ_{ℓ}, β_i. Let $H : A^L \rightarrow M$ be an F–linear function such that for each $s, 1 \leq i \leq s$ there exists $\gamma_i \in F$ satisfying

$$H(x_i b) = (x_i + \gamma_i) H(b)$$

for all $b = (b_1, \ldots, b_L) \in A^L$.

Let $S \subseteq A^L$ be a submodule satisfying

$$H(b) \equiv 0 \mod M_{\ell} \text{ for all } b \in S$$

and let $S' \subseteq S$ be the set of elements satisfying

$$H(b) \equiv 0 \mod M_{\ell+1}.$$

Then S' is a submodule of A^L.
If \mathcal{W} is a strictly ordered Gröbner basis of S relative to a term order $<$ then a Gröbner basis \mathcal{W}' of S' relative to $<$ can be constructed as follows

Define $\Delta_j := \theta_\ell(H(\mathcal{W}[j]))$ for $1 \leq j \leq |\mathcal{W}|$.

$\mathcal{W}' = \text{incremental-step}(\mathcal{W}, [x_i], [\Delta_j], [\beta_i], [\gamma_i])$

Proc incremental-step()

If $\Delta_j = 0$ for all j then

$\mathcal{W}' = \mathcal{W}$

otherwise

$j^* := \text{least } j \text{ for which } \Delta_j \neq 0$

$\mathcal{W}_1 := \{\mathcal{W}_j : j < j^*\}$

$\mathcal{W}_2 := \{(x_i - (\beta_i + \gamma_i))\mathcal{W}[j^*] : 1 \leq i \leq s\}$

$\mathcal{W}_3 := \{\mathcal{W}[j] - (\Delta_j / \Delta_{j^*})\mathcal{W}[j^*] : j > j^*\}$

$\mathcal{W}' := \mathcal{W}_1 \cup \mathcal{W}_2 \cup \mathcal{W}_3$

End
The Iterative Algorithm

- By ordering the output of the incremental step, the produced Gröbner basis can be used as the input to the next step.
- Any module $M_{\ell}^{(k)}$ can be chosen for the next step providing, of course, that the congruence $H^{(k)}(b) \equiv 0 \mod M_{\ell-1}^{(k)}$ has been processed by an earlier step.
• Let $T^{(i)} = T_{(j_1,...,j_p)}$ be the submodule of A^L which satisfies
\[H^{(k)}(b) \equiv 0 \mod M_{j_k}^{(k)}, \quad k = 1, \ldots, p \]
and let $T^{(0)} = T_{(0,...,0)}$ be an initial module for which a Gröbner basis is known. $T = T_{(N_1,...,N_p)}$ is the submodule for which a Gröbner basis is sought.

• If $j_k \leq j'_k$ for all $k \in \{1, \ldots, p\}$ then $T_{(j_1,...,j_p)} \supseteq T_{(j'_1,...,j'_p)}$. In this way we can define a descending chain of modules $T^{(0)} \supseteq \cdots \supseteq T^{(i)} \supseteq \cdots \supseteq T$.

• Suppose that we have a strictly ordered Gröbner basis for $T^{(i)} = T_{(j_1,...,j_p)}$. Then, providing $j'_k = j_k + 1$ for exactly one $k \in \{1, \ldots, p\}$, and $j'_k = j_k$ otherwise, the incremental step provides a Gröbner basis for $T^{(i+1)} = T_{(j'_1,...,j'_p)}$. The resulting Gröbner basis can then converted into a strictly ordered Gröbner basis (by a function ord, say).
A Gröbner basis approach to list decoding of Reed-Solomon and Algebraic Geometry Codes.

Input

functions $H^{(k)}$

constants $\gamma_i^{(k)}$, $1 \leq k \leq p$, $1 \leq i \leq s$

modules $M^{(k)}_\ell$ and homomorphisms $\theta^{(k)}_\ell$,

$1 \leq k \leq p$, $0 \leq \ell \leq N_k$

constants $\beta_i^{(k,\ell)}$,

$1 \leq k \leq p$, $1 \leq i \leq s$, $0 \leq \ell \leq N_k$

< a term order on A^L

\mathcal{W}_0 a strictly ordered Gröbner basis of $T^{(0)}$

Output

\mathcal{W} a strictly ordered Gröbner basis of the submodule T
The function \textit{nextmod} selects the next module in the decending chain i.e. sets up the input for the incremental step to find those elements of \textit{module} which additionally satisfy

\[H^{(k)}(b) \equiv 0 \mod M^{(k)}_{\ell+1}. \]

\begin{center}
\textbf{Main Routine}
\end{center}

\begin{align*}
\mathcal{W} &:= \mathcal{W}_0 \\
\text{For module from } T^{(0)} \text{ to } T \\
(k, \theta_\ell) &= \text{nextmod(module)} \\
\Delta_j &:= \theta_\ell(H^{(k)}(\mathcal{W}[j])) \text{ for } j \in [\|\mathcal{W}\|] \\
\mathcal{W}' &= \text{incremental-step}(\mathcal{W}, [x_i], [\Delta_j], \beta^{(k,\ell)}_i, \gamma^{(k)}_i) \\
\mathcal{W} &:= \text{ord}(\mathcal{W}')
\end{align*}
Initialisation

In these applications $M_0^{(k)} = A^L$. The standard basis of A^L, ordered with respect the chosen term order, will be the initial basis for the solutions to

$$H^{(k)}(b) \equiv 0 \mod M_0^{(k)}, k = 1, \ldots, p$$
Particular cases

- The interpolations have been transformed into congruences involving a single indeterminate.

- In the case of a single indeterminate, $F[z]$, and beginning with the standard basis, the number of elements ($=L$) is unchanged at each step and ord is a simple function which merely inserts \mathcal{W}_2 into the correct location.

- If \mathcal{W}_2 exceeds the degree constraints, it can be dropped by the ord function and the size of the Gröbner basis could be reduced by 1.
The Incremental Step – single indeterminate case

When $A = F[z] \ldots$

Define $\Delta_j := \theta_\ell(H(\mathcal{W}[j]))$ for $1 \leq j \leq |\mathcal{W}|$.

$\mathcal{W}' = \text{incremental-step}(\mathcal{W}, z, [\Delta_j], \beta, \gamma)$

Proc incremental-step()

If $\Delta_j = 0$ for all j then

$\mathcal{W}' = \mathcal{W}$

otherwise

$j^* := \text{least } j \text{ for which } \Delta_j \neq 0$

$\mathcal{W}_1 := \{\mathcal{W}_j : j < j^*\}$

$\mathcal{W}_2 := \{(z - (\beta + \gamma))\mathcal{W}[j^*]\}$

$\mathcal{W}_3 := \{\mathcal{W}[j] - (\Delta_j/\Delta_{j^*})\mathcal{W}[j^*] : j > j^*\}$

$\mathcal{W}' := \mathcal{W}_1 \cup \mathcal{W}_2 \cup \mathcal{W}_3$

End
• While some of these interpolations could be solved directly by our algorithm, the transformed view results in more efficient algorithms
 – a homogeneous system of (linear) equations
 – the single indeterminate form has quadratic (vs. cubic) complexity
• If the set \{z^i e_j | i + (j - 1) < m\} is ordered with respect to any term order, a sequence of modules beginning with \(F[z]^L \) and ending with \(\langle \{z^i e_j | i + (j - 1) = m\} \rangle \) can be created such that
 \[
 M_\ell = Fz^i e_j + M_{\ell+1}.
 \]
• From these we can define the functions \(\theta_\ell \)
 \[
 \theta_\ell(\alpha z^i e_j + a) = \alpha, \ a \in M_{\ell+1}.
 \]
• The constants \(\beta_i \) are all zero.
A Gröbner basis approach to list decoding of Reed-Solomon and Algebraic Geometry Codes.

The Common Algorithm

Input
- M the $q \times n$ multiplicity matrix
- L the module dimension
- Functions $H^{(j, \gamma_i)}$, $\gamma_i \in F_q$, $j \in [n]$.
- c a weight for a term order $<_{c,(0,1,...,L-1)}$

Output
- The first element of W, an ordered Gröbner basis
Main Routine

\[\mathcal{W} := \text{ord}(\text{the standard basis of } F_q[z]^L). \]

For \(j \) from 1 to \(n \)

For \(i \) from 1 to \(q \)

If \(m_{ij} \neq 0 \)

For \(j_2 \) from 1 to \(\min(L, m_{ij}) \)

For \(j_1 \) from 0 to \(m_{ij} - j_2 \)

\[\Delta_k := \text{coeff}(z^{j_1}e^{j_2}, H^{(j_1, \gamma_i)}(\mathcal{W}[k])) \]

for \(k \in [L] \)

\[\mathcal{W}' = \text{incremental-step}(\mathcal{W}, z, [\Delta_k], 0, \gamma_i) \]

\[\mathcal{W} := \text{ord}(\mathcal{W}') \]
A Gröbner basis approach to list decoding of Reed-Solomon and Algebraic Geometry Codes.

Specialisations of the common algorithm

- **RS**
 - The weight for the term order $c = k$.

- **AG**
 - The weight for the term order $c = k + g - 1$.

- **Hard decision**
 - $m_{ij} = m$ when $\gamma_j = y_j$
 - $m_{ij} = 0$ otherwise.
A Gröbner basis approach to list decoding of Reed-Solomon and Algebraic Geometry Codes.

Questions?