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Noether’'s T heorem

links SYMMETRIES and conservation laws for Euler Lagrange
Systems.

What is a conservation law? Answer: a divergence expression
which is zero on solutions of the system.

The heat equation u; + (—uz), = 0 is its own conservation law.

Integrating,

0

where we assume u is sufficiently nice that we can interchange
O¢ and [, and we have applied Stokes' Theorem. In words:

Rate of change __ Net of comings and goings

of total heat in Q2 across the boundary
Nno sources or sinks
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he usual examples

Symmetry Conserved Quantity
leaves Ldz invariant the quantity behind the 5,
in the Divergence

t* =1t
{ T Energy

translation in time

=t
{ Y1 Te Linear Momenta

translation in space

x* = Rx
Angular Momenta
rotation in space

y

a* = ¢(a,b) b* = ¢(a,b)
datp — Optg = 1 Potential vorticity

Particle relabelling
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Variational Complexes 1-2-3 |

SMOOTH cf. P.J. Olver, Applications . ..
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* earlier: Kuperschmidt, Asterisque 123 (1985)



Finite Element ELM and GRW Quispel, CRM Proc.
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Exactness can be used to find conservation laws for non
Euler-Lagrange systems via clever ansatze!

cf Hereman, Sanders, Sayers and Wang, CRM Proc.; Hydon J. Phys. A

Exactness is proved by the use of so-called homotopy operators

H;
Div E
— /\2 — /\3 — A¥ —
— — — 1
Hy Hyo
which satisfy
(DivH1 + HpE)w = w, all we A3

Thus if E(w) =0, then w = Div(H1(w)).

Idea: solve E(clever ansatz) = 0 for parameters and arbitrary
functions. Then you have a conservation law using Hj.



More on d and =

SMOOTH
d(Ldz) = d (% (u% -+ u%m) d:c>
(uzduy + urrdugy)dx
(—ugzdu + uzzrzdu)dz
+55 (Uzdu — 2ugpdug + 5 (uzedu))
= FE(L)dudx + E%nL

General Formula, explicit, exact, symbolic, for n; known.

FEF =mo a, where « projects out the divergence term.

More than one dependent variable

dL(z,u,v,...)dz = E*(L)dudz 4+ EY(L)dvde + Lon;



-~

More on d and = DISCRETE CASE
d(Ldz) = d <%u% - unun_|_1) JANS

= (updun + Up41dUun + undun+1)An

= (un+ Un41 + up—1)dunlg,
+(5 —id) ()

General Formula, explicit, exact, symbolic, for iy known.
F=mo a, where « projects out the total difference term.

More than one dependent variable

d(LnArn) = E*(Lp)dunAp + E¥(Lp)dvnAn + A(nr,)



Variational Symmetries

Symmetries arise from Lie group actions.
EXAMPLE: G = (R,+4)

T u(x
e.g;zx*z , 6,u’=,u’>|<(aj>|<)= ()
1l —ex 1l —ex

Group Action Property

T

0-(e-z) =14 <1—wew> — 1—@ — 1—(eai|—5):c =(etd)-z

1l—ex

and similarly for u(x).

Prolonged Group Action
. _ ou*(z*) O0x* Ug

) /851: (1 —ex)?

€E-Up — U

v ox

5"le 'U;a;

5'(€'U:E):(1_6(5.33))2:(1—(5"‘6)33)2




Action on Integrals

€ JoL(z,u,ug,...)dz

def": of = [oL(e-z,e - ue-ug, --)de
change of _ e o Nder T
variable  — JeLle e u e ug, )= ——dx

Use L2 theory to get that a variational symmetry of a
Lagrangian is a group action such that

de - x
dx

L(x,u,ug,...) = L(e-x,€-u,€e-ug, --)



Infinitesimal Action on Integrals

Since the symmetry invariance condition
de - x

dx

L(x,u,ug,...) = L(e-x,€-u,e-ug, --)

d .

is true all €, applying d_|€:O to both sides, and noting that
€

when ¢ = 0 we have the identity action,

0 = e+ 0lo+ Lo+ +Le,

_ DL OL (‘911 DQ l, D Q
where

d d
Q — ¢_u$£7 Qb: a|e:O€'u7 £= &|e:0€'x

and D%; IS the total derivative operator.

0 = Div(L§) + 3 (D/QY) - = o



Almost to the punchline

0
Let vp = X, Qaa—a Then the prolongation is defined by
u

18]
rvy = D/ 0~
prvg az;] Q o
Note
8 (87
uG = ¥i Y ¥ = D/u®
axll- Oxp”
Then
oL ~
> D’ Q" — = prvgdL
(D7Q") B

Recall that d is one of the two operators comprising the Euler Lagrange
operator, while the left hand side is a divergence if Q is the characteristic of

a symmetry.



THE PUNCHLINE

Lcurl A2 Dlv A3 K Al med |,
W W -
L E*(L)du®dx = d(L) 4+ Div(nyz)
%
DFVQJ

Q- E(L) = vgid(L) + Div(prvgmr)

If @ is the characteristic of a symmetry, we have that

voad(L) = Div(L§)

and hence that

Q - E(L) = Div(something)



Non-trivial example

Semi-geostrophic equations

N

a* = ¢(a,b) PaPp — PpPa =1
b* = Y (a,b)

h = (zayp — TpYa)

Invariants  { 9, = h(yp0a — YaOp)

8y = h(—zp04 + a0p)

Group <

N/

N\

Dt:c — —iDth — gh
Equations [ f; v ]; Y
\ Dy = _FDthy + Tha:

The Lagrangian has 4 arbitrary functions which obey two

conditions. The conserved quantity is potential vorticity

2
% (f + %(hxw + hyy)%(hmhyy - hgy)>



DISCRETE Almost Punchline

This case is easier than the smooth case.

e Since n cannot vary in a smooth way, the “mesh variables”
Tn are treated as dependent variables.

e The group action commutes with shift:
€ - Sj(un) = €Up4; = STe . up,

SO no prolongation formulae are required.

For example,

Un u )
€-Unp = == € - Up4 ;= nt
nd 1—€$n+j




The symmetry condition is:

Ln(ili'n, L4, Un, 0 un-l—k) — Ln(e'xﬂn €T, CUR, E’u’n—|—k)
d . ,
Applying Jele= to both sides of the symmetry condition vyields
cle=
oL, d oL, d
0= T €-U
zk: Oy de e=0" Ttk T Ouy, 4, dele=0 ntk
— d _ -
Setting QF = el oo " T Qp = = 6_Oe un then since
L= SR, u k=S

the equation above can be written as
0

n-I—J

0= XQ_laLn, XQ — Z SJ(Qn



DISCRETE Punchline

328 Ex3 ™ AL — A2
W W ~
Ln E(Lyp)dun, = d(Ln) + A(nLn)
F
XQ_I

Q- E(Lyn) = Xqud(Ln) + A(Xgnz,)
Again, we get that if
Xgad(Ln) =0
then
Q- E(Lp) = A(something),

that is, a total difference expression which is zero on solutions
of the discrete Euler Lagrange system.
compare V. Dorodnitsyn, App. Num. Math. 39 (2001)



Nice example T.D. Lee, Difference Equations and Conservation Laws,
J. Stat. Phys., 46 (1987)

A difference model for [(542 — V(x)) dt. Define

V)= [ V(@)do

In — Lp—1 /Tn-1
and take

(tn — tn—l)

l (xpn —x 2
Lp= |2 (Z2—=1) —¥(n)
The group action is t;, = t, + €, with x, invariant. The

conserved quantity is thus “energy”. Now, Q;?L = 1 for all n,
and Qi = 0. The equations become

0

Et(L,) = Ln—I—S( 0 Ln>
0 = Xq@ud(Ln) = 8tnL”+8t_

as L, is a function of (tn, —t,—1).



It is easy to see in this case that

0= (S —id) (iLn)

Otn
IS implied by the two equations, to vield
l [x Tn—1 2
n - 4Ln— =
— Vin) =c
! (tn—t,H) + 7 (n)

Note that the energy in the smooth case is

1/23% + V.

Can regard the EL eqgn for the mesh variables as an equation
for a variable mesh.



INTERLUDE

If we know the group action for a particular conservation law,
we can ‘“design in” that conservation law into a discretisation
by taking a Lagrangian composed of invariants. These
necesarily satisfy vg(I) =0 or Xgo(In) = 0. The Fels and Olver
formulation of moving frames is particularly helpful here: a
sample theorem is

Discrete rotation invariants in z2
Let (zn,yn), (xm,ym) be two points in the plane. Then

In,m = TnYn + TmYm, Jn,m — InYm — TmYn

are rotation invariants. Moreover, any disrete rotation invariant
IS @ function of these.



Made up example

Suppose
1 5

an_J

1 2
2 nn+1 — §(xnyn+1 - $n+1yn)

then

{ By = Jn,n-l—lyn+1 - Jn—l,nyn—l
E’% — _Jn,n+1xn—|—1 +Jn—1,nxn—1

Now, Qn = (Q%, Q¥) = (—yn, zn) = §p|,_(=h,u5) and thus

Qn-En = Jynt1(—yn¥nt1 — TnTpi1)
+Jn—1n(Yn¥n—1 + TnTp_1)
= —Jnnt+1lnnt1 T JIn-1nln-1n
= —(S—-id)(Jn-1,nln-1,n)
gives the conserved quantity.
Note that In.m = Immn and Jnm = —Jm.n



Less easy example

Hereman et al., Densities, Symmetries and Recursion operators for nonlinear
DDEs, CRM Proceedings
The Toda lattice in polynomial form is

{ Up = Vp_1 — Un

vn = Un(un _un—l—l)

The scaling symmetry is the basis for the ansatz used to obtain
the differential-difference conservation laws, which are of the

form
D + (S —-id)J, =0
Dtpn n —

for example

1
Pn = gug + un(vp—1 — vn), Jn = Up—_1UnVp_1 + U%—l

These results use the ansatz plus homotopy operator method
outlined earlier.



Summary of the Pattern

=) ey

— = AL — N2 —
Ex3
w w
~ Div
L > E¥(L)du® = d(L) + { } nL
A
&

L )

o= e ()2
Xq A Xq

the formula for ny is explicit, exact, symbolic

first summand is a total derivative/difference by the symmetry condition



OK let’s try for a Noether’'s Theorem for Finite
Element!

D. Arnold, Beijing ICM Plenary talk

Given a system of moments and sundry other data, aka degrees
of freedom, that yield projection operators such that the
diagram commutes:

0—-R —=A0 AL A2 A3 S0
Mol Tyl Mol T3]
0—-R —-F0 5 Fl 5 F2 5 F3 50

all relative to some triangulation.

Yields stability!! A Lagrangian is composed of wedge products
of 1-, 2- and 3- forms. Choose the discretisation of each to be
in the relevant F;. Then commutativity implies conditions for
Brezzi's theorem to hold.



In one dimension: with ey, = (zn,z,41), Mo to piecewise linear,
[1; to piecewise constant with moment

oy = ot u(x)yYn(x) dz

In

Commutativity of the diagram

U rg) urdx

Mo | I M1
= Apz+ Bn — Ap = [p" W/ (2)Yn(z) do

ulg,

implies
An = u(@) @5t = [ u(@)g (@) do
Note that

/wn+1 Un(z)dr = 1.

In

IS required by the projection property.



A finite element Lagrangian is built up of wedge products of
forms in Fqo, F1, Fo, F3. Call this resulting space f“3. In each
top-dimensional simplex, denoted r, integrate to get

L=Y Li(al,--ab)
T

where o is the jth degree of freedom in 7. L can also depend on

mesh data.

Can now take d which is the variation with respect to the o’



EXAMPLE

In one dimension,
0R A0 & Al 40

Mo My
0-R = Fyg & 7 =0

Take 17 to be projection to piecewise constant forms with
moment @(n) = [z" "2 u(z)n(z) dz where

Yn
area|=1

In Lpn+1 Tnp42

on (xna ZCn_|_2),



Recall
05k A0 4 Al 40
Mo 4 My 4
0-5R = Fy & 7 =0

Take Ny to be a projection to piecewise linear functions with
moments

1 T,
op = / i u(x) dz

that is, an, a,41 are used in (zn, T,42);

w o 29I <$n+1+$n+2> On — <$n+1+$n) Qp+1

Ln4+2—Tn Ln+2—Tn Ln4+2—Tn




Very simple example

[ 3u2 dz projects to

Z/ 2n+2 1ﬂ(u)2 4 — 22 ((azn a2p41)° )

Lo2n+42 — L2n

Then

g - a an 1
dLo, = 43322_'_2 Z;}Q_ (d C"Qn_dc"2n,+1)

« —Q « _1—Q
4 2n 2n+1  X2p-—1 2n dOAQn
Lo2n+2—L2n Lo2n+1—L2n

+(S — id)(something)

The discrete Euler Lagrange equation is then, after
“integration’
x2n — Aopn41
Lo2n+42 — L2n -




Look now at the “Noether pattern” for the Finite Element
variational complex

~ ~ 7rodof ~1 ~5
—Fo—Fz = Fiy—=>Fg—

W ~
Lr E(L7) +d(ng) = dLr

where § is the mesh dependent coboundary operator (recall

6(f)(7r) = f(9071)).
Step 1: find ny, Step 2: find vg

If then vg_1d(Lr) = §(something) we will have that

O0=Q--E(L:)+ éd(something).



Group actions on moments

The clue is the variational symmetry group action on
fQ L(:E7 u, - - ) dz

Define

€ [-u(x)yr(x)dx

= [, e u(@)yr(e- )2 da
Example Recall the projective action

, e-u(z) =
l —ex 1l —ex

Then the induced action on the moments

Tn4+1 u(x) _ [Tat1 u(x)
3 dzx, Bn—/ o dx

€T —

Aqp —

In In

IS

€ 0n — An, E'/anﬁn_ean



In general for this action,

€ - fjj“ xMu(x) dz

— Ln+1 " u(w) dx
Tn (1—ex)™ 1—ex (l—ex)?

— Tn+1 x2"u(x)
— JIn (1—ex)m+3 dz

THINK: if you want a coherent scheme which maps to itself
under this projective action, and involves only a finite amount
of data, then take your moments to be

w(z) s Tn+1 u(x)

— dzx, m=3,4,...N.
In xZr



CONCLUSIONS

e T he underlying algebraic pattern of the exact variational
complexes provide a framework for generalisations of
Noether's Theorem and conservation laws in general.

e Symmetry-adapted moments would appear to be necessary.

e Next: formulae for ny_ where

a(LT) = E(L:) + 5(77LT)

in terms of the mesh dependent coboundary operator.



