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Origins Of Non-commutativity

Let C be some algebra of functions (C∞ etc).
For any function f ∈ C, we introduce an operator

F : C → C, F (t) = f · t .

We call f a representative of F . ∀f , g ∈ C we have F ◦G = G ◦ F .

Definition
A map ∂ : C → C is called a differential if ∂ is C–linear and ∀f , g ∈ C,
∂(fg) = ∂(f )g + f∂(g).

In particular, ∂i = ∂
∂ti

on C are differentials.

News
Bad news: operators F and ∂i do not commute.
Good news: ∂j ◦ ∂i = ∂i ◦ ∂j and there is a relation between F and ∂i .
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Non–commutative Relations
Lemma
For any differential ∂ and f ∈ C, ∂ ◦ F = F ◦ ∂ + ∂(f ).

Proof.
∀ h ∈ C, we have the following:

(∂ ◦ F )(h) = ∂(f · h) = f · ∂(h) + ∂(f ) · h =

= (F ◦ ∂)(h) + ∂(f ) · (h) = (F ◦ ∂ + ∂(f ))(h).

Example

Let C = K[t1, . . . , tn] and ∂i = ∂
∂ti

. Then there is a n–th Weyl algebra
K〈t1, . . . , tn, ∂1, . . . , ∂n | {tj ti = ti tj , ∂j∂i = ∂i∂j ,
∂k tk = tk∂k + 1} ∪ {∂j ti = ti∂j}i 6=j〉,
an algebra of linear differentional operators with polynomial
coefficients.
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More Non–commutative Relations

Shift Algebra
For small 4t ∈ R, we define a shift operator

σt : C → C, σt(f (t)) = f (t +4t).

Then, since σt(f · g) = σt(f ) · σt(g), we define a real shift algebra
K(4x)〈x , σx | σxx = xσx +4xσx〉.

The Center of an Algebra
For a K–algebra A, we define the center of A to be

Z (A) = {a ∈ A | a · b = b · a ∀b ∈ A}.

It is a subalgebra of A, containing constants of K.
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q–Calculus and Non–commutative Relations
Let k be a field of char 0 and K = k(q).

q–dilation operator
Dq : C → C, Dq(f (x)) = f (qx):

K(q)〈x , Dq | Dq · x = q · x · Dq〉.

Continuous q–difference Operator
∆q : C → C, ∆q(f (x)) = f (qx)− f (x):

K(q)〈x ,∆q | ∆q · x = q · x ·∆q + (q − 1) · x〉.

q–differential Operator

∂q : C → C, ∂q(f (x)) = f (qx)−f (x)
(q−1)x :

K(q)〈x , ∂q | ∂q · x = q · x · ∂q + 1〉.
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Some Preliminaries
Let K be a field and R be a commutative ring R = K[x1, . . . , xn].

Mon(R) 3 xα = xα1
1 xα2

2 . . . xαn
n 7→ (α1, α2, . . . , αn) = α ∈ Nn.

Definition
1 a total ordering ≺ on Nn is called a well–ordering, if

I ∀F ⊆ Nn there exists a minimal element of F ,
in particular ∀ a ∈ Nn, 0 ≺ a

2 an ordering ≺ is called a monomial ordering on R, if
I ∀α, β ∈ Nn α ≺ β ⇒ xα ≺ xβ

I ∀α, β, γ ∈ Nn such that xα ≺ xβ we have xα+γ ≺ xβ+γ .
3 Any f ∈ R \ {0} can be written uniquely as f = cxα + f ′, with

c ∈ K∗ and xα′ ≺ xα for any non–zero term c′xα′
of f ′. We define

lm(f ) = xα, the leading monomial of f
lc(f ) = c, the leading coefficient of f

Viktor Levandovskyy (RISC) PLURAL 16.02.2006, Linz 6 / 25



Computational Objects

Suppose we are given the following data
1 a field K and a commutative ring R = K[x1, . . . , xn],
2 a set C = {cij} ⊂ K∗, 1 ≤ i < j ≤ n
3 a set D = {dij} ⊂ R, 1 ≤ i < j ≤ n

Assume, that there exists a monomial well–ordering ≺ on R such that

∀1 ≤ i < j ≤ n, lm(dij) ≺ xixj .

The Construction
To the data (R, C, D,≺) we associate an algebra

A = K〈x1, . . . , xn | {xjxi = cijxixj + dij} ∀1 ≤ i < j ≤ n〉
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PBW Bases and G–algebras

Define the (i , j , k)–nondegeneracy condition to be the polynomial

NDCijk := cikcjk · dijxk − xkdij + cjk · xjdik − cij · dikxj + djkxi − cijcik · xidjk .

Theorem
A = A(R, C, D,≺) has a PBW basis {xα1

1 xα2
2 . . . xαn

n } if and only if

∀ 1 ≤ i < j < k ≤ n, NDCijk reduces to 0 w.r.t. relations

Easy Check NDCijk = xk (xjxi)− (xkxj)xi .

Definition
An algebra A = A(R, C, D,≺), where nondegeneracy conditions
vanish, is called a G–algebra (in n variables).
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Setting up G–algebras

After initializing a commutative ring R with the ordering ≺, one defines
Cij and Dij and finally calls ncalgebra(C,D);

ring R = 0,(x,y,z),Dp;
int N = nvars(R);
matrix C[3][3];
C[1,2] = ...; C[1,3] = ...; C[2,3] = ...;
matrix D[N][N];
D[1,3] = ...;
ncalgebra(C,D);

Frequently Happening Errors
• matrix is smaller in size than n × n;
• matrix C contain zeros in its upper part;
• the ordering condition is not satisfied.
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Gel’fand–Kirillov dimension

Let R be an associative K–algebra with generators x1, . . . , xm.

A degree filtration
Consider the vector space V = Kx1 ⊕ . . .⊕Kxm.
Set V0 = K, V1 = K⊕ V and Vn+1 = Vn ⊕ V n+1.
For any fin. gen. left R–module M, there exists a fin.–dim. subspace
M0 ⊂ M such that RM0 = M.
An ascending filtration on M is defined by {Hn := VnM0, n ≥ 0}.

Definition
The Gel’fand–Kirillov dimension of M is defined to be

GKdim(M) = lim
n→∞

sup logn(dimK Hn)

Implementation: GKDIM.LIB, function GKdim. Uses Gröbner basis.
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Factor–algebras

We say that a GR–algebra A = A/TA is a factor of a G–algebra in n
variables A by a proper two–sided ideal TA.

Two–sided Gröbner Bases
A set of generators F is called a two–sided Gröbner basis,
if it is a left and a right Gröbner basis at the same time.

Implementation: command twostd.

Note
• there are algebras without nontrivial two–sided ideals (Weyl)
• a two–sided ideal is usually bigger than the left ideal, built on the
same generating set
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Examples of GR–algebras

algebras of solvable type, skew polynomial rings
univ. enveloping algebras of fin. dim. Lie algebras
quasi–commutative algebras, rings of quantum polynomials
positive (resp. negative) parts of quantized enveloping algebras
some iterated Ore extensions, some nonstandard quantum
deformations, some quantum groups
Weyl, Clifford, exterior algebras
Witten’s deformation of U(sl2), Smith algebras
algebras, associated to (q–)differential, (q–)shift, (q–)difference
and other linear operators
. . .

Viktor Levandovskyy (RISC) PLURAL 16.02.2006, Linz 13 / 25



Gröbner Basis: Preparations

Definition

We say that monomial xα divides monomial xβ, if αi ≤ βi ∀i = 1 . . . n.
We use the notation xα | xβ.

It means that xβ is reducible by xα from the right, from the left and
from both sides. A left divisibility means that there exist c ∈ K \ {0},
p ∈ Mon(A) and r ∈ A such that lm(r) ≺ xα and xβ = c · p · xα + r .

Definition
Let ≺ be a monomial ordering on Ar , I ⊂ Ar be a left submodule and
G ⊂ I be a finite subset. G is called a left Gröbner basis of I,
if ∀ f ∈ I r {0} there exists a g ∈ G satisfying lm(g) | lm(f ).
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Normal Form

Definition
Let G denote the set of all finite and ordered subsets G ⊂ Ar .
A map NF : Ar × G → Ar , (f , G) 7→ NF(f |G), is called a (left) normal
form on Ar if, for all f ∈ Ar , G ∈ G,

1 NF(0 | G) = 0,
2 NF(f |G) 6= 0 ⇒ lm

(
NF(f |G)

)
6∈ L(G),

3 f − NF(f |G) ∈ A〈G〉.

Let G = {g1, . . . , gs} ∈ G. A representation f =
s∑

i=1

aigi , ai ∈ A of

f ∈ A〈G〉, satisfying lm(aigi) � lm(f ) for all 1 ≤ i ≤ s such that aigi 6= 0
is called a standard left representation of f with respect to G.
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Left Buchberger’s Criterion

Definition

Let f , g ∈ Ar with lm(f ) = xαei and lm(g) = xβej . Set γ = µ(α, β),
γi := max(αi , βi) and define the left s–polynomial of (f , g) to be

LeftSpoly(f , g) := xγ−αf − lc(xγ−αf )
lc(xγ−βg)

xγ−βg if i = j and 0 otherwise.

Theorem
Let I ⊂ Ar be a left submodule and G = {g1, . . . , gs}, gi ∈ I.
Let LeftNF(·|G) be a left normal form on Ar w.r.t G.
Then the following are equivalent:

1 G is a left Gröbner basis of I,
2 LeftNF(f |G) = 0 for all f ∈ I,
3 each f ∈ I has a left standard representation with respect to G,
4 LeftNF

(
LeftSpoly(gi , gj)|G

)
= 0 for 1 ≤ i , j ≤ s.
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Gröbner basics

Gröbner Basics are ...
...the most important and fundamental applications of Gröbner Bases.

Ideal (resp. module) membership problem (NF, REDUCE)
Intersection with subrings (elimination of variables) (ELIMINATE)
Intersection of ideals (resp. submodules) (INTERSECT)
Quotient and saturation of ideals (QUOT)
Kernel of a module homomorphism (MODULO)
Kernel of a ring homomorphism (NCPREIMAGE.LIB)
Algebraic relations between pairwise commuting polynomials
Hilbert polynomial of graded ideals and modules
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Anomalies With Elimination

Contrast to Commutative Case
In terminology, we rather use ”intersection with subalgebras” instead of
”elimination of variables”, since the latter may have no sense.

Let A = K〈x1, . . . , xn | {xjxi = cijxixj + dij}1≤i<j≤n〉 be a G–algebra.
Consider a subalgebra Ar , generated by {xr+1, . . . , xn}.
We say that such Ar is an admissible subalgebra, if dij are polynomials
in xr+1, . . . , xn for r + 1 ≤ i < j ≤ n and Ar ( A is closed in itself w. r. t.
the multiplication and it is a G–algebra.

Definition (Elimination ordering)
Let A and Ar be as before and B := K〈x1, . . . , xr | . . . 〉 ⊂ A
An ordering ≺ on A is an elimination ordering for x1, . . . , xr
if for any f ∈ A, lm(f ) ∈ B implies f ∈ B.

Viktor Levandovskyy (RISC) PLURAL 16.02.2006, Linz 18 / 25



Anomalies With Elimination: Conclusion

”Elimination of variables x1, . . . , xr from an ideal I”
means the intersection I ∩ Ar with an admissible subalgebra Ar .
In contrast to the commutative case:
• not every subset of variables determines an admissible subalgebra
• there can be no admissible elimination ordering ≺Ar

Example

Consider the algebra A = K〈a, b | ba = ab + b2〉. It is a G–algebra with
respect to any well–ordering, such that b2 ≺ ab, that is b ≺ a. Any
elimination ordering for b must satisfy b � a, hence A is not a
G–algebra w.r.t. any elimination ordering for b.
The Gröbner basis of a two–sided ideal, generated by b2 − ba + ab in
K〈a, b〉 is infinite and equals to {ban−1b − 1

n (ban − anb) | n ≥ 1}.
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Non-commutative Gröbner basics

For the noncommutative PBW world, we need even more:

Gel’fand–Kirillov dimension of a module (GKDIM.LIB)
Two–sided Gröbner basis of a bimodule (twostd)
Central Character Decomposition of a module (NCDECOMP.LIB)
Preimage of a module under algebra morphism
One–dimensional representations
Ext and Tor modules for centralizing bimodules (NCHOMOLOG.LIB)
Maximal two–sided ideal in a left ideal (NCANN.LIB in work)
Check whether a module is simple
Center of an algebra and centralizers of polynomials
Operations with opposite and enveloping algebras
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Implementation in PLURAL

What is PLURAL?
PLURAL is the kernel extension of SINGULAR

PLURAL is distributed with SINGULAR (from version 3-0-0 on)
freely distributable under GNU Public License
available for most hardware and software platforms

PLURAL as a Gröbner engine
implementation of all the Gröbner basics available
slimgb is available for Plural (and it is fast!)
janet is available for two–sided input
non–commutative Gröbner basics:

I as kernel functions (twostd, opposite etc)
I as libraries (NCDECOMP.LIB, NCTOOLS.LIB, NCPREIMAGE.LIB etc)
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Surprize

Announcement
The newest addition to SINGULAR:PLURAL is the library DMOD.LIB,
containing algorithms of algebraic D–Module Theory. A joint work of
V. Levandovskyy (RISC) and J. M. Morales (Sevilla).

Functionality: an algorithm ANNFS

Oaku–Takayama approach (ANNFSOT command)
Brianson–Maisonobe approach (ANNFSBM command)
a so–called Bernstein polynomial is computed within both
approaches

Constructively: two bigger rings are constructed and two eliminations
are applied in a sequence.
Complexity of such computations is high!
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D–modules

What’s Behind
Let R = K[x1, . . . , xn] and f ∈ R. We are interested in

R[f−s] = K[x1, . . . , xn,
1
f s ] as an R–module for s ∈ N.

On the one hand, R[f−s] ∼= R[y ]/〈yf s − 1〉.
On the other hand, R[f−s] is a D–module, where D is the n–th Weyl
algebra K〈x1, . . . , xn, ∂1, . . . , ∂n | {∂jxi = xi∂j + δij}〉.
The algorithm ANNFS computes a D–module structure on R[f−s], that
is a left ideal I ⊂ D, such that R[f−s] ∼= D/I.

Especially interesting are cases when f is irreducible singular,
reducibly singular or when f is a hyperplane arrangement.
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Perspectives

Gröbner bases for more non–commutative algebras
• tensor product of commutative local algebras with certain
non–commutative algebras (e.g. with exterior algebras for the
computation of direct image sheaves)
• different localizations of G–algebras

localization at some ”coordinate” ideal of commutative variables
(producing e.g. local Weyl algebras K[x ]〈x〉〈D | Dx = xD + 1〉)

⇒ local orderings and the generalization of standard basis
algorithm, Gröbner basics and homological algebra
localization as field of fractions of commutative variables
(producing e.g. rational Weyl algebras K(x)〈D | Dx = xD + 1〉),
including Ore Algebras (F. Chyzak, B. Salvy)

⇒ global orderings and a generalization Gröbner basis algorithm.
However, conceptually new problems arise, Gröbner basics
require rethinking and distinct theoretical treatment
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Thank you !

Please visit the SINGULAR homepage
http://www.singular.uni-kl.de/

Viktor Levandovskyy (RISC) PLURAL 16.02.2006, Linz 25 / 25


