Passivity & Coherence and their relation in Differential Algebra

Moritz Minzlaff

Fakultät für Informatik Universität Karlsruhe (TH)

Special Semester on Gröbner Bases (Workshop D2)

ヘロト ヘアト ヘビト ヘビト

Motivation Basic Notions Coherence and Passivity

Why Consider Coherence and Passivity?

Given: A finite set A of differential polynomials

Wanted:

- (P1) Decide solvability of A = 0
- (P2) Compute prime decompositions of the radical differential ideal of A
- (P3) Formulate existence and uniqueness statements about formal power series solutions

Tools: Coherence and Passivity

<ロ> (四) (四) (三) (三) (三)

Motivation Basic Notions Coherence and Passivity

Why Consider Coherence and Passivity?

Given: A finite set A of differential polynomials

Wanted:

(P1) Decide solvability of A = 0

- (P2) Compute prime decompositions of the radical differential ideal of *A*
- (P3) Formulate existence and uniqueness statements about formal power series solutions

Tools: Coherence and Passivity

<ロン <回と < 注と < 注と = 注

Motivation Basic Notions Coherence and Passivity

Why Consider Coherence and Passivity?

Given: A finite set A of differential polynomials

Wanted:

- (P1) Decide solvability of A = 0
- (P2) Compute prime decompositions of the radical differential ideal of *A*
- (P3) Formulate existence and uniqueness statements about formal power series solutions

Tools: Coherence and Passivity

<ロ> (四) (四) (三) (三) (三)

Motivation Basic Notions Coherence and Passivity

Why Consider Coherence and Passivity?

Given: A finite set A of differential polynomials

Wanted:

- (P1) Decide solvability of A = 0
- (P2) Compute prime decompositions of the radical differential ideal of *A*
- (P3) Formulate existence and uniqueness statements about formal power series solutions

Tools: Coherence and Passivity

イロト イポト イヨト イヨト 一座

Motivation Basic Notions Coherence and Passivity

Why Consider Coherence and Passivity?

Given: A finite set A of differential polynomials

Wanted:

- (P1) Decide solvability of A = 0
- (P2) Compute prime decompositions of the radical differential ideal of *A*
- (P3) Formulate existence and uniqueness statements about formal power series solutions

Tools: Coherence and Passivity

イロト イポト イヨト イヨト 一座

Motivation Basic Notions Coherence and Passivity

Conventions

K, differential field

- 1 $CHAR(\mathbb{K}) = 0$
- 2 Δ , set of derivations
- **3** $\Theta \cong \mathcal{N}^m$, free commutative monoid generated by Δ
- K[[𝒴], differential polynomial ring in *n* differential indeterminates 𝒴 = { Y₁,..., Y_n}

• $A, H \subseteq \mathbb{K}[\mathcal{Y}]$ finite

- $1 \quad A \cap \mathbb{K} = \emptyset$
- 2 A triangular, partially autoreduced
- 3 H partially reduced w.r.t. A
- 4 H^{∞} contains all initials and separants of A

(A), [A], ideal resp. differential ideal generated by A

ヘロン 人間 とくほう 人ほう 二油

Motivation Basic Notions Coherence and Passivity

Conventions

K, differential field

- 1 $CHAR(\mathbb{K}) = 0$
- 2 Δ , set of derivations
- **3** $\Theta \cong \mathcal{N}^m$, free commutative monoid generated by Δ
- K[[Y]], differential polynomial ring
 in *n* differential indeterminates Y = {Y₁,..., Y_n}

• $A, H \subseteq \mathbb{K}[\mathcal{Y}]$ finite

- 1 $A \cap \mathbb{K} = \emptyset$
- 2 A triangular, partially autoreduced
- 3 H partially reduced w.r.t. A
- 4 H^{∞} contains all initials and separants of A

 \land $\langle A \rangle$, [A], ideal resp. differential ideal generated by A

ヘロン 人間 とくほう 人ほう 二油

Basic Notions

Conventions

- K, differential field
 - 1 CHAR(\mathbb{K}) = 0
 - 2 Δ , set of derivations
 - **3** $\Theta \cong \mathcal{N}^m$, free commutative monoid generated by Δ
- $\blacksquare \mathbb{K}[\mathcal{Y}],$ differential polynomial ring in *n* differential indeterminates $\mathcal{Y} = \{Y_1, \ldots, Y_n\}$
- $A, H \subseteq \mathbb{K}[\mathcal{Y}]$ finite
 - 1 $A \cap \mathbb{K} = \emptyset$
 - 2 A triangular, partially autoreduced
 - 3 H partially reduced w.r.t. A
 - 4 H^{∞} contains all initials and separants of A

(A), [A], ideal resp. differential ideal generated by A

<週 > < 注 > < 注 > □ = - 注

Motivation Basic Notions Coherence and Passivity

Conventions

K, differential field

- 1 $CHAR(\mathbb{K}) = 0$
- 2 Δ , set of derivations
- **3** $\Theta \cong \mathcal{N}^m$, free commutative monoid generated by Δ
- K[[Y]], differential polynomial ring
 in *n* differential indeterminates Y = {Y₁,..., Y_n}
- $A, H \subseteq \mathbb{K}[\![\mathcal{Y}]\!]$ finite

1
$$A \cap \mathbb{K} = \emptyset$$

- 2 A triangular, partially autoreduced
- 3 H partially reduced w.r.t. A
- 4 H^{∞} contains all initials and separants of A

• $\langle A \rangle$, [A], ideal resp. differential ideal generated by A

Motivation Basic Notions Coherence and Passivity

Coherence

Definition (Pseudo-S-Polynomials)

Let $p, q \in \mathbb{K}[\mathcal{Y}]$ with 1 LEAD(p) = v = LEAD(q)2 DEG(p) = d, DEG(q) = e $S(p,q) := \frac{\text{INIT}(q)v^e p - \text{INIT}(p)v^d q}{\text{GCD}(d,e)}$

Definition

(A, H) is *coherent* if for all $p, q \in \Theta A$ with $extsf{LEAD}(p) = extsf{LEAD}(q)$

$$\mathcal{S}(\pmb{
ho},\pmb{q}) \in \left\langle \Theta \pmb{A}_{< \texttt{LEAD}(\pmb{
ho})}
ight
angle : \pmb{H}^\infty$$

Motivation Basic Notions Coherence and Passivity

Passivity

Different authors: Different definitions for passivity

[Ritt, Wu, Chen& Gao]

イロン 不同 とくほう 不良 とうほう

Common to all:

- Every $p \in [A]$: H^{∞} has a "nice representation"
- A is involutively completed
 - w.r.t. an involutive division and an algorithmic process

Motivation Basic Notions Coherence and Passivity

Passivity

Different authors: Different definitions for passivity

[Ritt, Wu, Chen& Gao]

イロト イポト イヨト イヨト 三油

Common to all:

1 Every $p \in [A] : H^{\infty}$ has a "nice representation"

2 *A* is involutively completed w.r.t. an involutive division and an algorithmic process

Motivation Basic Notions Coherence and Passivity

Passivity

Different authors: Different definitions for passivity

[Ritt, Wu, Chen& Gao]

イロト イポト イヨト イヨト 一座

Common to all:

- **1** Every $p \in [A] : H^{\infty}$ has a "nice representation"
- 2 *A* is involutively completed w.r.t. an involutive division and an algorithmic process

Motivation Basic Notions Coherence and Passivity

Passivity

Different authors: Different definitions for passivity

[Ritt, Wu, Chen& Gao]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Common to all:

- **1** Every $p \in [A] : H^{\infty}$ has a "nice representation"
- 2 A is involutively completed w.r.t. an involutive division and an algorithmic process

Motivation Basic Notions Coherence and Passivity

Three Questions

Is passivity independent of the involutive completion?

- 2 Every (Wu-)passive system is coherent. [Li&Wang '99] Is the converse also true?
- 3 Is passivity independent of the involutive division?

ヘロト ヘアト ヘビト ヘビト

Motivation Basic Notions Coherence and Passivity

Three Questions

- **1** Is passivity independent of the involutive completion?
- 2 Every (Wu-)passive system is coherent. [Li&Wang '99] Is the converse also true?
- 3 Is passivity independent of the involutive division?

ヘロト 人間 ト くほ ト くほ トー

Motivation Basic Notions Coherence and Passivity

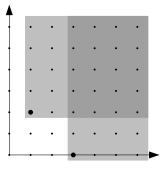
Three Questions

- **1** Is passivity independent of the involutive completion?
- 2 Every (Wu-)passive system is coherent. [Li&Wang '99] Is the converse also true?
- 3 Is passivity independent of the involutive division?

イロト イポト イヨト イヨト 三油

Involutive Divisions Adding Structure to Differential Systems

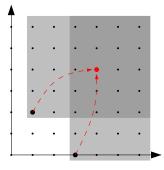
Involutive Divisions and \mathbb{N}^m



Consider: Span of finite $\mathcal{N} \subseteq \mathbb{N}^m$ Note: No unique divisor in \mathcal{N} Wanted: Uniqueness Idea: Replace division by an *involutive division* \mathcal{L}

Involutive Divisions Adding Structure to Differential Systems

Involutive Divisions and \mathbb{N}^m

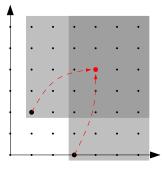


Consider: Span of finite $\mathcal{N} \subseteq \mathbb{N}^m$ Note: No unique divisor in \mathcal{N} Wanted: Uniqueness Idea: Replace division by an involutive division \mathcal{L} Need: Involutively complete \mathcal{N}

프 🖌 🖌 프

Involutive Divisions Adding Structure to Differential Systems

Involutive Divisions and \mathbb{N}^m

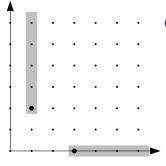


Consider: Span of finite $\mathcal{N} \subseteq \mathbb{N}^m$ Note: No unique divisor in \mathcal{N} Wanted: Uniqueness Idea: Replace division by an *involutive division* \mathcal{L}

크 > < 크

Involutive Divisions Adding Structure to Differential Systems

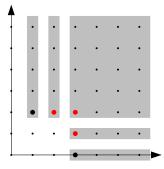
Involutive Divisions and \mathbb{N}^m



Consider: Span of finite $\mathcal{N} \subseteq \mathbb{N}^m$ Note: No unique divisor in \mathcal{N} Wanted: Uniqueness Idea: Replace division by an *involutive division* \mathcal{L} Need: Involutively complete \mathcal{N}

Involutive Divisions Adding Structure to Differential Systems

Involutive Divisions and \mathbb{N}^m



Consider:Span of finite $\mathcal{N} \subseteq \mathbb{N}^m$ Note:No unique divisor in \mathcal{N} Wanted:UniquenessIdea:Replace division by
an involutive division \mathcal{L} Need:Involutively complete \mathcal{N}

Involutive Divisions Adding Structure to Differential Systems

Transfer from \mathbb{N}^m to $\mathbb{K}[\mathcal{Y}]$

Idea: Derivative operators in leaders play role of *m*-tuples

 $\mathcal{N}_{A,Y} := \{ \alpha \in \mathbb{N}^m \mid \alpha \, Y \in \mathsf{LEAD}(A) \}$

Multiplicative Prolongations: Elements βp with $p \in A$, LEAD $(p) = \alpha Y$, and $\alpha \mathcal{L}$ -divides $\beta \alpha$ w.r.t. $\mathcal{N}_{A,Y}$

Definition (Involutive Span)

Ideal generated by all multiplicative prolongations of all $p \in A$

 $[A]_{\mathcal{L}} := \langle \beta p \mid \beta p \text{ a mult. prolongation of } p \in A \rangle$

For $u \in \Theta \mathcal{Y}$:

 $[A]_{\mathcal{L}}^{u} := \langle \beta p \mid \beta p \leq u, \beta p \text{ a mult. prolongation of } p \in A \rangle$

ヘロン 人間 とくほ とくほ とう

Involutive Divisions Adding Structure to Differential Systems

Transfer from \mathbb{N}^m to $\mathbb{K}[\mathcal{Y}]$

Idea: Derivative operators in leaders play role of *m*-tuples

 $\mathcal{N}_{\mathcal{A},\mathsf{Y}} := \{ \alpha \in \mathbb{N}^m \mid \alpha \, \mathsf{Y} \in \mathsf{LEAD}(\mathcal{A}) \}$

Multiplicative Prolongations: Elements βp with $p \in A$, LEAD(p) = α Y, and α \mathcal{L} -divides $\beta \alpha$ w.r.t. $\mathcal{N}_{A,Y}$

Definition (Involutive Span)

Ideal generated by all multiplicative prolongations of all $p \in A$

 $[A]_{\mathcal{L}} := \langle \beta p \mid \beta p \text{ a mult. prolongation of } p \in A \rangle$

For $u \in \Theta \mathcal{Y}$:

 $[A]^{u}_{\mathcal{L}} := \langle \beta p \mid \beta p \leq u, \beta p \text{ a mult. prolongation of } p \in A \rangle$

イロト イポト イヨト イヨト 三連

Involutive Divisions Adding Structure to Differential Systems

Transfer from \mathbb{N}^m to $\mathbb{K}[\mathcal{Y}]$

Idea: Derivative operators in leaders play role of *m*-tuples

$$\mathcal{N}_{\mathcal{A},\mathcal{Y}} := \{ \alpha \in \mathbb{N}^m \mid \alpha \, \mathcal{Y} \in \mathsf{LEAD}(\mathcal{A}) \}$$

Multiplicative Prolongations: Elements βp with $p \in A$, LEAD(p) = α Y, and α \mathcal{L} -divides $\beta \alpha$ w.r.t. $\mathcal{N}_{A,Y}$

Definition (Involutive Span)

Ideal generated by all multiplicative prolongations of all $p \in A$

$$[A]_{\mathcal{L}} := \langle \beta p \mid \beta p \text{ a mult. prolongation of } p \in A \rangle$$

For $u \in \Theta \mathcal{Y}$:

 $[A]_{\mathcal{L}}^{u} := \langle \beta p \mid \beta p \leq u, \beta p \text{ a mult. prolongation of } p \in A \rangle$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇

Involutive Divisions Adding Structure to Differential Systems

Transfer from \mathbb{N}^m to $\mathbb{K}\llbracket \mathcal{Y} rbracket$

Idea: Derivative operators in leaders play role of *m*-tuples

$$\mathcal{N}_{\mathcal{A},\mathcal{Y}} := \{ \alpha \in \mathbb{N}^m \mid \alpha \, \mathcal{Y} \in \mathsf{LEAD}(\mathcal{A}) \}$$

Multiplicative Prolongations: Elements βp with $p \in A$, LEAD(p) = α Y, and α \mathcal{L} -divides $\beta \alpha$ w.r.t. $\mathcal{N}_{A,Y}$

Definition (Involutive Span)

Ideal generated by all multiplicative prolongations of all $p \in A$

$$[A]_{\mathcal{L}} := \langle \beta p \mid \beta p \text{ a mult. prolongation of } p \in A \rangle$$

For $u \in \Theta \mathcal{Y}$:

 $[A]_{\mathcal{L}}^{u} := \langle \beta p \mid \beta p \leq u, \beta p \text{ a mult. prolongation of } p \in A \rangle$

(個) (目) (日) (日)

Involutive Divisions Adding Structure to Differential Systems

Involutive Completions

Definition

 $A^{\mathcal{L}}\subseteq \mathbb{K}[\![\mathcal{Y}]\!]$ is an involutive completion of A if $A^{\mathcal{L}}\supseteq A$ is minimal with

1 $\mathcal{N}_{A^{\mathcal{L}},Y}$ are involutive completions of $\mathcal{N}_{A,Y}$

2 $p \in A^{\mathcal{L}}$ are "simple" differential consequences of A

$$\blacksquare p \notin A \Rightarrow \mathsf{DEG}(p) = 1$$

■ INIT(
$$p$$
), SEP(p) \in (INIT(A) \cup SEP(A)) ^{\sim}

RANK(
$$p$$
) = $u \Rightarrow p \in \langle \Theta A_{\leq u} \rangle$

Note:

Desired properties are defined without use of algorithms

Involutive Divisions Adding Structure to Differential Systems

Involutive Completions

Definition

 $A^{\mathcal{L}}\subseteq \mathbb{K}[\![\mathcal{Y}]\!]$ is an involutive completion of A if $A^{\mathcal{L}}\supseteq A$ is minimal with

1 $\mathcal{N}_{\mathcal{A}^{\mathcal{L}}, Y}$ are involutive completions of $\mathcal{N}_{\mathcal{A}, Y}$

2 p ∈ A^L are "simple" differential consequences of A
p ∉ A ⇒ DEG(p) = 1
INIT(p), SEP(p) ∈ (INIT(A) ∪ SEP(A))[∞]

RANK(
$$p$$
) = $u \Rightarrow p \in \langle \Theta A_{\leq u} \rangle$

Note:

Desired properties are defined without use of algorithms

Involutive Divisions Adding Structure to Differential Systems

Involutive Completions

Definition

 $A^{\mathcal{L}}\subseteq \mathbb{K}[\![\mathcal{Y}]\!]$ is an involutive completion of A if $A^{\mathcal{L}}\supseteq A$ is minimal with

1 $\mathcal{N}_{A^{\mathcal{L}},Y}$ are involutive completions of $\mathcal{N}_{A,Y}$

2 $p \in A^{\mathcal{L}}$ are "simple" differential consequences of A

•
$$p \notin A \Rightarrow \text{DEG}(p) = 1$$

INIT(
$$oldsymbol{
ho}$$
), SEP($oldsymbol{
ho}$) \in (INIT(A) \cup SEP(A)) $^{\infty}$

RANK(
$$p$$
) = $u \Rightarrow p \in \langle \Theta A_{\leq u} \rangle$

Note:

Desired properties are defined without use of algorithms

Involutive Divisions Adding Structure to Differential Systems

Involutive Completions

Definition

 $A^{\mathcal{L}}\subseteq \mathbb{K}[\![\mathcal{Y}]\!]$ is an involutive completion of A if $A^{\mathcal{L}}\supseteq A$ is minimal with

1 $\mathcal{N}_{\mathcal{A}^{\mathcal{L}}, Y}$ are involutive completions of $\mathcal{N}_{\mathcal{A}, Y}$

2 $p \in A^{\mathcal{L}}$ are "simple" differential consequences of A

•
$$p \notin A \Rightarrow \text{DEG}(p) = 1$$

INIT
$$(oldsymbol{
ho}), extsf{SEP}(oldsymbol{
ho}) \in (extsf{INIT}(oldsymbol{A}) \cup extsf{SEP}(oldsymbol{A}))^{\infty}$$

RANK(
$$p$$
) = $u \Rightarrow p \in \langle \Theta A_{\leq u} \rangle$

Note:

Desired properties are defined without use of algorithms

Example

Assume: Involutive completions exist

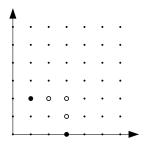
Claim: There is an involutive completion $A^{\mathcal{L}} \subseteq \Theta A$

Adding Structure to Differential Systems

Example

Assume: Involutive completions exist

Claim: There is an involutive completion $A^{\mathcal{L}} \subseteq \Theta A$



Reason:

1 Let $\beta \in \mathcal{N}_{A^{\mathcal{L}},Y} \setminus \mathcal{N}_{A,Y}$

Adding Structure to Differential Systems

2 Choose $p \in A$ with LEAD $(p) = \alpha Y$, α divides β

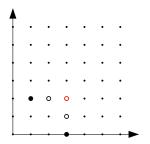
◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇

Adding Structure to Differential Systems

Example

Assume: Involutive completions exist

Claim: There is an involutive completion $A^{\mathcal{L}} \subseteq \Theta A$



Reason:

1 Let $\beta \in \mathcal{N}_{\mathcal{A}^{\mathcal{L}}, \mathbf{Y}} \setminus \mathcal{N}_{\mathcal{A}, \mathbf{Y}}$

2 Choose $p \in A$ with LEAD $(p) = \alpha Y, \alpha$ divides β

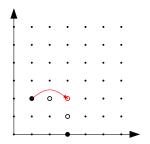
◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇

Involutive Divisions Adding Structure to Differential Systems

Example

Assume: Involutive completions exist

Claim: There is an involutive completion $A^{\mathcal{L}} \subseteq \Theta A$



Reason:

- **1** Let $\beta \in \mathcal{N}_{\mathcal{A}^{\mathcal{L}}, \mathbf{Y}} \setminus \mathcal{N}_{\mathcal{A}, \mathbf{Y}}$
- 2 Choose $p \in A$ with LEAD $(p) = \alpha Y$, α divides β

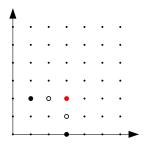
◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇

Involutive Divisions Adding Structure to Differential Systems

Example

Assume: Involutive completions exist

Claim: There is an involutive completion $A^{\mathcal{L}} \subseteq \Theta A$



Reason:

- **1** Let $\beta \in \mathcal{N}_{\mathcal{A}^{\mathcal{L}}, \mathbf{Y}} \setminus \mathcal{N}_{\mathcal{A}, \mathbf{Y}}$
- 2 Choose $p \in A$ with LEAD $(p) = \alpha Y$, α divides β

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇

Involutive Divisions Adding Structure to Differential Systems

Passive Systems

Theorem

 $p \in [A^{\mathcal{L}}]^{u}_{\mathcal{L}} : H^{\infty} \Rightarrow$ exists $h \in H^{\infty}$ with $hp = \lambda(\gamma r) + \sum_{i=1}^{k} \lambda_{i} m_{i}$

1 γr , unique multiplicative prolongation with LEAD $(\gamma r) = u$

2 m_i, product of multiplicative prolongations < u</p>

3 LEAD $(p) \le u \Rightarrow \lambda_i$ partially reduced w.r.t. A

Wanted: The above property for all $p \in [A]$: H^{∞}

Definition

```
(A, H) is passive w.r.t. A^{\mathcal{L}} if
```

 $\langle \Theta A_{\leq u} \rangle : H^{\infty} = [A^{\mathcal{L}}]^{u}_{\mathcal{L}} : H^{\infty} \quad \forall u \in \Theta \mathcal{Y}$

Involutive Divisions Adding Structure to Differential Systems

Passive Systems

Theorem

 $p \in [A^{\mathcal{L}}]^{u}_{\mathcal{L}} : H^{\infty} \Rightarrow$ exists $h \in H^{\infty}$ with $hp = \lambda(\gamma r) + \sum_{i=1}^{k} \lambda_{i} m_{i}$

1 γr , unique multiplicative prolongation with LEAD $(\gamma r) = u$

2 m_i, product of multiplicative prolongations < u</p>

3 LEAD $(p) \leq u \Rightarrow \lambda_i$ partially reduced w.r.t. A

Wanted: The above property for all $p \in [A]$: H^{∞}

Definition

```
(A, H) is passive w.r.t. A^{\mathcal{L}} if
```

 $\langle \Theta A_{\leq u} \rangle : H^{\infty} = [A^{\mathcal{L}}]^{u}_{\mathcal{L}} : H^{\infty} \quad \forall u \in \Theta \mathcal{Y}$

Involutive Divisions Adding Structure to Differential Systems

Passive Systems

Theorem

 $p \in [A^{\mathcal{L}}]^{u}_{\mathcal{L}} : H^{\infty} \Rightarrow$ exists $h \in H^{\infty}$ with $hp = \lambda(\gamma r) + \sum_{i=1}^{k} \lambda_{i} m_{i}$

- **1** γr , unique multiplicative prolongation with LEAD $(\gamma r) = u$
- **2** m_i , product of multiplicative prolongations < u
- 3 LEAD $(p) \leq u \Rightarrow \lambda_i$ partially reduced w.r.t. A

Wanted: The above property for all $p \in [A]$: H^{∞}

Definition

```
(A, H) is passive w.r.t. A^{\mathcal{L}} if
```

 $\langle \Theta A_{\leq u} \rangle : H^{\infty} = [A^{\mathcal{L}}]^{u}_{\mathcal{L}} : H^{\infty} \quad \forall u \in \Theta \mathcal{Y}$

Involutive Divisions Adding Structure to Differential Systems

Passive Systems

Theorem

 $p \in [A^{\mathcal{L}}]^{u}_{\mathcal{L}} : H^{\infty} \Rightarrow$ exists $h \in H^{\infty}$ with $hp = \lambda(\gamma r) + \sum_{i=1}^{k} \lambda_{i} m_{i}$

- **1** γr , unique multiplicative prolongation with LEAD $(\gamma r) = u$
- **2** m_i , product of multiplicative prolongations < u
- **3** LEAD(p) $\leq u \Rightarrow \lambda_i$ partially reduced w.r.t. A

Wanted: The above property for all $p \in [A]$: H^∞

Definition

```
(A, H) is passive w.r.t. A^{\mathcal{L}} if
```

 $\langle \Theta A_{\leq u} \rangle : H^{\infty} = [A^{\mathcal{L}}]^{u}_{\mathcal{L}} : H^{\infty} \quad \forall u \in \Theta \mathcal{Y}$

Involutive Divisions Adding Structure to Differential Systems

Passive Systems

Theorem

 $p \in [A^{\mathcal{L}}]^{u}_{\mathcal{L}} : H^{\infty} \Rightarrow$ exists $h \in H^{\infty}$ with $hp = \lambda(\gamma r) + \sum_{i=1}^{k} \lambda_{i} m_{i}$

- **1** γr , unique multiplicative prolongation with LEAD $(\gamma r) = u$
- **2** m_i , product of multiplicative prolongations < u
- **3** LEAD(p) $\leq u \Rightarrow \lambda_i$ partially reduced w.r.t. A

Wanted: The above property for all $p \in [A] : H^{\infty}$

Definition

(A, H) is passive w.r.t. $A^{\mathcal{L}}$ if

 $\langle \Theta A_{\leq u} \rangle : H^{\infty} = [A^{\mathcal{L}}]^{u}_{\mathcal{L}} : H^{\infty} \quad \forall u \in \Theta \mathcal{Y}$

Involutive Divisions Adding Structure to Differential Systems

Passive Systems

Theorem

 $p \in [A^{\mathcal{L}}]^{u}_{\mathcal{L}} : H^{\infty} \Rightarrow$ exists $h \in H^{\infty}$ with $hp = \lambda(\gamma r) + \sum_{i=1}^{k} \lambda_{i} m_{i}$

- **1** γr , unique multiplicative prolongation with LEAD $(\gamma r) = u$
- **2** m_i , product of multiplicative prolongations < u
- **3** LEAD(p) $\leq u \Rightarrow \lambda_i$ partially reduced w.r.t. A

Wanted: The above property for all $p \in [A] : H^{\infty}$

Definition

(A, H) is passive w.r.t. $A^{\mathcal{L}}$ if

$$\langle \Theta A_{\leq u} \rangle : H^{\infty} = [A^{\mathcal{L}}]^{u}_{\mathcal{L}} : H^{\infty} \quad \forall u \in \Theta \mathcal{Y}$$

Consider: Involutive completions $A_1^{\mathcal{L}}$ and $A_2^{\mathcal{L}}$ of A

Theorem

(A,H) is passive w.r.t. $A_1^{\mathcal{L}} \Leftrightarrow (A,H)$ is passive w.r.t. $A_2^{\mathcal{L}}$

Proof.

Wanted: $\alpha p \in [A_2^L]_{\mathcal{L}}^u : H^{\infty}$ whenever $p \in A$, LEAD $(\alpha p) = u$ Have: $h(\alpha p) = \lambda_1(\gamma_1 r_1) + s$, where $s \in [A_1^L]_{\mathcal{L}}^v$ some v < uInduction: $[A_1^L]_{\mathcal{L}}^v : H^{\infty} = [A_2^L]_{\mathcal{L}}^v : H^{\infty}$ Pseudo-Division: INIT $(\gamma_2 r_2)\gamma_1 r_1 = INIT(\gamma_1 r_1)\gamma_2 r_2 + s'$

Consider: Involutive completions $A_1^{\mathcal{L}}$ and $A_2^{\mathcal{L}}$ of A

Theorem

(A,H) is passive w.r.t. $A_1^{\mathcal{L}} \Leftrightarrow (A,H)$ is passive w.r.t. $A_2^{\mathcal{L}}$

Proof.

 \Rightarrow

Wanted: $\alpha p \in [A_2^{\mathcal{L}}]_{\mathcal{L}}^u : H^{\infty}$ whenever $p \in A$, LEAD $(\alpha p) = u$ Have: $h(\alpha p) = \lambda_1(\gamma_1 r_1) + s$, where $s \in [A_1^{\mathcal{L}}]_{\mathcal{L}}^v$ some v < uInduction: $[A_1^{\mathcal{L}}]_{\mathcal{L}}^v : H^{\infty} = [A_2^{\mathcal{L}}]_{\mathcal{L}}^v : H^{\infty}$ Pseudo-Division: INIT $(\gamma_2 r_2)\gamma_1 r_1 = INIT(\gamma_1 r_1)\gamma_2 r_2 + s'$

Consider: Involutive completions $A_1^{\mathcal{L}}$ and $A_2^{\mathcal{L}}$ of A

Theorem

(A,H) is passive w.r.t. $A_1^{\mathcal{L}} \Leftrightarrow (A,H)$ is passive w.r.t. $A_2^{\mathcal{L}}$

Proof.

 \Rightarrow

Wanted: $\alpha p \in [A_2^{\mathcal{L}}]_{\mathcal{L}}^u : H^{\infty}$ whenever $p \in A$, LEAD $(\alpha p) = u$ Have: $h(\alpha p) = \lambda_1(\gamma_1 r_1) + s$, where $s \in [A_1^{\mathcal{L}}]_{\mathcal{L}}^v$ some v < uInduction: $[A_1^{\mathcal{L}}]_{\mathcal{L}}^v : H^{\infty} = [A_2^{\mathcal{L}}]_{\mathcal{L}}^v : H^{\infty}$ Pseudo-Division: INIT $(\gamma_2 r_2)\gamma_1 r_1 = INIT(\gamma_1 r_1)\gamma_2 r_2 + s'$

Consider: Involutive completions $A_1^{\mathcal{L}}$ and $A_2^{\mathcal{L}}$ of A

Theorem

(A,H) is passive w.r.t. $A_1^{\mathcal{L}} \Leftrightarrow (A,H)$ is passive w.r.t. $A_2^{\mathcal{L}}$

Proof.

 \Rightarrow

Wanted: $\alpha p \in [A_2^{\mathcal{L}}]_{\mathcal{L}}^u : H^{\infty}$ whenever $p \in A$, LEAD $(\alpha p) = u$ Have: $h(\alpha p) = \lambda_1(\gamma_1 r_1) + s$, where $s \in [A_1^{\mathcal{L}}]_{\mathcal{L}}^v$ some v < uInduction: $[A_1^{\mathcal{L}}]_{\mathcal{L}}^v : H^{\infty} = [A_2^{\mathcal{L}}]_{\mathcal{L}}^v : H^{\infty}$ Pseudo-Division: INIT $(\gamma_2 r_2)\gamma_1 r_1 = INIT(\gamma_1 r_1)\gamma_2 r_2 + s'$

Consider: Involutive completions $A_1^{\mathcal{L}}$ and $A_2^{\mathcal{L}}$ of A

Theorem

(A,H) is passive w.r.t. $A_1^{\mathcal{L}} \Leftrightarrow (A,H)$ is passive w.r.t. $A_2^{\mathcal{L}}$

Proof.

 \Rightarrow

Wanted: $\alpha p \in [A_2^{\mathcal{L}}]_{\mathcal{L}}^u : H^{\infty}$ whenever $p \in A$, LEAD $(\alpha p) = u$ Have: $h(\alpha p) = \lambda_1(\gamma_1 r_1) + s$, where $s \in [A_1^{\mathcal{L}}]_{\mathcal{L}}^v$ some v < uInduction: $[A_1^{\mathcal{L}}]_{\mathcal{L}}^v : H^{\infty} = [A_2^{\mathcal{L}}]_{\mathcal{L}}^v : H^{\infty}$ Pseudo-Division: INIT $(\gamma_2 r_2)\gamma_1 r_1 = INIT(\gamma_1 r_1)\gamma_2 r_2 + s'$

Consider: Involutive completions $A_1^{\mathcal{L}}$ and $A_2^{\mathcal{L}}$ of A

Theorem

$$(A, H)$$
 is passive w.r.t. $A_1^{\mathcal{L}} \Leftrightarrow (A, H)$ is passive w.r.t. $A_2^{\mathcal{L}}$

Proof.

\Rightarrow

 $\begin{array}{ll} \text{Wanted:} & \alpha p \in [A_2^{\mathcal{L}}]_{\mathcal{L}}^u : H^\infty \text{ whenever } p \in A, \texttt{LEAD}(\alpha p) = u \\ \text{Have:} & h(\alpha p) = \lambda_1(\gamma_1 r_1) + s, \texttt{ where } s \in [A_1^{\mathcal{L}}]_{\mathcal{L}}^v \texttt{ some } v < u \\ \text{Induction:} & [A_1^{\mathcal{L}}]_{\mathcal{L}}^v : H^\infty = [A_2^{\mathcal{L}}]_{\mathcal{L}}^v : H^\infty \\ \text{Pseudo-Division:} & \texttt{INIT}(\gamma_2 r_2)\gamma_1 r_1 = \texttt{INIT}(\gamma_1 r_1)\gamma_2 r_2 + s' \end{array}$

Consider: Involutive completions $A_1^{\mathcal{L}}$ and $A_2^{\mathcal{L}}$ of A

Theorem

$$(A, H)$$
 is passive w.r.t. $A_1^{\mathcal{L}} \Leftrightarrow (A, H)$ is passive w.r.t. $A_2^{\mathcal{L}}$

Proof.

\Rightarrow

 $\begin{array}{ll} \text{Wanted:} & \alpha p \in [A_2^{\mathcal{L}}]_{\mathcal{L}}^u : H^\infty \text{ whenever } p \in A, \texttt{LEAD}(\alpha p) = u \\ \text{Have:} & h(\alpha p) = \lambda_1(\gamma_1 r_1) + s, \texttt{ where } s \in [A_1^{\mathcal{L}}]_{\mathcal{L}}^v \texttt{ some } v < u \\ \text{Induction:} & [A_1^{\mathcal{L}}]_{\mathcal{L}}^v : H^\infty = [A_2^{\mathcal{L}}]_{\mathcal{L}}^v : H^\infty \\ \text{Pseudo-Division:} & \texttt{INIT}(\gamma_2 r_2)\gamma_1 r_1 = \texttt{INIT}(\gamma_1 r_1)\gamma_2 r_2 + s' \end{array}$

Consequence:

Consider: Involutive division \mathcal{L} such that involutive completions of A exist

Theorem

(A, H) is passive w.r.t. $\mathcal{L} \Leftrightarrow (A, H)$ is coherent

Proof.

⇒ as done by Li & Wang '99

 \Leftarrow **Choose**: Involutive completion $A^{L} \subseteq \Theta A$

Note: $(A^{\mathcal{L}}, H)$ is coherent

Deduce: $p \in A$ implies

 $S(\alpha p, \gamma r) = \mathsf{INIT}(\gamma r)\alpha p - \mathsf{INIT}(\alpha p)\gamma r \in \langle \Theta A_{\mathsf{CLEAD}(\alpha p)} \rangle : H^{\infty}$ Induction: $\langle \Theta A_{\le u} \rangle : H^{\infty} = [A^{\mathcal{L}}]^{u}_{c} : H^{\infty}, \forall u < \mathsf{LEAD}(\alpha p)$ [

Consider: Involutive division \mathcal{L} such that involutive completions of A exist

Theorem

(A, H) is passive w.r.t. $\mathcal{L} \Leftrightarrow (A, H)$ is coherent

Proof.

\Rightarrow as done by Li & Wang '99

Deduce: $p \in A$ implies

 $\mathcal{S}(\alpha p, \gamma r) = \text{INIT}(\gamma r) \alpha p - \text{INIT}(\alpha p) \gamma r \in \langle \Theta A_{< \text{LEAD}(\alpha p)} \rangle : H^{\infty}$ Induction: $\langle \Theta A_{\leq u} \rangle : H^{\infty} = [A^{\mathcal{L}}]^{u}_{\mathcal{L}} : H^{\infty}, \forall u < \text{LEAD}(\alpha p)$

ヘロン 人間 とくほ とくほ とう

Consider: Involutive division \mathcal{L} such that involutive completions of A exist

Theorem

(A, H) is passive w.r.t. $\mathcal{L} \Leftrightarrow (A, H)$ is coherent

Proof.

- \Rightarrow as done by Li & Wang '99
- $\leftarrow \textbf{Choose}: \quad \text{Involutive completion } A^{\mathcal{L}} \subseteq \Theta A$

Note: $(A^{\mathcal{L}}, H)$ is coherent

Deduce: $p \in A$ implies

 $\mathcal{S}(\alpha p, \gamma r) = \mathsf{INIT}(\gamma r) \alpha p - \mathsf{INIT}(\alpha p) \gamma r \in \langle \Theta A_{<\mathsf{LEAD}(\alpha p)} \rangle : H^{\infty}$ Induction: $\langle \Theta A_{\leq u} \rangle : H^{\infty} = [A^{\mathcal{L}}]^{u}_{\mathcal{L}} : H^{\infty}, \forall u < \mathsf{LEAD}(\alpha p)$

ヘロン ヘアン ヘビン ヘビン

Consider: Involutive division \mathcal{L} such that involutive completions of A exist

Theorem

(A, H) is passive w.r.t. $\mathcal{L} \Leftrightarrow (A, H)$ is coherent

Proof.

- \Rightarrow as done by Li & Wang '99
- $\leftarrow \textbf{Choose:} \quad \text{Involutive completion } A^{\mathcal{L}} \subseteq \Theta A$ **Note**: $(A^{\mathcal{L}}, H) \text{ is coherent}$
 - **Deduce**: $p \in A$ implies $S(\alpha p, \gamma r) = INIT(\gamma r)\alpha p - INIT(\alpha p)\gamma r \in \langle \Theta \rangle$

Induction: $\langle \Theta A_{\leq u} \rangle : H^{\infty} = [A^{\mathcal{L}}]^{u}_{\mathcal{L}} : H^{\infty}, \forall u < \text{LEAD}(\alpha p)$

ヘロン ヘアン ヘビン ヘビン

Consider: Involutive division \mathcal{L} such that involutive completions of A exist

Theorem

(A, H) is passive w.r.t. $\mathcal{L} \Leftrightarrow (A, H)$ is coherent

Proof.

 \Rightarrow as done by Li & Wang '99

 $\begin{array}{lll} \leftarrow \textbf{Choose:} & \text{Involutive completion } A^{\mathcal{L}} \subseteq \Theta A \\ \textbf{Note:} & (A^{\mathcal{L}}, H) \text{ is coherent} \\ \textbf{Deduce:} & p \in A \text{ implies} \end{array}$

 $\mathcal{S}(\alpha p, \gamma r) = \mathsf{INIT}(\gamma r)\alpha p - \mathsf{INIT}(\alpha p)\gamma r \in \langle \Theta A_{<\mathsf{LEAD}(\alpha p)} \rangle : H^{\infty}$ Induction: $\langle \Theta A_{<\omega} \rangle : H^{\infty} = [A^{\mathcal{L}}]^{U} : H^{\infty} \quad \forall u < \mathsf{LEAD}(\alpha p)$

・ロン ・ 一 と ・ 日 と ・ 日 と

Consider: Involutive division \mathcal{L} such that involutive completions of A exist

Theorem

(A, H) is passive w.r.t. $\mathcal{L} \Leftrightarrow (A, H)$ is coherent

Proof.

 \Rightarrow as done by Li & Wang '99

 $\begin{array}{ll} \leftarrow \textbf{Choose:} & \text{Involutive completion } A^{\mathcal{L}} \subseteq \Theta A \\ \textbf{Note:} & (A^{\mathcal{L}}, H) \text{ is coherent} \\ \textbf{Deduce:} & p \in A \text{ implies} \\ \mathcal{S}(\alpha p, \gamma r) = \text{INIT}(\gamma r) \alpha p - \text{INIT}(\alpha p) \gamma r \in \left\langle \Theta A_{< \text{LEAD}(\alpha p)} \right\rangle : H^{\infty} \\ \textbf{Induction:} & \left\langle \Theta A_{\leq u} \right\rangle : H^{\infty} = [A^{\mathcal{L}}]_{\mathcal{L}}^{u} : H^{\infty}, \forall u < \text{LEAD}(\alpha p) \end{array}$

・ロン ・ 一 と ・ 日 と ・ 日 と

Independence of Involutive Divisions

Consider: Involutive divisions \mathcal{L}_1 and \mathcal{L}_2 such that involutive completions of A exist

Corollary

(A, H) is passive w.r.t. $\mathcal{L}_1 \Leftrightarrow (A, H)$ is passive w.r.t. \mathcal{L}_2

Proof.

Follows from equivalence with coherence.

イロト イポト イヨト イヨト 三油

Independence of Involutive Divisions

Consider: Involutive divisions \mathcal{L}_1 and \mathcal{L}_2 such that involutive completions of A exist

Corollary

(A, H) is passive w.r.t. $\mathcal{L}_1 \Leftrightarrow (A, H)$ is passive w.r.t. \mathcal{L}_2

Proof.

Follows from equivalence with coherence.

Moritz Minzlaff A New Definition for Passivity

イロト イポト イヨト イヨト 一座

Conclusion

- **1** Is passivity independent of the involutive completion? Yes
- Every (Wu-)passive system is coherent. [Li&Wang '99]
 Is the converse also true? Yes
- 3 Is passivity independent of the involutive division? Yes

Conclusion

- 1 Is passivity independent of the involutive completion? Yes
- Every (Wu-)passive system is coherent. [Li&Wang '99]
 Is the converse also true? Yes
- 3 Is passivity independent of the involutive division? Yes

Conclusion

- **1** Is passivity independent of the involutive completion? Yes
- Every (Wu-)passive system is coherent. [Li&Wang '99]
 Is the converse also true? Yes
- 3 Is passivity independent of the involutive division? Yes

Conclusion

- **1** Is passivity independent of the involutive completion? Yes
- Every (Wu-)passive system is coherent. [Li&Wang '99]
 Is the converse also true? Yes
- 3 Is passivity independent of the involutive division? Yes