Genericity of Parameters in Control Theory

Viktor Levandovskyy

SFB Project F1301 of the Austrian FWF
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University
Linz, Austria
Special Semester on Gröbner Bases and Related Methods
Workshop D3 "Gröbner Bases in Control Theory and Signal Processing"

18.05.2006, Linz

Introduction

Many systems of equations, arising in the Control Theory, contain parameters.
In many cases the parameters are of algebraic nature, that is they do not depend on the variables and in some sense are autonomous.

Parameters Algebraically

Let \mathbb{K} be the ground field. Under "parameter" we mean a symbolic quantity, which can take any values in \mathbb{K} except 0 .
Since a priori we do not know, whether the parameter may be algebraically dependent, we use them as $\mathbb{K}\left(p_{1}, \ldots, p_{n}\right)$, the transcendental field extension.

We can find "bad" parameter constellation for a given module using symbolic algebraic algorithms!

Main Computational Tool: Gröbner bases

... the fundament for symbolic manipulations with modules.
Gröbner bases provide us with algorithms for

- a basis, unique up to a leading coefficient
- test for a membership of an element in the module
- test for equality of two modules (e.g. comparison with 0)
- dimension and a vector space dimension of a module
- elimination of variables
- elimination of module components
- intersection of submodules
- kernel of a module homomorphism
- kernel of a ring homomorphism
- algebraic relations between commuting polynomials

Example: Two pendula, mounted on a cart

[Polderman, Willems "Introduction to Mathematical Systems Theory"]

Denote $\partial:=\frac{d}{d t}$. A linearized system becomes $\mathbf{S} \cdot \overline{\mathbf{w}}=\mathbf{0}$, where S is

$$
\begin{array}{cccc}
m_{1} L_{1} \partial^{2} & m_{2} L_{2} \partial^{2} & \left(m_{1}+m_{2}+M\right) \partial^{2} & -1 \\
m_{1} L_{1}^{2} \partial^{2}+d_{1} \partial+k_{1}-m_{1} g L_{1} & 0 & m_{1} L_{1} \partial^{2} & 0 \\
0 & m_{2} L_{2}^{2} \partial^{2}+d_{2} \partial+k_{2}-m_{2} g L_{2} & m_{2} L_{2} \partial^{2} & 0
\end{array}
$$

Two pendula: Simplification and Computation

The associated algebra $A=\mathbb{K}\left(m_{1}, m_{2}, M, g, L_{1}, L_{2}\right)[\partial]$ is commutative. Let $T=S^{t} \subset A^{3}$ and $U=A^{3} / T$.

Simplification

We introduce new variables for $i=1,2$,

$$
d_{i}^{\prime}:=\frac{d_{i}}{m_{i} L_{i}}, \text { and } z_{i}:=\frac{k_{i}}{m_{i} L_{i}}-g
$$

k_{i} and d_{i} can have only positive values (use d_{i} instead of d_{i}^{\prime}).
Moreover, we perform reductions with the last column of the basis. After these, the presentation matrix looks much easier:

$$
T^{\prime}=\left(\begin{array}{ccc}
d_{1} D t+z_{1} & 0 & D t^{2} \\
0 & d_{2} D t+z_{2} & D t^{2}
\end{array}\right)
$$

Two pendula: computations

1. Generic Gröbner basis

G, the reduced Gröbner basis of T^{\prime}, is a 2×2 identity matrix, hence the module $U=A^{3} / T \cong A^{2} / G=0$.
Control Theory: generic (strong) controllability and flatness of S follow.

2. Obstructions to Genericity

We compute the transformation matrix X between two bases T and G, i.e. $T \cdot X=G$ (with the algorithm Lift) and analyze X for suspicious denominators (with the procedure genericity). We get the list of polynomials in parameters.

Obstructions to Genericity: General methodology

 Suppose we have a set of obstruction polynomials $\left\{f_{1}, \ldots, f_{m}\right\} \subset \mathbb{K}\left[p_{1}, \ldots, p_{n}\right]$. We have to solve $2^{m}-1$ systems of equations and inequalities (constructible sets) of the form$$
\left\{f_{i_{1}}=0, \ldots, f_{i_{k}}=0 ; f_{i_{k+1}} \neq 0, \ldots, f_{i_{m}} \neq 0\right\} .
$$

Solution of each such system $S_{j}, 1 \leq j \leq 2^{m}-1$ corresponds to the algebraic variety $V_{j} \in \mathbb{A}_{\mathbb{K}}^{n}$, described by an ideal $l_{j} \in \mathbb{K}\left[p_{1}, \ldots, p_{n}\right]$. However, there is a need for check, whether the obtained values of parameters in each case really lead us to the torsion module. According to the result of such a check, we refine the list of components V_{j}. We can compute the exceptional variety $V=\cap V_{j}$, given by the ideal $I=\cup I\left(V_{j}\right)$. Outside of this variety, parameters of the system do not disturb the controllability.

We can avoid $2^{m}-1$ computations

by e. g. ordering $\left\{f_{i}\right\}$ degree-wise and start building hierarchies from the lowest degrees, simplifying and cancelling some polynomials.

Two pendula: Obstructions to Genericity

Systems like before,

$$
\left\{f_{i_{1}}=0, \ldots, f_{i_{k}}=0 ; f_{i_{k+1}} \neq 0, \ldots, f_{i_{m}} \neq 0\right\} .
$$

can be solved with the factorizing Gröbner basis algorithm. In Singular, one can use the function facstd $\left(F_{0}, F_{\neq 0}\right)$.

Two Pendula Example

We obtain the following three obstruction polynomials:
(1) $z_{1}=0$ (in original variables, $k_{1}=m_{1} L_{1} g$),
(2) $z_{2}=0$ (in original variables, $k_{2}=m_{2} L_{2} g$),
(3) $0=P:=$

$$
z_{2}^{2} L_{1}^{2}-2 z_{1} z_{2} L_{1} L_{2}+z_{1}^{2} L_{2}^{2}+z_{2} L_{2} d_{1}^{2}-z_{2} L_{1} d_{1} d_{2}-z_{1} L_{2} d_{1} d_{2}+z_{1} L_{1} d_{2}^{2} .
$$

Ordering and check shows, that $P \in\left\langle z_{1}, z_{2}\right\rangle$.

Two Pendula: Case Studies I

It is important to analyze P. Brute force use of solving with e. g.
MAPLE does not give any enlightening information.
$P=P\left(z_{1}, z_{2}\right)=\left(L_{2} z_{1}-L_{1} z_{2}\right)^{2}+\left(L_{2} d_{1}-L_{1} d_{2}\right) \cdot\left(d_{1} z_{2}-d_{2} z_{1}\right)$.

1. The case $z_{1}=z_{2}=0$

With this case we cover actually two cases: since $P \in\left\langle z_{1}, z_{2}\right\rangle$, the case $z_{1}=z_{2}=0, P \neq 0$ is impossible. If $P=0$, the system is not controllable.
The torsion submodule is annihilated by the ideal $\langle\partial\rangle$ and the kernel representation of the controllable part is given by

$$
\left(\begin{array}{ccc}
m_{2} L_{2}^{2} \partial+d_{2} & 0 & m_{1} L_{1} \partial \\
0 & m_{1} L_{1}^{2} \partial+d_{1} & m_{2} L_{2} \partial
\end{array}\right)
$$

Two Pendula: Case Studies II

Preparations for computations with Singular:

```
ring T = 0, (z1, z2,L1,L2,d1,d2),dp;
poly P = (z2*L2)*d1^2+(-z1*L2-z2*L1)*d1*d2+(z1*L1)*d2^2+
    (z1^2*L2^2-2* z1*z2*L1*L2+z2^2*L1^2);
```

2. The case $\left\{z_{1}=0, z_{2} \neq 0, P\left(0, z_{2}\right)=0\right\}$
```
ideal I2 = P,z1;
```

facstd(I2,z2);
$==>\quad-[1]=z 1$
$=>\quad-[2]=\mathrm{z} 2 * \mathrm{~L} 1^{\wedge} 2+\mathrm{L} 2 * \mathrm{~d} 1^{\wedge} 2-\mathrm{L} 1 * \mathrm{~d} 1 * \mathrm{~d} 2$

From the 2nd equation we conclude, that $z_{2} L_{1}^{2}=d_{1}\left(L_{1} d_{2}-L_{2} d_{1}\right) \neq 0$, what is true if $d_{1} \neq 0$ and $L_{1} d_{2} \neq L_{2} d_{1}$. We simplify our system to

$$
\left\{z_{1}=0, d_{2}=z_{2} L_{1} \frac{1}{d_{1}}+\frac{L_{2}}{L_{1}} d_{1}\right\} \cup\left\{z_{2} \neq 0, d_{1} \neq 0, L_{1} d_{2} \neq L_{2} d_{1}\right\} .
$$

Two Pendula: Case Studies II cont'd

2. The case $\left\{z_{1}=0, z_{2} \neq 0, P\left(0, z_{2}\right)=0\right\}$
is equivalent to

$$
\left\{z_{1}=0, d_{2}=z_{2} L_{1} \frac{1}{d_{1}}+\frac{L_{2}}{L_{1}} d_{1}\right\} \cup\left\{z_{2} \neq 0, d_{1} \neq 0, L_{1} d_{2} \neq L_{2} d_{1}\right\} .
$$

The torsion submodule is annihilated by the ideal $\langle\partial\rangle$ and the kernel representation of the controllable part is given by

$$
\left(\begin{array}{ccc}
0 & X & m_{1} m_{2} L_{1}^{2} L_{2} d_{1} \partial^{2} \\
m_{1} L_{1}^{2} \partial+d_{1} & 0 & m_{1} L_{1} \partial
\end{array}\right) .
$$

where $X=m_{1} m_{2} L_{1}^{2} L_{2}^{2} d_{1} \partial^{2}-\left(m_{1}^{2} m_{2}^{2} g L_{1}^{4} L_{2}^{2}-m_{1}^{2} m_{2} L_{1}^{4} L_{2} k_{2}-\right.$ $\left.m_{2} L_{2}^{2} d_{1}^{2}\right) \partial-\left(m_{1} m_{2} g L_{1}^{2} L_{2} d_{1}-m_{1} L_{1}^{2} k_{2} d_{1}\right)$.

Two Pendula: Case Studies III

```
3. The case \(\left\{z_{1} \neq 0, z_{2}=0, P\left(z_{1}, 0\right)=0\right\}\)
``` is analogous to the case (2) above. The system is not controllable, the torsion submodule is annihilated by the ideal \(\langle\partial\rangle\).
4. The case \(\left\{z_{1} \neq 0, z_{2} \neq 0, P\left(z_{1}, z_{2}\right)=0\right\}\)

Since \(z_{i}, L_{i}\) are nonzero, we get the quadratic equation in \(d_{1}, d_{2}\). We rewrite it naturally as \(P=Q_{1}^{2}+Q_{2} Q_{3}=0\).
Observation: \(\forall i, Q_{i}=0\) implies \(Q_{j}=Q_{k}=0\). With \(d_{1} \neq 0\), we get
\[
\frac{L_{2}}{L_{1}}=\frac{z_{2}}{z_{1}}=\frac{d_{2}}{d_{1}}
\]

Going back to the original variables,
\[
\frac{m_{2} L_{2}^{2}}{m_{1} L_{1}^{2}}=\frac{k_{2}-m_{2} L_{2} g}{k_{1}-m_{1} L_{1} g}=\frac{d_{2}}{d_{1}}
\]

\section*{Two Pendula: Case Studies IV}

Subcase \(L_{2} z_{1}=L_{1} z_{2}\left(Q_{i}=0\right)\) cont'd
Denote the fraction above by \(t\). Then,
\[
d_{2}=t \cdot d_{1}, m_{2}=t \cdot \frac{m_{1} L_{1}^{2}}{L_{2}^{2}}, k_{2}=t \cdot\left(k_{1}-m_{1} g \frac{L_{1}}{L_{2}}\left(L_{2}-L_{1}\right)\right)
\]

The system is not controllable, with the torsion submodule, annihilated by \(\left\langle\left(m_{1} L_{1}^{2}\right) \cdot \partial^{2}+d_{1} \cdot \partial+k_{1}-m_{1} L_{1} g\right\rangle\).

\section*{Two Pendula: Case Studies V}

\section*{Subcase \(L_{2} z_{1} \neq L_{1} z_{2}\left(Q_{i} \neq 0\right)\)}

In variables \(d_{1}, d_{2}\) the equation is quadratic.
\(\left.\left(z_{2} L_{2}\right) d_{1}^{2}-\left(z_{1} L_{2}+z_{2} L_{1}\right) d_{2}\right) \cdot d_{1}+\left(\left(z_{1} L_{1}\right) d_{2}^{2}+\left(z_{1}^{2} L_{2}^{2}-2 z_{1} z_{2} L_{1} L_{2}+z_{2}^{2} L_{1}^{2}\right)=0\right.\). Its discriminant is \(D=\left(z_{1} L_{2}-z_{2} L_{1}\right)^{2} \cdot\left(d_{2}^{2}-4 z_{2} L_{2}\right)\).
\(D=0\), if \(z_{1} L_{2}=z_{2} L_{1}\) (already treated above) or if \(d_{2}=2 \sqrt{z_{2} L_{2}}\). In this case,
\[
d_{1}=\frac{z_{1} L_{2}+z_{2} L_{1}}{2 z_{2} L_{2}} \cdot d_{2}=\frac{1}{2}\left(\frac{z_{1}}{z_{2}}+\frac{L_{1}}{L_{2}}\right) \cdot 2 \sqrt{z_{2} L_{2}}
\]

Solving the quadratic equation for \(D>0\), we obtain general solutions
\[
d_{1}=\frac{1}{2}\left(\frac{z_{1}}{z_{2}}+\frac{L_{1}}{L_{2}}\right) \cdot d_{2} \pm \frac{1}{2}\left|\frac{z_{1}}{z_{2}}-\frac{L_{1}}{L_{2}}\right| \sqrt{d_{2}^{2}-4 z_{2} L_{2}} .
\]

\section*{Implementation: control.lib}

The library is designed to be scalable and modular.
Controllability and autonomy analysis: procedures
control (matrix M) resp. autonom (matrix M)
Do not require algebraic knowledge, user-friendly: one has to input only an algebra \(A\), a matrix \(S\) over it and just run one of the above procedures.
"Minimal knowlegde - maximal information" principle:
- the special heuristics is developed and implemented (it was never done before) for providing exactly the information which is needed,
- context dependency: based on the already computed information, performs additional case-specific computations, e.g. left inverse, annihilator of the torsion part and so on,
- provides textual comments to the algebraic output, hence the library can be used in courses on Control Theory and Applications of Computer Algebra.

\section*{Results}

We compare the correctness and the performance with the Maple-package OreModules (F. Chyzak, A. Quadrat, D. Robertz). Times below are in seconds (\(1,7 \mathrm{MHz}\) proc. and 3 GB). Benchmarks (M. Becker, O. Motsak)
\begin{tabular}{|c|c|c|}
\hline Example & \begin{tabular}{c}
OreModules \\
Maple
\end{tabular} & \begin{tabular}{c}
control.lib \\
Singular:Plural
\end{tabular} \\
\hline Antenna & 1.21 & 0.04 \\
\hline Bipendulum & 0.30 & 0.08 \\
\hline ElecLine & 5.06 & 0.09 \\
\hline FlexibleArm & 1.38 & 0.10 \\
\hline FlexibleRod & 0.44 & 0.06 \\
\hline Network & 0.26 & 0.05 \\
\hline Pedalvit & 0.19 & 0.05 \\
\hline RLC-circuit & 0.32 & 0.07 \\
\hline Satellite & 1.93 & 0.11 \\
\hline String & 2.37 & 0.07 \\
\hline
\end{tabular}

\section*{Three Main Cases}

\section*{System with constant coefficients}

An algebra \(A\) is a pure operator algebra. If operators commute pairwise, it is a commutative algebra, for example \(\mathbb{K}\left[\partial_{1}, \ldots, d_{n}\right]\). Used: SINGULAR and control.lib.

\section*{System with polynomial coefficients}

An algebra \(A\) is a \(G R\)-algebra, for example \(\mathbb{K}\langle x, \partial \mid \partial x=x \partial+1\rangle\). Used: Plural and ncontrol.lib (under development).

\section*{System with rational coefficients}

An algebra \(A\) is an Ore algebra, for example \(\mathbb{K}(x)\langle\partial \mid \partial x=x \partial+1\rangle\). Used: future extension of PLURAL to rational algebras and ratcontrol.lib (development in progress).```

