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Introduction to D-modules Weyl Algebra

Holonomicity

Running example

Let R = k[z1, 2, x5, 24, x5, 2] and

A— < r1 X I3 ) .
Ty X5 T
Let I be the ideal generated by the three 2 x 2-minors of A:

fi = 7125 — T2%4, fo = T1T6 — T3T4, f3 = ToTe — T3T5.

Are there g1, go such that V(I) = V(g1,92)?
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Running example

Let R = k[z1, 2, x5, 24, x5, 2] and

A— < r1 X I3 ) .
Ty X5 T
Let I be the ideal generated by the three 2 x 2-minors of A:

fi = 7125 — T2%4, fo = T1T6 — T3T4, f3 = ToTe — T3T5.

Are there g1, go such that V(I) = V(g1,92)?

Arithmetic rank > cohomological dimension
The answer to the above question is no if H3(R) # 0.
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Holonomicity

Running example

Let R = k[z1, 2, x5, 24, x5, 2] and

A— < r1 X I3 ) .
Ty X5 T
Let I be the ideal generated by the three 2 x 2-minors of A:

fi = 7125 — T2%4, fo = T1T6 — T3T4, f3 = ToTe — T3T5.

Are there g1, go such that V(I) = V(g1,92)?

Arithmetic rank > cohomological dimension
The answer to the above question is no if H3(R) # 0.

@ In char k > 0 the module H(R) does vanish! ’
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Introduction to D-modules Weyl Algebra

Holonomicity

Running example

Let R = k[z1, 2, x5, 24, x5, 2] and

A— < r1 X I3 ) .
Ty X5 T
Let I be the ideal generated by the three 2 x 2-minors of A:

fi = 7125 — T2%4, fo = T1T6 — T3T4, f3 = ToTe — T3T5.

Are there g1, go such that V(I) = V(g1,92)?

Arithmetic rank > cohomological dimension
The answer to the above question is no if H3(R) # 0.

@ In char k > 0 the module H(R) does vanish!
@ If chark = 0 then H3(R) # 0 (Hochster)
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Introduction to D-modules

Weyl Algebra
Holonomicity

Let k£ be a field of characteristic 0.

Definition

The algebra D = A,,(k) = k(z,0) = k{x1, 04, ..., 2y, 0n) With relations
[0;, ;] = O;z; — x;0; = 1 (and all other pairs commuting) is called the
n-th Weyl algebra.

(algebra of differential operators with polynomial coefficients)
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Weyl Algebra
Holonomicity

Let k£ be a field of characteristic 0.

Definition

The algebra D = A,,(k) = k(z,0) = k{x1, 04, ..., 2y, 0n) With relations
[0;, ;] = O;z; — x;0; = 1 (and all other pairs commuting) is called the
n-th Weyl algebra.

(algebra of differential operators with polynomial coefficients)

Convention:
We would use only left ideals in D as well as left D-modules.
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Introduction to D-modules

Weyl Algebra
Holonomicity

Let k£ be a field of characteristic 0.

Definition

The algebra D = A, (k) = k{z,0) = k(z1,01, ..., 2z, 0n) With relations
[0;, ;] = O;z; — x;0; = 1 (and all other pairs commuting) is called the
n-th Weyl algebra.

(algebra of differential operators with polynomial coefficients)

Convention:
We would use only left ideals in D as well as left D-modules.

Example (one variable)

For D = A, = k(xz, 9) the module R = k[z] and its localization R, are
left D-modules:

P

xm mm-&-l

Moreover, both have cyclic presentations:

R=D/Dd, R,~D/D(zd+2)
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Introduction to D-modules Weyl Algebra

Holonomicity

Definition (Characteristic ideal)

Foranideal I C A,, the ideal in( (/) C k[z,¢] is called the
characteristic ideal of I.

Here w = (0, e) is the weight that assigns w(z;) = 0 and w(9;) = 1 for
all 4.
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Introduction to D-modules

Weyl Algebra
Holonomicity

Definition (Characteristic ideal)

Foranideal I C A,, the ideal in( (/) C k[z,¢] is called the
characteristic ideal of I.

Here w = (0, e) is the weight that assigns w(z;) = 0 and w(9;) = 1 for
all 4.

Theorem (Fundamental theorem of algebraic analysis)

Let I be a nonzero left A, -ideal, then n < dim(in (1)) < 2n,
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Introduction to D-modules

Weyl Algebra
Holonomicity

Definition (Characteristic ideal)

Foranideal I C A,, the ideal in( (/) C k[z,¢] is called the
characteristic ideal of I.

Here w = (0, e) is the weight that assigns w(z;) = 0 and w(9;) = 1 for
all 4.

Theorem (Fundamental theorem of algebraic analysis)
Let I be a nonzero left A, -ideal, then n < dim(in (1)) < 2n,

Definition (Holonomic)

Anideal I ¢ D = A,, is called holonomic if its characteristic ideal has

dimension n.
The D-module M = D/I is called holonomic if I is holonomic.

Anton Leykin Computing characteristic cycles of local conomology



Introduction to D-modules

Weyl Algebra

Holonomicity

Localization

Ry = k[z, f~'] possesses the following natural structure of a
D-module:

o 9 _ %9 o 9 _ 09/0ri dg(9f/0zi)

N foT

forall1<i<mn, f,g € R, d € Z~y.
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Localization

Ry = k[z, f~'] possesses the following natural structure of a
D-module:

o 9 _ %9 o 9 _ 09/0ri dg(9f/0zi)

N foT

forall1<i<mn, f,g € R, d € Z~y.

The D-module Ry is holonomic.
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Introduction to D-modules

Weyl Algebra
Holonomicity

Localization

Ry = k[z, f~'] possesses the following natural structure of a
D-module:

9 _z9 o 9 _ 99/0ri dg(df/dzi)

xX; = —= —

N fEr

forall1<i<mn, f,g € R, d € Z~y.

The D-module Ry is holonomic.

Why view R; = R[f~'] as a D-module?
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Introduction to D-modules

Weyl Algebra
Holonomicity

Localization

Ry = k[z, f~'] possesses the following natural structure of a
D-module:

o 9 _ %9 o 9 _ 09/0ri dg(9f/0zi)

N foT

forall1<i<mn, f,g € R, d € Z~y.

The D-module Ry is holonomic.

Why view R; = R[f~'] as a D-module?

@ Ry can not be finitely generated as an R-module,
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Introduction to D-modules

Weyl Algebra
Holonomicity

Localization

Ry = k[z, f~'] possesses the following natural structure of a
D-module:

o 9 _ %9 o 9 _ 09/0ri dg(9f/0zi)

N foT

forall1<i<mn, f,g € R, d € Z~y.

The D-module Ry is holonomic.

Why view R; = R[f~'] as a D-module?

@ Ry can not be finitely generated as an R-module,

@ but is generated by f~¢ for some positive integer a as a
D-module.
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Algorithm for computing localization

Computing localization - ~ B e
Local cohomology via Cech complex

Algorithm for localization?

Let M = D/I be a holonomic D-module. Can we compute its
localization Ry ® M, i.e. find J C D suchthat Ry ® M = D/J?
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Algorithm for computing localization
Local cohomology via Cech complex

Computing localization

Algorithm for localization?

Let M = D/I be a holonomic D-module. Can we compute its
localization Ry ® M, i.e. find J C D suchthat Ry ® M = D/J?

If M is f-saturated (i.e. f-m =0« m =0forallm e M)...

... there is an algorithm (Oaku), the main steps of which are:
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@ Find JI(f*), annihilator of f* ® T € Ry[s]f* ® M in D[s], where
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Algorithm for computing localization
Local cohomology via Cech complex

Computing localization

Algorithm for localization?

Let M = D/I be a holonomic D-module. Can we compute its
localization Ry ® M, i.e. find J C D suchthat Ry ® M = D/J?

If M is f-saturated (i.e. f-m =0« m =0forallm e M)...

... there is an algorithm (Oaku), the main steps of which are:
@ Find JI(f*), annihilator of f* ® T € Ry[s]f* ® M in D[s], where
e 1 is the cyclic generator of M = D/I,

Anton Leykin Computing characteristic cycles of local conomology



Algorithm for computing localization
Local cohomology via Cech complex

Computing localization

Algorithm for localization?

Let M = D/I be a holonomic D-module. Can we compute its
localization Ry ® M, i.e. find J C D suchthat Ry ® M = D/J?

If M is f-saturated (i.e. f-m =0« m =0forallm e M)...

... there is an algorithm (Oaku), the main steps of which are:
@ Find JI(f*), annihilator of f* ® T € Ry[s]f* ® M in D[s], where

e 1 is the cyclic generator of M = D/I,
e f° —the generator of Ry[s]f°.
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Algorithm for computing localization
Local cohomology via Cech complex

Computing localization

Algorithm for localization?

Let M = D/I be a holonomic D-module. Can we compute its
localization Ry ® M, i.e. find J C D suchthat Ry ® M = D/J?

If M is f-saturated (i.e. f-m =0« m =0forallm e M)...

... there is an algorithm (Oaku), the main steps of which are:
@ Find JI(f*), annihilator of f* ® T € Ry[s]f* ® M in D[s], where
e 1 is the cyclic generator of M = D/I,
e f° —the generator of Ry[s]f°.
© Compute the b-polynomial b]’c(s) (relative to the the ideal I); Take
its smallest integer root a and “plug in” s = a in the generators of

JH(f?).-
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Computing localization Algorithm for computing localization

Local cohomology via Cech complex

Algorithm for localization?

Let M = D/I be a holonomic D-module. Can we compute its
localization Ry ® M, i.e. find J C D suchthat Ry ® M = D/J?

If M is f-saturated (i.e. f-m =0« m =0forallm e M)...

... there is an algorithm (Oaku), the main steps of which are:
@ Find JI(f*), annihilator of f* ® T € Ry[s]f* ® M in D[s], where
e 1 is the cyclic generator of M = D/I,
e f° —the generator of Ry[s]f°.
© Compute the b-polynomial b]’c(s) (relative to the the ideal I); Take
its smallest integer root a and “plug in” s = a in the generators of

JH(f?).-

Alternative algorithm

Oaku, Takayama, Walther: A localization algorithm for D-modules. J.
Symbolic Computation 29 (2000), 721-728.
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N Algorithm for computing localization
Computing localization - v

Local cohomology via Cech complex

Cech complex for computing local cohomology

Let R = k[x1,...,x,) and I = (f1, ..., fa). To calculate H}(R) consider
the Cech complex:

0-C">C'— .- Ct—0,
k
Ct= D  EBros
1<ih<...<ip<d

and the map C* — C**! is the alternating sum of maps

sz‘l coolfi th o Sigyn
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N Algorithm for computing localization
Computing localization - v

Local cohomology via Cech complex

Cech complex for computing local cohomology

Let R = k[x1,...,x,) and I = (f1, ..., fa). To calculate H}(R) consider
the Cech complex:

0-C"=C'—> .. 0=,
k
Ct= @D Eusy
1<ii<...<ip<d

and the map C* — C**! is the alternating sum of maps

sz‘1~~fik - Rfj1~

Hfjk_*_l .

The complex C* makes it possible to compute the local cohomology
algorithmically viewing C* as holonomic D-modules.
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Algorithm for computing localization

Computing localization Local cohomology via Cech complex

Example (running)

I = (33133‘5 — ToT4,T1Txe — T3T4,T2Te — 1‘3115) CR= @[xl, ...,1‘6]
Does H3(R) vanish if char k = 0?
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Algorithm for computing localization
Local cohomology via Cech complex

Computing localization

Example (running)

I = (33133‘5 — ToT4,T1Txe — T3T4,T2Te — 1‘3115) CR= @[xl, ...,1‘6]
Does H3(R) vanish if char k = 0?

Walther: computation of LC via D-modules

This was the first computational approach.
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Algorithm for computing localization
Local cohomology via Cech complex

Computing localization

Example (running)

I = (33133‘5 — ToT4,T1Txe — T3T4,T2Te — 1‘3115) CR= @[xl, ...,1‘6]
Does H3(R) vanish if char k = 0?

Walther: computation of LC via D-modules

This was the first computational approach.

Joint with Tsai: software

D-modules for Macaulay 2.
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Algorithm for computing localization
Local cohomology via Cech complex

Computing localization

Example (running)

I = (33133‘5 — ToT4,T1Txe — T3T4,T2Te — 1‘3115) CR= @[xl, ...,1‘6]
Does H3(R) vanish if char k = 0?

Walther: computation of LC via D-modules

This was the first computational approach.

Joint with Tsai: software

D-modules for Macaulay 2.

Motivation for the rest of slides

Is there a way to answer the above question computationally without
using Grébner bases in noncommutative setting?
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Definitions
CC of localization

Characteristic cycle (CC) CCs of local cohomology

Let X = C” be the complex affine space with the coordinate ring
R =CJ[zy,...,x,]. By D denote either A,, :== Clxy,...,2,]{(01,...,0n)
or D, :=C{z1,...,2,}{01,...,0n).
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Definitions
CC of localization

Characteristic cycle (CC) CCs of local cohomology

Let X = C” be the complex affine space with the coordinate ring
R =CJ[zy,...,x,]. By D denote either A,, :== Clxy,...,2,]{(01,...,0n)
or D, :=C{z1,...,2,}{01,...,0n).

Support of a D-module

Let C(M) be the characteristic variety and let
7 : Spec(R[aq, . ..,a,]) — Spec(R), w(z,a) = .
Then Suppg(M) = w(C(M)).
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Definitions
CC of localization

Characteristic cycle (CC) CCs of local cohomology

Let X = C” be the complex affine space with the coordinate ring
R =CJ[zy,...,x,]. By D denote either A,, :== Clxy,...,2,]{(01,...,0n)
or D, :=C{z1,...,2,}{01,...,0n).

Support of a D-module

Let C(M) be the characteristic variety and let
7 : Spec(R[aq, . ..,a,]) — Spec(R), w(z,a) = .
Then Suppg(M) = w(C(M)).

Definition (Characteristic cycle of M)

The sum is taken over all irreducible components A; of C(M) and m;
is the multiplicity of the module M along A;.
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Definitions
CC of localization

Characteristic cycle (CC) CCs of local cohomology

Let X = C” be the complex affine space with the coordinate ring
R =CJ[zy,...,x,]. By D denote either A,, :== Clxy,...,2,]{(01,...,0n)
or D, :=C{z1,...,2,}{01,...,0n).

Support of a D-module

Let C(M) be the characteristic variety and let
7 : Spec(R[aq, . ..,a,]) — Spec(R), w(z,a) = .
Then Suppg(M) = w(C(M)).

Definition (Characteristic cycle of M)

The sum is taken over all irreducible components A; of C(M) and m;
is the multiplicity of the module M along A;.

A very useful property
CC is additive.
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Analytic vs. algebraic

Given an A,,-module M we consider M®" := C{z} ®c[y M

The analytic characteristic variety C'(M*™) is the analytic extension
of the algebraic characteristic variety C(M), i.e. C(M*™) = C(M)*".
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Analytic vs. algebraic

Given an A,,-module M we consider M®" := C{z} ®c[y M

@ M regular holonomic A,-module = M®" regular holonomic
D,,-module.

The analytic characteristic variety C'(M*™) is the analytic extension
of the algebraic characteristic variety C(M), i.e. C(M*™) = C(M)*".
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Analytic vs. algebraic

Given an A,,-module M we consider M®" := C{z} ®c[y M

@ M regular holonomic A,-module = M®" regular holonomic
D,,-module.

@ {M;};>0 good filtration on M = {M/"},>( good filtration on A/*"

The analytic characteristic variety C'(M*™) is the analytic extension
of the algebraic characteristic variety C(M), i.e. C(M*™) = C(M)*".
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Analytic vs. algebraic

Given an A,,-module M we consider M®" := C{z} ®c[y M

@ M regular holonomic A,-module = M®" regular holonomic
D,,-module.
@ {M;};>0 good filtration on M = {M/"},>( good filtration on A/*"
@ gr(M") ~ C{z} ®cz) gr(M)
The analytic characteristic variety C'(M*™) is the analytic extension
of the algebraic characteristic variety C(M), i.e. C(M*™) = C(M)*".
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Analytic vs. algebraic

Given an A,,-module M we consider M®" := C{z} ®c[y M

@ M regular holonomic A,-module = M®" regular holonomic
D,,-module.
@ {M;};>0 good filtration on M = {M/"},>( good filtration on A/*"
@ gr(M") ~ C{z} ®cz) gr(M)
The analytic characteristic variety C'(M*™) is the analytic extension
of the algebraic characteristic variety C(M), i.e. C(M*™) = C(M)*".

Caveat: CC (M) # CC(M™)

Algebraically irreducible components can be analytically reducible.
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Conormal bundles

Let X? be the smooth part of X; C X. Set:
Z={(z,a) eT*X | z€ X; and a kills T, X7}.

The conormal bundle 7% X is the closure of Z in T* X | x,.
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Conormal bundles

Let X? be the smooth part of X; C X. Set:
Z={(z,a) eT*X | z€ X; and a kills T, X7}.

The conormal bundle 7%, X is the closure of Z in T* X

X+

m\;

1€

For M with CC(M) =3

... there exists a Whitney stratification {X; };cs of X such that

CO(M) =) m; T%X.

1€

In particular, Suppr (M) = U X;.
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Conormal bundles

Let X? be the smooth part of X; C X. Set:
Z={(z,a) eT*X | z€ X; and a kills T, X7}.

The conormal bundle 7%, X is the closure of Z in T* X

X+

m\;

1€

For M with CC(M) =3

... there exists a Whitney stratification {X; };cs of X such that

CO(M) =) m; T%X.

1€

In particular, Suppr (M) = U X;.
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Direct computation of CC of a localization

To compute CC(My) for a holonomic M and a polynomial f direcitly,
one needs to:
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Direct computation of CC of a localization

To compute CC(My) for a holonomic M and a polynomial f direcitly,
one needs to:

@ construct a representation of M;
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Direct computation of CC of a localization

To compute CC(My) for a holonomic M and a polynomial f direcitly,
one needs to:

@ construct a representation of M;
@ find the characteristic ideal J(My);
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Direct computation of CC of a localization

To compute CC(My) for a holonomic M and a polynomial f direcitly,
one needs to:

@ construct a representation of M;
@ find the characteristic ideal J(My);
© compute primary decomposition of .J(M).
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Direct computation of CC of a localization

To compute CC(My) for a holonomic M and a polynomial f direcitly,
one needs to:

@ construct a representation of M;
@ find the characteristic ideal J(My);
© compute primary decomposition of .J(M).

Example (R = C{z,y, z}, f = x)

CO(Ry) = T5 X +Tf,_gy X
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Direct computation of CC of a localization

To compute CC(My) for a holonomic M and a polynomial f direcitly,
one needs to:

@ construct a representation of M;
@ find the characteristic ideal J(My);
© compute primary decomposition of .J(M).

Example (R = C{z,y, z}, f = x)

CO(Ry) = T5 X +Tf,_gy X

Example (M = H/,,(R), g = y)

CC(My) = Ty X + Tfeyey X
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Indirect computation (joint with Josep Alvarez)

Definition (T;fly

Let Y° be the smooth part of Y C X where f|y is a submersion.

= conormal bundle relative to f)

W ={(z,a) €T*X | 2 €Y° and a annihilates T,(f|y) *(f(x))}.

T;IY is the closure of W in T* X|y.
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Indirect computation (joint with Josep Alvarez)

Definition (T_;fIY = conormal bundle relative to f)

Let Y° be the smooth part of Y C X where f|y is a submersion.
W ={(z,a) €T*X | 2 €Y° and a annihilates T,(f|y) *(f(x))}.

T;IY is the closure of W in T* X|y.

Theorem (Ginsburg, Briangon-Maisonobe-Merle (BMM))

Let M be a regular holonomic D,,-module with
CC(M) =3 ,m; Ty, X andlet f € R be a polynomial. Then

coMy)= Y mi(Ti+T%,X)
F(X:)#0

withT'; = >, m;;T';;, where I';; are the irreducible components of
multiplicity m; of the divisor defined by f in T}, .
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Example (R = C{z,y, 2}, f = 2, CC(R) = Tx X)
={(z,y,2,a,b,¢c) e T*X | b=0,c= 0}, then the divisor
defined by finT le is

f|X

I'={(z,9,2,a,b,c) €eT*X | b=0,c=0,2 =0} =T,_, X

Therefore, CC(R,) = T3 X +T{,_, X
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Example (R = C{z,y, 2}, f = 2, CC(R) = Tx X)
T, ={(,y,2,a,b,c) € T*X | b=0,c= 0}, then the divisor
defined by finT le is

I'={(z,9,2,a,b,c) €eT*X | b=0,c=0,2 =0} =T,_, X

Therefore, CC(R,) = T3 X +T{,_, X

Example (M = H1 (1), g =y, (from above) CC(M) = T{,_,, X)

={(z,y,2,a,b,¢c) e T*X | ¢= 0,2 = 0}, then the divisor

Tg\{L 0} )
defined by g in T*‘{ ,Is

I'={(z,y,2,a,b,c) eT*X | ¢c=0,2 =0,y =0} = sz:y:O}X

Therefore, CC(M,) = Tf,_o, X + T},_,_, X
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

How is this better?

We will consider R = Clzy, ..., z,]. Given a polynomial
f €Qz1,...,z,], we would like to compute CC(Ry). The [BMM]
formula reduces to

CC(Rp) =TxX + Y m; Tk X,

where X = C".
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CC of localization
Characteristic cycle (CC) CCs of local cohomology

How is this better?

We will consider R = Clzy, ..., z,]. Given a polynomial
f €Qz1,...,z,], we would like to compute CC(Ry). The [BMM]
formula reduces to

CC(Rp) =TxX + Y m; Tk X,

where X = C".

Advantages of the indirect approach
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

How is this better?

We will consider R = Clzy, ..., z,]. Given a polynomial
f €Qz1,...,z,], we would like to compute CC(Ry). The [BMM]
formula reduces to

CC(Rp) =TxX + Y m; Tk X,

where X = C".

Advantages of the indirect approach

@ Do not have to compute the D-module presentations of
localizations; in particular, no Bernstein-Sato polynomials.
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

How is this better?

We will consider R = Clzy, ..., z,]. Given a polynomial
f €Qz1,...,z,], we would like to compute CC(Ry). The [BMM]
formula reduces to

CC(Rp) =TxX + Y m; Tk X,

where X = C".

Advantages of the indirect approach

@ Do not have to compute the D-module presentations of
localizations; in particular, no Bernstein-Sato polynomials.

@ All computations take place in a commutative ring.
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

How is this better?

We will consider R = Clzy, ..., z,]. Given a polynomial
f €Qz1,...,z,], we would like to compute CC(Ry). The [BMM]
formula reduces to

CC(Rp) =TxX + Y m; Tk X,

where X = C".

Advantages of the indirect approach

@ Do not have to compute the D-module presentations of
localizations; in particular, no Bernstein-Sato polynomials.

@ All computations take place in a commutative ring.

Primary decomposition over Q is used in the implementation.
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Ouitline of the algorithm

Compute the smooth part Y° of Y where f|y is a submersion

Anton Leykin Computing characteristic cycles of local conomology



Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Ouitline of the algorithm

Compute the smooth part Y° of Y where f|y is a submersion
(0a) Compute Vf = (2L Of )

Ox1’ " Oz
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Ouitline of the algorithm

Compute the smooth part Y° of Y where f|y is a submersion
(0a) Compute Vf = (£L, .., 2L)
(0b) Compute the ideal I° C R such that
Ye={xzeY |Vf(z)¢T,Y}isdescribedas Y° =Y \ V(I°).
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Ouitline of the algorithm

Compute the smooth part Y° of Y where f|y is a submersion
(0a) Compute Vf = (2L Of )

Ox1’ " Oz

(0b) Compute the ideal I° C R such that
Ye={xzeY |Vf(z)¢T,Y}isdescribedas Y° =Y \ V(I°).

Compute the conormal relative to f
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Definitions
CC of localization
CCs of local cohomology

Characteristic cycle (CC)

Ouitline of the algorithm

Compute the smooth part Y° of Y where f|y is a submersion

(0a) Compute Vf = (£L, .., 2L)

(0b) Compute the ideal I° C R such that
Ye={xzeY |Vf(z)¢T,Y}isdescribedas Y° =Y \ V(I°).

Compute the conormal relative to f

(1a) Compute K = ker ¢, where the ¢ : R — R*1/] sends

s+— (Vf,Vai,..,Vga) - s € R7/I.
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Ouitline of the algorithm

Compute the smooth part Y° of Y where f|y is a submersion

(0a) Compute Vf = (£L, .., 2L)

(0b) Compute the ideal I° C R such that
Ye={xzeY |Vf(z)¢T,Y}isdescribedas Y° =Y \ V(I°).

Compute the conormal relative to f

(1a) Compute K = ker ¢, where the ¢ : R — R*1/] sends

s+— (Vf,Vai,..,Vga) - s € R7/I.

(1b) Let J C gr A4,, = R[aq, ..., a,| be the ideal generated by
{(a1,...;an) -b|beE K}.
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Ouitline of the algorithm

Compute the smooth part Y° of Y where f|y is a submersion
(0a) Compute Vf = (2L Of )

Ox1’ " Oz

(0b) Compute the ideal I° C R such that
Ye={xzeY |Vf(z)¢T,Y}isdescribedas Y° =Y \ V(I°).

Compute the conormal relative to f

(1a) Compute K = ker ¢, where the ¢ : R — R*1/] sends

s+— (Vf,Vai,..,Vga) - s € R7/I.

(1b) Let J C gr A4,, = R[aq, ..., a,| be the ideal generated by
{(a1,...;an) -b|beE K}.
(1c) Compute Joar = J : ((gr An)I°)>; then I(T}, ) = v/ Jsat-
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Compute the divisor defin
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Compute the divisor defined by f in 77,

(2a) Compute K; = ker ¢, Where ¢y : R* — R /(I +(f)):

s+ (Vf,Vy1,...,Vgq) - s € R /(I + (f)).
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Compute the divisor defined by f in 77,

(2a) Compute K; = ker ¢, Where ¢y : R* — R /(I +(f)):
s+ (Vf,Vy1,...,Vgq) - s € R /(I + (f)).

(2b) Let J; = ({(a1,...,an) - b | b€ Kf}) CgrA, = Rla,...,an];
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Compute the divisor defined by f in 77,

(2a) Compute K; = ker ¢, Where ¢y : R* — R /(I +(f)):
s+ (Vf,Vy1,...,Vgq) - s € R /(I + (f)).

(2b) Let Jy = ({(a1,...,an) -b| b€ K¢}) C gr An = Rlax, ..., an];
(20) C = Joat + (f) aF Jf C gI’An
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Compute the divisor defined by f in 77,

(2a) Compute K; = ker ¢, Where ¢y : R* — R /(I +(f)):
s+ (Vf,Vy1,...,Vgq) - s € R /(I + (f)).

(2b) Let Jy = ({(a1,...,an) -b| b€ K¢}) C gr An = Rlax, ..., an];
(20) C = Joat + (f) aF Jf C gI’An

Forevery Y = X; in CC(M) = Y m; T%, X compute C; such that
T;, = V(Cy).
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Compute the divisor defined by f in 77,

(2a) Compute K; = ker ¢, Where ¢y : R* — R /(I +(f)):
s+ (Vf,Vy1,...,Vgq) - s € R /(I + (f)).

(2b) Let Jy = ({(a1,...,an) -b| b€ K¢}) C gr An = Rlax, ..., an];
(20) C = Joat + (f) aF Jf C gI’An

Forevery Y = X; in CC(M) = Y m; T%, X compute C; such that
T;, = V(Cy).

Compute the components of C;
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Compute the divisor defined by f in 77,

(2a) Compute K; = ker ¢, Where ¢y : R* — R /(I +(f)):
s+ (Vf,Vy1,...,Vgq) - s € R /(I + (f)).

(2b) Let Jy = ({(a1,...,an) -b| b€ K¢}) C gr An = Rlax, ..., an];
(20) C = Joat + (f) aF Jf C gI’An

Forevery Y = X; in CC(M) = Y m; T%, X compute C; such that
T;, = V(Cy).

Compute the components of C;

(3a) Compute the associated primes C;; of C;.
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Compute the divisor defined by f in 77,

(2a) Compute K; = ker ¢, Where ¢y : R* — R /(I +(f)):
s+ (Vf,Vy1,...,Vgq) - s € R /(I + (f)).

(2b) Let Jy = ({(a1,...,an) -b| b€ K¢}) C gr An = Rlax, ..., an];
(20) C = Joat + (f) aF Jf C gI’An

Forevery Y = X; in CC(M) = Y m; T%, X compute C; such that
T;, = V(Cy).

Compute the components of C;

(3a) Compute the associated primes C;; of C;.
(3b) Get I;; = C;; N R (to know the defining ideal of X;; = m(I';;)).
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Definitions
CC of localization

Characteristic cycle (CC) CCs of local cohomology

Compute the divisor defined by f in 77,

(2a) Compute K; = ker ¢, Where ¢y : R* — R /(I +(f)):

s+ (Vf,Vy1,...,Vgq) - s € R /(I + (f)).

(2b) Let J; = ({(a1, .y an) - b | b€ K;}) C gr An = Rlas,
(20) C = Joat + (f) aF Jf C gI’An

s n;

Forevery Y = X; in CC(M) = Y m; T%, X compute C; such that
T;, = V(Cy).

Compute the components of C;
(3a) Compute the associated primes C;; of C;.
(3b) Get I;; = C;; N R (to know the defining ideal of X;; = = (T';;)).

(3c) Calculate the multiplicity m;; as the multiplicity of a generic point
along each component C;; of C; via Hilbert functions.
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Characteristic cycle (CC) CCs of local cohomology

Example (running)

Let R = K[$17$2,$37$4,$5,.’E6], I= <f1,f27f3>1 Where
f1 = Towe — x3%5, fo = T1T6 — T34, f3 = T1T5 — TaT4.
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Definitions
CC of localization

Characteristic cycle (CC) CCs of local cohomology

Example (running)

Let R = K[$17$2,x3,$4,$5,$6], I= <f17f27f3>1 Where
f1 = Towe — x3%5, fo = T1T6 — T34, f3 = T1T5 — TaT4.

Looking for H} (R) we use Cech complex C*(f1, fa, f3; R):

Co (& Cy Cs
I | I I
Rfl Rf1f2
S SV
0 - R — Rf2 i Rflf3 i Rf1f2f3 — 0
© ©
Rf3 Rf2f3
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Definitions
CC of localization

Characteristic cycle (CC) CCs of local cohomology

X By Ci D
A1 By C» Do
Ao B3 Cs3 Ds

A; F2] E
X A A, 35 X A As BQ X Ay, As B;
Cs D1 Do C> D1 Ds Ci. Dy D3 F
X,Al,Dl X, Az, Do X Az, D3
A = V($2,$3,$57$6) =V (f1), C1 =V(21,74),
Dy =V(x1,24, f1), E ( 1,%2,...,%6), F'=V(I).
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Definitior
CC of tion

Characteristic cycle (CC) CCs of local cohomology

Utilize additivity

If a module N is f; ... f,-saturated
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Definitions
CC of localization

Characteristic cycle (CC) CCs of local cohomology

Utilize additivity
If a module N is f; ... f,-saturated
@ observe that C*(f;; R),

0— N — Ny, — 0,

means that CC(H};,) = CC(Ny,) — CC(N).
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Definitions

CC of localization
Characteristic cycle (CC) CCs of local cohomology

Utilize additivity
If a module N is f; ... f,-saturated
@ observe that C*(f;; R),

0— N — Ny, — 0,

means that CC(H};,) = CC(Ny,) — CC(N).

@ After computing the CCs of chains of

C*(fi,- ., fmsR) =C*(f1;R) ®r - - ®R C*(fm; R)

there should be a way to “cancel out” some of the components.
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Definitions
CC of localization

Characteristic cycle (CC) CCs of local cohomology
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Characteristic cycle (CC)

Nf1f2 Nfifs Nfafs
A
Nrg
N
Nf1f2f3
7 X
Nf1fa Npy f3 Nf2f3
X 7 A 7
Nfy Nyo Nys
X 7
S
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Characteristic cycle (CC)

2
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Prune pairs connected via solid edges

T T ' T 7 T “Prune” = cancel out the components
o o shared by the corresponding CCs
e NT” s (taking multiplicity into account).
.
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Definitions
CC of localization

Characteristic cycle (CC) CCs of local cohomology

X B Ci D
Al B> CQ Do
A2 Bg 03 D3
As F F E

P

X A A, 35 X A As BQ X Ay, As B;
Cs D1 Do Co D1 Ds Ci D; D3 F
X,Al,Dl X, Az, Do X As, D3
A = V($2,$3,$57$6) =V(f1), C1 =V (x1,24),
Dy =V(x1,24, f1), E ( 1,%2,...,%6), F'=V(I).
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Characteristic cycle (CC)

Al — V($2,x3,x5,$6), B

D, =V(x1,24, f1), E =

1

|4

ization
| cohomology

=V (f1), C1 = V(x1,24),
T1,T2, ...,136), F = V(I)
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Characteristic cycle (CC) CCs of local cohomology

o o e o
e o e o
e B3 (3 e
e o o I

Oy o o F DD
| o~ <]
Ay =V (xg,23,25,26), Br =V (f1), C1 =V (x1,24),
Dy =V (x1,24, f1), E =V (z1,72,...,26), FF =V (). J
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ization

Characteristic cycle (CC) | cohomology

CC(H}(R)) = F, CC(H}(R))
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Definitior
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Lyubeznik numbers

Let R = k[z1, ..., z,] be the polynomial ring over a field k of
characteristic zero. Let I C R be an ideal and .
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Lyubeznik numbers

Let R = k[z1, ..., z,] be the polynomial ring over a field k of
characteristic zero. Let I C R be an ideal and .

Definition (Lyubeznik (1993))
Letm = (z1,....,x,) C R = k[z1, ..., Zp],

Mpi(R/T) := pp(m, HPY(R)) := dimy Ext% (k, H7 (R)).
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Lyubeznik numbers

Let R = k[z1, ..., z,] be the polynomial ring over a field k of
characteristic zero. Let I C R be an ideal and .

Definition (Lyubeznik (1993))
Letm = (z1,....,x,) C R = k[z1, ..., Zp],

Mpi(R/T) := pp(m, HPY(R)) := dimy Ext% (k, H7 (R)).

Let E = V(m), then

CC(HE(H} ' (R))) = Aps TpX
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Lyubeznik numbers

Let R = k[z1, ..., z,] be the polynomial ring over a field k of
characteristic zero. Let I C R be an ideal and .

Definition (Lyubeznik (1993))

Letm = (z1,....,x,) C R = k[z1, ..., Zp],

Mpi(R/T) := pp(m, HPY(R)) := dimy Ext% (k, H7 (R)).

Let E = V(m), then

CC(HE(H} ' (R))) = Aps TpX

Example (running)

I = (125 — 2224, T12T6 — T3%4, T2Ze — T3%5) C R = Q[z1, ..., 2¢).
What is the characteristic cycle of the local cohomology modules
HR(HY(R)) fori = 2,3 and Vp?




CC of lo ation
Characteristic cycle (CC) CCs of local cohomology
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CC of localization
Characteristic cycle (CC) CCs of local cohomology

For M = H3}(R) the CC is T X, so applying [BMM] the Cech
complex reduces to the first term. The nonvanishing entry is

CC(Hn(H;>(R))) = T X.
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Definitions
CC of localization

Characteristic cycle (CC) CCs of local cohomology

Component E in CC(Cech) for M = H2(R)

) — 0 — E[12] — E[34 — E[39] — E[18] — E[3] — 0
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Definitions
CC of localization

Characteristic cycle (CC) CCs of local cohomology

Component E in CC(Cech) for M = H2(R)

) — 0 — E[12] — E[34 — E[39] — E[18] — E[3] — 0
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Definitions

CC of localization
Characteristic cycle (CC) CCs of local cohomology

Component E in CC(Cech) for M = H2(R)

) — 0 — E[12] — E[34 — E[39] — E[18] — E[3] — 0
i n U i i
1
+
11 11
+
23 23
_|_
1
+

Ao a(R/I) = M a(R/T) =1

6—4 £z 6—4 g
CC(H2(H Y(R))) = T3 X, COHL(HC(R))) = TsX



Definitio
CC of lo ion
Characteristic cycle (CC) CCs of local cohomology

Conclusion

Noncommutative GB — commutative GB + primary decomposition

Anton Leykin Computing characteristic cycles of local conomology



Definitior
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Conclusion

Noncommutative GB — commutative GB + primary decomposition

@ D-presentation of localization and local cohomology modules:
done via GB in the Weyl algebra;
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Definitior
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Conclusion

Noncommutative GB — commutative GB + primary decomposition

@ D-presentation of localization and local cohomology modules:
done via GB in the Weyl algebra;

@ Support of a D-module: think “characteristic cycle”;
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Conclusion

Noncommutative GB — commutative GB + primary decomposition

@ D-presentation of localization and local cohomology modules:
done via GB in the Weyl algebra;

@ Support of a D-module: think “characteristic cycle”;

@ Compute CCs: need GB in a (commutative) polynomial ring and
primary decomposition.
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Conclusion

Noncommutative GB — commutative GB + primary decomposition

@ D-presentation of localization and local cohomology modules:
done via GB in the Weyl algebra;

@ Support of a D-module: think “characteristic cycle”;

@ Compute CCs: need GB in a (commutative) polynomial ring and
primary decomposition.

Numerical algebraic geometry

Subvarieties of C™ can me described numerically by approximations
of the points in so-called witness sets;
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Conclusion

Noncommutative GB — commutative GB + primary decomposition
@ D-presentation of localization and local cohomology modules:
done via GB in the Weyl algebra;
@ Support of a D-module: think “characteristic cycle”;

@ Compute CCs: need GB in a (commutative) polynomial ring and
primary decomposition.

Numerical algebraic geometry

Subvarieties of C™ can me described numerically by approximations
of the points in so-called witness sets;

To run the algorithm for CC of localization numerically we need
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Conclusion

Noncommutative GB — commutative GB + primary decomposition
@ D-presentation of localization and local cohomology modules:
done via GB in the Weyl algebra;
@ Support of a D-module: think “characteristic cycle”;

@ Compute CCs: need GB in a (commutative) polynomial ring and
primary decomposition.

Numerical algebraic geometry

Subvarieties of C™ can me described numerically by approximations
of the points in so-called witness sets;

To run the algorithm for CC of localization numerically we need
@ numerical representation of the cotangent bundle;
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Definitions
CC of localization
Characteristic cycle (CC) CCs of local cohomology

Conclusion

Noncommutative GB — commutative GB + primary decomposition
@ D-presentation of localization and local cohomology modules:
done via GB in the Weyl algebra;
@ Support of a D-module: think “characteristic cycle”;

@ Compute CCs: need GB in a (commutative) polynomial ring and
primary decomposition.

Numerical algebraic geometry

Subvarieties of C™ can me described numerically by approximations
of the points in so-called witness sets;

To run the algorithm for CC of localization numerically we need
@ numerical representation of the cotangent bundle;
@ a numerical primary decomposition algorithm.
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