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Running example

Let R = k[x1, x2, x3, x4, x5, x6] and

A =
(

x1 x2 x3

x4 x5 x6

)
.

Let I be the ideal generated by the three 2× 2-minors of A:
f1 = x1x5 − x2x4, f2 = x1x6 − x3x4, f3 = x2x6 − x3x5.

Are there g1, g2 such that V (I) = V (g1, g2)?

Arithmetic rank ≥ cohomological dimension

The answer to the above question is no if H3
I (R) 6= 0.

In char k > 0 the module H3
I (R) does vanish!

If char k = 0 then H3
I (R) 6= 0 (Hochster)
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Let k be a field of characteristic 0.

Definition

The algebra D = An(k) = k〈x, ∂〉 = k〈x1, ∂1, . . . , xn, ∂n〉 with relations
[∂i, xi] = ∂ixi − xi∂i = 1 (and all other pairs commuting) is called the
n-th Weyl algebra.
(algebra of differential operators with polynomial coefficients)

Convention:
We would use only left ideals in D as well as left D-modules.

Example (one variable)

For D = A1 = k〈x, ∂〉 the module R = k[x] and its localization Rx are
left D-modules:

∂ · 1
xm

=
−m

xm+1

Moreover, both have cyclic presentations:

R = D/D∂, Rx
∼= D/D(x∂ + 2)
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Definition (Characteristic ideal)

For an ideal I ⊂ An, the ideal in(0,e)(I) ⊂ k[x, ξ] is called the
characteristic ideal of I.
Here w = (0, e) is the weight that assigns w(xi) = 0 and w(∂i) = 1 for
all i.

Theorem (Fundamental theorem of algebraic analysis)

Let I be a nonzero left An-ideal, then n ≤ dim(in(0,e)(I)) ≤ 2n,

Definition (Holonomic)

An ideal I ⊂ D = An is called holonomic if its characteristic ideal has
dimension n.
The D-module M = D/I is called holonomic if I is holonomic.
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Localization

Rf = k[x, f−1] possesses the following natural structure of a
D-module:

xi ·
g

fd
=

xig

fd
, ∂i ·

g

fd
=

∂g/∂xi

fd
− dg(∂f/∂xi)

fd+1
,

for all 1 ≤ i ≤ n, f, g ∈ R, d ∈ Z>0.

Theorem
The D-module Rf is holonomic.

Why view Rf = R[f−1] as a D-module?

Rf can not be finitely generated as an R-module,
but is generated by f−a for some positive integer a as a
D-module.
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Algorithm for computing localization
Local cohomology via Čech complex

Algorithm for localization?

Let M = D/I be a holonomic D-module. Can we compute its
localization Rf ⊗M , i.e. find J ⊂ D such that Rf ⊗M ∼= D/J?

If M is f -saturated (i.e. f ·m = 0 ⇔ m = 0 for all m ∈ M )...

... there is an algorithm (Oaku), the main steps of which are:
1 Find JI(fs), annihilator of fs ⊗ 1 ∈ Rf [s]fs ⊗M in D[s], where

1 is the cyclic generator of M = D/I,
fs – the generator of Rf [s]fs.

2 Compute the b-polynomial bI
f (s) (relative to the the ideal I); Take

its smallest integer root a and “plug in” s = a in the generators of
JI(fs).

Alternative algorithm

Oaku, Takayama, Walther: A localization algorithm for D-modules. J.
Symbolic Computation 29 (2000), 721-728.
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Algorithm for localization?

Let M = D/I be a holonomic D-module. Can we compute its
localization Rf ⊗M , i.e. find J ⊂ D such that Rf ⊗M ∼= D/J?

If M is f -saturated (i.e. f ·m = 0 ⇔ m = 0 for all m ∈ M )...

... there is an algorithm (Oaku), the main steps of which are:
1 Find JI(fs), annihilator of fs ⊗ 1 ∈ Rf [s]fs ⊗M in D[s], where

1 is the cyclic generator of M = D/I,
fs – the generator of Rf [s]fs.

2 Compute the b-polynomial bI
f (s) (relative to the the ideal I); Take

its smallest integer root a and “plug in” s = a in the generators of
JI(fs).

Alternative algorithm

Oaku, Takayama, Walther: A localization algorithm for D-modules. J.
Symbolic Computation 29 (2000), 721-728.

Anton Leykin Computing characteristic cycles of local cohomology



Introduction to D-modules
Computing localization

Characteristic cycle (CC)

Algorithm for computing localization
Local cohomology via Čech complex
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Algorithm for computing localization
Local cohomology via Čech complex

Čech complex for computing local cohomology

Let R = k[x1, ..., xn] and I = (f1, ..., fd). To calculate Hk
I (R) consider

the Čech complex:

0 → C0 → C1 → ... → Cd → 0,

Ck =
⊕

1≤i1<...<ik≤d

Rfi1 ...fik

and the map Ck → Ck+1 is the alternating sum of maps

Rfi1 ...fik
→ Rfj1 ...fjk+1 .

The complex C• makes it possible to compute the local cohomology
algorithmically viewing Ck as holonomic D-modules.
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Algorithm for computing localization
Local cohomology via Čech complex

Example (running)

I = (x1x5 − x2x4, x1x6 − x3x4, x2x6 − x3x5) ⊂ R = Q[x1, ..., x6]
Does H3

I (R) vanish if char k = 0?

Walther: computation of LC via D-modules

This was the first computational approach.

Joint with Tsai: software
D-modules for Macaulay 2.

Motivation for the rest of slides
Is there a way to answer the above question computationally without
using Gröbner bases in noncommutative setting?

Anton Leykin Computing characteristic cycles of local cohomology



Introduction to D-modules
Computing localization

Characteristic cycle (CC)

Algorithm for computing localization
Local cohomology via Čech complex
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Definitions
CC of localization
CCs of local cohomology

Let X = Cn be the complex affine space with the coordinate ring
R = C[x1, . . . , xn]. By D denote either An := C[x1, . . . , xn]〈∂1, . . . , ∂n〉
or Dn := C{x1, . . . , xn}〈∂1, . . . , ∂n〉.

Support of a D-module

Let C(M) be the characteristic variety and let
π : Spec(R[a1, . . . , an]) −→ Spec(R), π(x, a) = x.
Then SuppR(M) = π(C(M)).

Definition (Characteristic cycle of M )

CC(M) =
∑

miΛi

The sum is taken over all irreducible components Λi of C(M) and mi

is the multiplicity of the module M along Λi.

A very useful property

CC is additive.
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Characteristic cycle (CC)

Definitions
CC of localization
CCs of local cohomology

Analytic vs. algebraic

Given an An-module M we consider Man := C{x} ⊗C[x] M

M regular holonomic An-module ⇒ Man regular holonomic
Dn-module.
{Mi}i≥0 good filtration on M ⇒ {Man

i }i≥0 good filtration on Man

gr(Man) ' C{x} ⊗C[x] gr(M)

The analytic characteristic variety C(Man) is the analytic extension
of the algebraic characteristic variety C(M), i.e. C(Man) = C(M)an.

Caveat: CC(M) 6= CC(Man)

Algebraically irreducible components can be analytically reducible.

Anton Leykin Computing characteristic cycles of local cohomology



Introduction to D-modules
Computing localization

Characteristic cycle (CC)

Definitions
CC of localization
CCs of local cohomology

Analytic vs. algebraic

Given an An-module M we consider Man := C{x} ⊗C[x] M

M regular holonomic An-module ⇒ Man regular holonomic
Dn-module.
{Mi}i≥0 good filtration on M ⇒ {Man

i }i≥0 good filtration on Man

gr(Man) ' C{x} ⊗C[x] gr(M)

The analytic characteristic variety C(Man) is the analytic extension
of the algebraic characteristic variety C(M), i.e. C(Man) = C(M)an.

Caveat: CC(M) 6= CC(Man)

Algebraically irreducible components can be analytically reducible.

Anton Leykin Computing characteristic cycles of local cohomology



Introduction to D-modules
Computing localization

Characteristic cycle (CC)

Definitions
CC of localization
CCs of local cohomology

Analytic vs. algebraic

Given an An-module M we consider Man := C{x} ⊗C[x] M

M regular holonomic An-module ⇒ Man regular holonomic
Dn-module.
{Mi}i≥0 good filtration on M ⇒ {Man

i }i≥0 good filtration on Man

gr(Man) ' C{x} ⊗C[x] gr(M)

The analytic characteristic variety C(Man) is the analytic extension
of the algebraic characteristic variety C(M), i.e. C(Man) = C(M)an.

Caveat: CC(M) 6= CC(Man)

Algebraically irreducible components can be analytically reducible.

Anton Leykin Computing characteristic cycles of local cohomology



Introduction to D-modules
Computing localization

Characteristic cycle (CC)

Definitions
CC of localization
CCs of local cohomology

Analytic vs. algebraic

Given an An-module M we consider Man := C{x} ⊗C[x] M

M regular holonomic An-module ⇒ Man regular holonomic
Dn-module.
{Mi}i≥0 good filtration on M ⇒ {Man

i }i≥0 good filtration on Man

gr(Man) ' C{x} ⊗C[x] gr(M)

The analytic characteristic variety C(Man) is the analytic extension
of the algebraic characteristic variety C(M), i.e. C(Man) = C(M)an.

Caveat: CC(M) 6= CC(Man)

Algebraically irreducible components can be analytically reducible.

Anton Leykin Computing characteristic cycles of local cohomology



Introduction to D-modules
Computing localization

Characteristic cycle (CC)

Definitions
CC of localization
CCs of local cohomology

Analytic vs. algebraic

Given an An-module M we consider Man := C{x} ⊗C[x] M

M regular holonomic An-module ⇒ Man regular holonomic
Dn-module.
{Mi}i≥0 good filtration on M ⇒ {Man

i }i≥0 good filtration on Man

gr(Man) ' C{x} ⊗C[x] gr(M)

The analytic characteristic variety C(Man) is the analytic extension
of the algebraic characteristic variety C(M), i.e. C(Man) = C(M)an.

Caveat: CC(M) 6= CC(Man)

Algebraically irreducible components can be analytically reducible.

Anton Leykin Computing characteristic cycles of local cohomology



Introduction to D-modules
Computing localization

Characteristic cycle (CC)

Definitions
CC of localization
CCs of local cohomology

Conormal bundles

Let X◦
i be the smooth part of Xi ⊆ X. Set:

Z = {(x, a) ∈ T ∗X | x ∈ X◦
i and a kills TxX◦

i }.

The conormal bundle T ∗
Xi

X is the closure of Z in T ∗X|Xi .

For M with CC(M) =
∑

i∈= miΛi

... there exists a Whitney stratification {Xi}i∈= of X such that

CC(M) =
∑
i∈=

mi T ∗
Xi

X.

In particular, SuppR(M) =
⋃

Xi.

Xi = π(Λi)
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Definitions
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Direct computation of CC of a localization

To compute CC(Mf ) for a holonomic M and a polynomial f directly,
one needs to:

1 construct a representation of Mf ;
2 find the characteristic ideal J(Mf );
3 compute primary decomposition of J(Mf ).

Example (R = C{x, y, z}, f = x)

CC(Rx) = T ∗
XX + T ∗

{x=0}X

Example (M = H1
(x)(R), g = y)

CC(My) = T ∗
{x=0}X + T ∗

{x=y=0}X
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Indirect computation (joint with Josep Àlvarez)

Definition (T ∗
f |Y = conormal bundle relative to f )

Let Y ◦ be the smooth part of Y ⊆ X where f |Y is a submersion.

W = {(x, a) ∈ T ∗X | x ∈ Y ◦ and a annihilates Tx(f |Y )−1(f(x))}.

T ∗
f |Y is the closure of W in T ∗X|Y .

Theorem (Ginsburg, Briançon-Maisonobe-Merle (BMM))

Let M be a regular holonomic Dn-module with
CC(M) =

∑
i mi T ∗

Xi
X and let f ∈ R be a polynomial. Then

CC(Mf ) =
∑

f(Xi) 6=0

mi(Γi + T ∗
Xi

X)

with Γi =
∑

j mijΓij , where Γij are the irreducible components of
multiplicity mij of the divisor defined by f in T ∗

f |Xi
.
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Example (R = C{x, y, z}, f = x, CC(R) = T ∗
XX)

T ∗
f |X = {(x, y, z, a, b, c) ∈ T ∗X | b = 0, c = 0}, then the divisor

defined by f in T ∗
f |X is

Γ = {(x, y, z, a, b, c) ∈ T ∗X | b = 0, c = 0, x = 0} = T ∗
{x=0}X

Therefore, CC(Rx) = T ∗
XX + T ∗

{x=0}X

Example (M = H1
(x)(R), g = y, (from above) CC(M) = T ∗

{x=0}X)

T ∗
g|{x=0}

= {(x, y, z, a, b, c) ∈ T ∗X | c = 0, x = 0}, then the divisor
defined by g in T ∗

g|{x=0}
is

Γ = {(x, y, z, a, b, c) ∈ T ∗X | c = 0, x = 0, y = 0} = T ∗
{x=y=0}X

Therefore, CC(My) = T ∗
{x=0}X + T ∗

{x=y=0}X
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How is this better?

We will consider R = C[x1, . . . , xn]. Given a polynomial
f ∈ Q[x1, . . . , xn], we would like to compute CC(Rf ). The [BMM]
formula reduces to

CC(Rf ) = T ∗
XX +

∑
mi T ∗

Xi
X,

where X = Cn.

Advantages of the indirect approach

Do not have to compute the D-module presentations of
localizations; in particular, no Bernstein-Sato polynomials.
All computations take place in a commutative ring.

Caveat
Primary decomposition over Q is used in the implementation.
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Outline of the algorithm

Compute the smooth part Y ◦ of Y where f |Y is a submersion

(0a) Compute ∇f = ( ∂f
∂x1

, ..., ∂f
∂xn

)
(0b) Compute the ideal I◦ ⊂ R such that

Y ◦ = {x ∈ Y | ∇f(x) /∈ TxY } is described as Y ◦ = Y \ V (I◦).

Compute the conormal relative to f

(1a) Compute K = kerϕ, where the ϕ : Rn −→ Rd+1/I sends

s 7→ (∇f,∇g1, ...,∇gd) · s ∈ Rd+1/I.

(1b) Let J ⊂ grAn = R[a1, ..., an] be the ideal generated by
{(a1, ..., an) · b | b ∈ K}.

(1c) Compute Jsat = J : ((gr An)I◦)∞; then I(T ∗
f |Y ) =

√
Jsat.
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Introduction to D-modules
Computing localization

Characteristic cycle (CC)

Definitions
CC of localization
CCs of local cohomology

Example (running)

Let R = K[x1, x2, x3, x4, x5, x6], I = 〈f1, f2, f3〉, where
f1 = x2x6 − x3x5, f2 = x1x6 − x3x4, f3 = x1x5 − x2x4.

Looking for H•
I (R) we use Čech complex C•(f1, f2, f3;R):

C0 C1 C2 C3

|| || || ||

0 → R →


Rf1

⊕
Rf2

⊕
Rf3

 →


Rf1f2

⊕
Rf1f3

⊕
Rf2f3

 → Rf1f2f3 → 0
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Definitions
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X B1 C1 D1

A1 B2 C2 D2

A2 B3 C3 D3

A3 F[2] E

X A1 A2 B3

C3 D1 D2 F

88ppppppppppp
X A1 A3 B2

C2 D1 D3 F

OO

X A2 A3 B1

C1 D2 D3 F

ffNNNNNNNNNNN

X, A1, D1

kkkkkkkkk

55kkkkk
OO

X, A2, D2

iiSSSSSSSSSSSSSS

55kkkkkkkkkkkkkk
X, A3, D3

SSSSSSSSS

iiSSSSS
OO

X

jjUUUUUUUUUUUUUUUUUUU

OO 44iiiiiiiiiiiiiiiiiii

A1 = V (x2, x3, x5, x6), B1 = V (f1), C1 = V (x1, x4),
D1 = V (x1, x4, f1), E = V (x1, x2, ..., x6), F = V (I).
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Introduction to D-modules
Computing localization

Characteristic cycle (CC)

Definitions
CC of localization
CCs of local cohomology

Utilize additivity

If a module N is f1 . . . fn-saturated
observe that C•(fi;R),

0 −→ N −→ Nfi
−→ 0,

means that CC(H1
(fi)

) = CC(Nfi
)− CC(N).

After computing the CCs of chains of

C•(f1, . . . , fm;R) = C•(f1;R)⊗R · · · ⊗R C•(fm;R)

there should be a way to “cancel out” some of the components.
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Nf1f2f3

Nf1f2

::

Nf1f3

OO

Nf2f3

ddIIIIIIIII

Nf1

::OO

Nf2

ddIIIIIIIII

::

Nf3

IIII

ddIIII
OO

N

eeJJJJJJJJJJ

OO 99

Nf1f2f3

Nf1f2

::

Nf1f3

OO

Nf2f3

dd

Nf1

::OO

Nf2

dd ::

Nf3

dd OO

N

ee OO 99

Nf1f2f3

Nf1f2

::uuuuuuuuu
Nf1f3

OO

Nf2f3

dd

Nf1

uuuu

::uuuu
OO

Nf2

dd ::uuuuuuuuu
Nf3

dd OO

N

ee OO 99tttttttttt

Prune pairs connected via solid edges

“Prune” = cancel out the components
shared by the corresponding CCs
(taking multiplicity into account).
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CC of cohomology modules

CC(H2
I (R)) = F, CC(H3

I (R)) = E
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Lyubeznik numbers

Let R = k[x1, ..., xn] be the polynomial ring over a field k of
characteristic zero. Let I ⊆ R be an ideal and .

Definition (Lyubeznik (1993))

Let m = (x1, ..., xn) ⊂ R = k[x1, ..., xn],

λp,i(R/I) := µp(m,Hn−i
I (R)) := dimk Extp

R(k,Hn−i
I (R)).

Let E = V (m), then

CC(Hp
m(Hn−i

I (R))) = λp,i T ∗
EX

Example (running)

I = (x1x5 − x2x4, x1x6 − x3x4, x2x6 − x3x5) ⊂ R = Q[x1, ..., x6].
What is the characteristic cycle of the local cohomology modules
Hp

m(Hi
I(R)) for i = 2, 3 and ∀p?

Anton Leykin Computing characteristic cycles of local cohomology



Introduction to D-modules
Computing localization

Characteristic cycle (CC)

Definitions
CC of localization
CCs of local cohomology

Lyubeznik numbers

Let R = k[x1, ..., xn] be the polynomial ring over a field k of
characteristic zero. Let I ⊆ R be an ideal and .

Definition (Lyubeznik (1993))

Let m = (x1, ..., xn) ⊂ R = k[x1, ..., xn],

λp,i(R/I) := µp(m,Hn−i
I (R)) := dimk Extp

R(k,Hn−i
I (R)).

Let E = V (m), then

CC(Hp
m(Hn−i

I (R))) = λp,i T ∗
EX

Example (running)

I = (x1x5 − x2x4, x1x6 − x3x4, x2x6 − x3x5) ⊂ R = Q[x1, ..., x6].
What is the characteristic cycle of the local cohomology modules
Hp

m(Hi
I(R)) for i = 2, 3 and ∀p?

Anton Leykin Computing characteristic cycles of local cohomology



Introduction to D-modules
Computing localization

Characteristic cycle (CC)

Definitions
CC of localization
CCs of local cohomology

Lyubeznik numbers

Let R = k[x1, ..., xn] be the polynomial ring over a field k of
characteristic zero. Let I ⊆ R be an ideal and .

Definition (Lyubeznik (1993))

Let m = (x1, ..., xn) ⊂ R = k[x1, ..., xn],

λp,i(R/I) := µp(m,Hn−i
I (R)) := dimk Extp

R(k,Hn−i
I (R)).

Let E = V (m), then

CC(Hp
m(Hn−i

I (R))) = λp,i T ∗
EX

Example (running)

I = (x1x5 − x2x4, x1x6 − x3x4, x2x6 − x3x5) ⊂ R = Q[x1, ..., x6].
What is the characteristic cycle of the local cohomology modules
Hp

m(Hi
I(R)) for i = 2, 3 and ∀p?

Anton Leykin Computing characteristic cycles of local cohomology



Introduction to D-modules
Computing localization

Characteristic cycle (CC)

Definitions
CC of localization
CCs of local cohomology

Lyubeznik numbers

Let R = k[x1, ..., xn] be the polynomial ring over a field k of
characteristic zero. Let I ⊆ R be an ideal and .

Definition (Lyubeznik (1993))

Let m = (x1, ..., xn) ⊂ R = k[x1, ..., xn],

λp,i(R/I) := µp(m,Hn−i
I (R)) := dimk Extp

R(k,Hn−i
I (R)).

Let E = V (m), then

CC(Hp
m(Hn−i

I (R))) = λp,i T ∗
EX

Example (running)

I = (x1x5 − x2x4, x1x6 − x3x4, x2x6 − x3x5) ⊂ R = Q[x1, ..., x6].
What is the characteristic cycle of the local cohomology modules
Hp

m(Hi
I(R)) for i = 2, 3 and ∀p?
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Čech complex for M either H2
I (R) or H3

I (R)

0 → M →
6⊕

i=1

Mxi → · · · → Mx1···x6 → 0,

λ0,3(R/I) = 1

For M = H3
I (R) the CC is T ∗

EX, so applying [BMM] the Čech
complex reduces to the first term. The nonvanishing entry is

CC(H0
m(H6−3

I (R))) = T ∗
EX.
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Component E in CC(Čech) for M = H2
I (R)

∅ → ∅ → E[12] → E[34] → E[39] → E[18] → E[3] → ∅
� � � � �
1
+
11 11

+
23 23

+
1
+
15 15

+
3 3

λ2,4(R/I) = λ4,4(R/I) = 1

CC(H2
m(H(6−4)

I (R))) = T ∗
EX, CC(H4

m(H(6−4)
I (R))) = T ∗

EX

and the other local cohomology modules vanish.
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Definitions
CC of localization
CCs of local cohomology

Conclusion

Noncommutative GB −→ commutative GB + primary decomposition

D-presentation of localization and local cohomology modules:
done via GB in the Weyl algebra;
Support of a D-module: think “characteristic cycle”;
Compute CCs: need GB in a (commutative) polynomial ring and
primary decomposition.

Numerical algebraic geometry

Subvarieties of Cn can me described numerically by approximations
of the points in so-called witness sets;

To run the algorithm for CC of localization numerically we need
1 numerical representation of the cotangent bundle;
2 a numerical primary decomposition algorithm.
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