Applications of Gröbner Bases in Non-commutative GR-algebras

Viktor Levandovskyy

SFB Project F1301 of the Austrian FWF
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University
Linz, Austria
Special Semester on Gröbner Bases and Related Methods
Workshop D2.3 "Non-commutative Gröbner Bases"
17.05.2006, Linz

Implementation in Plural

What is Plural?

- Plural is the kernel extension of Singular
- Plural is distributed with Singular (from version 3-0-0 on)
- freely distributable under GNU Public License
- available for most hardware and software platforms

Plural as a Gröbner engine

- implementation of all the Gröbner basics available
- slimgb is available for Plural (and it is fast!)
- janet is available for two-sided input
- non-commutative Gröbner basics:
as kernel functions (twostd, opposite etc) as libraries (NCDECOMP.LIB, NCTOOLS.LIB, NCPREIMAGE.LIB etc)

Algebras in Plural: Preliminaries

Let \mathbb{K} be a field and R be a commutative ring $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

$$
\operatorname{Mon}(R) \ni x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}} \mapsto\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=\alpha \in \mathbb{N}^{n}
$$

Definition

(1) a total ordering \prec on \mathbb{N}^{n} is called a well-ordering, if
$\forall F \subseteq \mathbb{N}^{n}$ there exists a minimal element of F,
in particular $\forall a \in \mathbb{N}^{n}, 0 \prec a$
(2) an ordering \prec is called a monomial ordering on R, if

$$
\begin{aligned}
& \forall \alpha, \beta \in \mathbb{N}^{n} \alpha \prec \beta \Rightarrow x^{\alpha} \prec x^{\beta} \\
& \forall \alpha, \beta, \gamma \in \mathbb{N}^{n} \text { such that } x^{\alpha} \prec x^{\beta} \text { we have } x^{\alpha+\gamma} \prec x^{\beta+\gamma} .
\end{aligned}
$$

(3) Any $f \in R \backslash\{0\}$ can be written uniquely as $f=c x^{\alpha}+f^{\prime}$, with $c \in \mathbb{K}^{*}$ and $x^{\alpha^{\prime}} \prec x^{\alpha}$ for any non-zero term $c^{\prime} x^{\alpha^{\prime}}$ of f^{\prime}. We define $\operatorname{Im}(f)=x^{\alpha}$, the leading monomial of f $\operatorname{lc}(f)=c, \quad$ the leading coefficient of f

Towards G-algebras

We start with the following collection of data:

(1) a field \mathbb{K} and a commutative ring $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$,
(2) a set $C=\left\{c_{i j}\right\} \subset \mathbb{K}^{*}, 1 \leq i<j \leq n$
(3) a set $D=\left\{d_{i j}\right\} \subset R, \quad 1 \leq i<j \leq n$

Assume, that there exists a monomial well-ordering \prec on R such that

$$
\forall 1 \leq i<j \leq n, \operatorname{Im}\left(d_{i j}\right) \prec x_{i} x_{j} .
$$

The Construction

To the data (R, C, D, \prec) we associate an algebra

$$
A=\mathbb{K}\left\langle x_{1}, \ldots, x_{n} \mid\left\{x_{j} x_{i}=c_{i j} x_{i} x_{j}+d_{i j}\right\} \forall 1 \leq i<j \leq n\right\rangle
$$

PBW Bases and G-algebras

Define the (i, j, k)-nondegeneracy condition to be the polynomial
$N D C_{i j k}:=c_{i k} c_{j k} \cdot d_{i j} x_{k}-x_{k} d_{i j}+c_{j k} \cdot x_{j} d_{i k}-c_{i j} \cdot d_{i k} x_{j}+d_{j k} x_{i}-c_{i j} c_{i k} \cdot x_{i} d_{j k}$.

Theorem (V. L.)
$A=A(R, C, D, \prec)$ has a PBW basis $\left\{x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}\right\}$ if and only if
$\forall 1 \leq i<j<k \leq n, N D C_{i j k} r e d u c e s$ to 0 w.r.t. the relations.
Easy Constructive Check $N D C_{i j k}=x_{k}\left(x_{j} x_{i}\right)-\left(x_{k} x_{j}\right) x_{i}$.

Definition

An algebra $A=A(R, C, D, \prec)$, where nondegeneracy conditions vanish, is called a G-algebra (in n variables).

Gel'fand-Kirillov dimension

Let R be an associative \mathbb{K}-algebra with generators x_{1}, \ldots, x_{m}.
A degree filtration
Consider the vector space $V=\mathbb{K} x_{1} \oplus \ldots \oplus \mathbb{K} x_{m}$.
Set $V_{0}=\mathbb{K}, V_{1}=\mathbb{K} \oplus V$ and $V_{n+1}=V_{n} \oplus V^{n+1}$.
For any fin. gen. left R-module M, there exists a fin.-dim. subspace $M_{0} \subset M$ such that $R M_{0}=M$.
An ascending filtration on M is defined by $\left\{H_{n}:=V_{n} M_{0}, n \geq 0\right\}$.

Definition

The Gel'fand-Kirillov dimension of M is defined to be

$$
\operatorname{GKdim}(M)=\lim _{n \rightarrow \infty} \sup \log _{n}\left(\operatorname{dim}_{\mathbb{K}} H_{n}\right)
$$

Implementation: GKDIM.LIB, function GKdim. Uses Gröbner basis.

Nice Properties of G-algebras

We collect the properties in the following Theorem.
Theorem (Properties of G-algebras)
Let A be a G-algebra in n variables. Then

- A is left and right Noetherian,
- A is an integral domain,
- the Gel'fand-Kirillov dimension $\operatorname{GKdim}(A)=n$,
- the global homological dimension $\operatorname{gl} . \operatorname{dim}(A) \leq n$,
- the Krull dimension $\operatorname{Kr} \cdot \operatorname{dim}(A) \leq n$,
- A is Auslander-regular and a Cohen-Macaulay algebra.

We say that a GR-algebra $\mathcal{A}=A / T_{A}$ is a factor of a G-algebra in n variables A by a proper two-sided ideal T_{A}.

Examples of GR-algebras

- algebras of solvable type, skew polynomial rings
- univ. enveloping algebras of fin. dim. Lie algebras
- quasi-commutative algebras, rings of quantum polynomials
- positive (resp. negative) parts of quantized enveloping algebras
- some iterated Ore extensions, some nonstandard quantum deformations, some quantum groups
- Weyl, Clifford, exterior algebras
- Witten's deformation of $U\left(\mathfrak{s l}_{2}\right)$, Smith algebras
- algebras, associated to (q-)differential, (q-)shift, (q-)difference and other linear operators
- ...

Wide Scope: q-Calculus and Quantum Algebras

 Let \mathbb{K} be a field of char 0 .
q-dilation operator

$$
\begin{aligned}
& D_{q}: C \rightarrow C, \quad D_{q}(f(x))=f(q x): \\
& \mathbb{K}(q)\left\langle x, D_{q} \mid D_{q} \cdot x=q \cdot x \cdot D_{q}\right\rangle .
\end{aligned}
$$

Continuous q-difference Operator
$\Delta_{q}: C \rightarrow C, \quad \Delta_{q}(f(x))=f(q x)-f(x):$

$$
\mathbb{K}(q)\left\langle x, \Delta_{q} \mid \Delta_{q} \cdot x=q \cdot x \cdot \Delta_{q}+(q-1) \cdot x\right\rangle .
$$

q-differential Operator
$\partial_{q}: C \rightarrow C, \partial_{q}(f(x))=\frac{f(q x)-f(x)}{(q-1) x}:$

$$
\mathbb{K}(q)\left\langle x, \partial_{q} \mid \partial_{q} \cdot x=q \cdot x \cdot \partial_{q}+1\right\rangle .
$$

Gröbner basics

Gröbner Basics are ...

...the most important and fundamental applications of Gröbner Bases.

- Ideal (resp. module) membership problem (NF, REDUCE)
- Intersection with subrings (elimination of variables) (ELIMINATE)
- Intersection of ideals (resp. submodules) (INTERSECT)
- Quotient and saturation of ideals (QUOT)
- Kernel of a module homomorphism (MODULO)
- Kernel of a ring homomorphism (NCPREIMAGE.LIB)
- Algebraic relations between pairwise commuting polynomials
- Hilbert polynomial of graded ideals and modules

Anomalies With Elimination

Contrast to Commutative Case

In terminology, we rather use "intersection with subalgebras" instead of "elimination of variables", since the latter may have no sense.

Let $A=\mathbb{K}\left\langle x_{1}, \ldots, x_{n}\right|\left\{x_{j} x_{i}=c_{i j} x_{i} x_{j}+d_{i j}\right\}_{1 \leq i<j \leq n\rangle}$ be a G-algebra.
Consider a subalgebra A_{r}, generated by $\left\{x_{r+1}, \ldots, x_{n}\right\}$.
We say that such A_{r} is an admissible subalgebra, if $d_{i j}$ are polynomials in x_{r+1}, \ldots, x_{n} for $r+1 \leq i<j \leq n$ and $A_{r} \subsetneq A$ is a G-algebra.

Definition (Elimination ordering)

Let A and A_{r} be as before and $B:=\mathbb{K}\left\langle x_{1}, \ldots, x_{r} \mid \ldots\right\rangle \subset A$ An ordering \prec on A is an elimination ordering for x_{1}, \ldots, x_{r} if for any $f \in A, \quad \operatorname{Im}(f) \in B$ implies $f \in B$.

Anomalies With Elimination: Conclusion

"Elimination of variables x_{1}, \ldots, x_{r} from an ideal l "

 means the intersection $I \cap A_{r}$ with an admissible subalgebra A_{r}. In contrast to the commutative case:- not every subset of variables determines an admissible subalgebra
- there can be no admissible elimination ordering $\prec_{A_{r}}$

Example

Consider the algebra $A=\mathbb{K}\left\langle a, b \mid b a=a b+b^{2}\right\rangle$. It is a G-algebra with respect to any well-ordering, such that $b^{2} \prec a b$, that is $b \prec a$. Any elimination ordering for b must satisfy $b \succ a$, hence A is not a G-algebra w.r.t. any elimination ordering for b.
The Gröbner basis of a two-sided ideal, generated by $b^{2}-b a+a b$ in $\mathbb{K}\langle a, b\rangle$ is infinite and equals to $\left\{\left.b a^{n-1} b-\frac{1}{n}\left(b a^{n}-a^{n} b\right) \right\rvert\, n \geq 1\right\}$.

Non-commutative Gröbner basics

For the non-commutative PBW world, we need even more:

- Gel'fand-Kirillov dimension of a module (GKDIM.LIB)
- Two-sided Gröbner basis of a bimodule (twostd)
- Central Character Decomposition of a module (NCDECOMP.LIB)
- Preimage of a module under algebra morphism
- Ext and Tor modules for centralizing bimodules (NCHOMOLOG.LIB)
- Maximal two-sided ideal in a left ideal (NCANN.LIB in work)
- Check whether a module is simple
- Center of an algebra and centralizers of polynomials
- Operations with opposite and enveloping algebras

A Very Recent Development

Announcement

The newest addition to SINGULAR:PLURAL is the library DMOD.LIB, containing algorithms of algebraic D-Module Theory. A joint work of V. L. and J. M. Morales (Zaragoza).

Functionality: an algorithm AnNFs

- Oaku-Takayama approach (ANNFSOT command)
- Briançon-Maisonobe approach (ANNFSBM command)
- Bernstein polynomial is computed within both approaches

Constructively: two bigger rings are constructed and two eliminations are applied in a sequence.
Complexity of such computations is high!

D-modules

What's Behind

Let $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and $f \in R$. We are interested in
$R\left[f^{-s}\right]=\mathbb{K}\left[x_{1}, \ldots, x_{n}, \frac{1}{f^{s}}\right]$ as an R-module for $s \in \mathbb{N}$.
On the one hand, $R\left[f^{-s}\right] \cong R[y] /\left\langle y f^{s}-1\right\rangle$.
On the other hand, $R\left[f^{-s}\right]$ is a D-module, where D is the n-th Weyl algebra $\mathbb{K}\left\langle x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n} \mid\left\{\partial_{j} x_{i}=x_{i} \partial_{j}+\delta_{i j}\right\}\right\rangle$.
The algorithm ANNFs computes a D-module structure on $R\left[f^{-s}\right]$, that is a left ideal $I \subset D$, such that $R\left[f^{-s}\right] \cong D / I$.

Especially interesting are cases when f is irreducible singular (among other, a reiffen curve), reducibly singular or when f is a hyperplane arrangement (arrange).

Morphisms of general GR-algebras

Setup

Let $\mathcal{A}=A / T_{A}$ and $\mathcal{B}=B / T_{B}$ be two GR-algebras and $\Phi: \mathcal{A} \longrightarrow \mathcal{B}$ be a map (respectively, a map $\phi: A \longrightarrow B$). Define $f_{i}:=\operatorname{NF}\left(\Phi\left(x_{i}\right), T_{B}\right)$ resp. $f_{i}:=\phi\left(x_{i}\right)$.

Let $E^{o}:=A \otimes_{\mathbb{K}} B^{\mathrm{opp}}$ (a G-algebra), $T_{E}^{o}:=T_{A}+T_{B}^{\mathrm{opp}}$ a two-sided ideal and $\mathcal{E}^{0}:=\mathcal{A} \otimes_{\mathbb{K}} \mathcal{B}^{\text {opp }}=E^{0} /\left\langle T_{E}^{O}\right\rangle$ a $G R$-algebra.

Asymmetric construction

Define the set $S^{0}:=\left\{x_{i}-\phi\left(x_{i}\right)^{\text {opp }} \mid 1 \leq i \leq n\right\} \subset E^{0}$. We view the (A, B)-bimodule ${ }_{A}\left\langle S_{B}\right.$ as the left ideal $l_{\phi}^{\circ}:=A_{\otimes_{\mathbb{K}}} B^{\text {opp }}\left\langle S^{0}\right\rangle$.

Morphisms of GR-algebras. Asymmetric method

Lemma

For ϕ, Φ and l_{ϕ}° as above, the following holds:

- $\phi \in \operatorname{Mor}(A, B)$ if and only if $I_{\phi}^{0} \cap B^{o p p}=\langle 0\rangle$,
- $\Phi \in \operatorname{Mor}(\mathcal{A}, \mathcal{B})$ if and only if $\operatorname{NF}\left(I_{\phi}^{\circ} \cap B^{o p p} \mid T_{B}^{o p p}\right)=\langle 0\rangle$.

Theorem (Asymmetric construction)

Let \mathcal{A}, \mathcal{B} be $G R$-algebras (resp. A, B be G-algebras). Then the following assertions hold:

- for any $\phi \in \operatorname{Mor}(A, B), \quad \operatorname{ker} \phi=I_{\phi}^{O} \cap A$,
- for any $\Phi \in \operatorname{Mor}(\mathcal{A}, \mathcal{B})$,

$$
\operatorname{ker} \Phi=I_{\Phi}^{\circ} \cap \mathcal{A}=\operatorname{NF}\left(T_{A}+\left(T_{B}^{o p p}+l_{\phi}^{\circ}\right) \cap A \mid T_{A}\right) .
$$

Example $\left(U\left(\mathfrak{s l}_{2}\right) \rightarrow A_{1}\right)$

Let $A_{1}=\mathbb{K}\langle x, \partial \mid \partial x=x \partial+1\rangle$ be the first Weyl algebra.
Consider the map $U\left(\mathfrak{s l}_{2}\right) \xrightarrow{\phi} A_{1}$, defined by

$$
e \mapsto x, f \mapsto-x^{2} \partial, h \mapsto 2 x \partial
$$

Performing the elimination $I_{\phi}^{\circ} \cap A_{1}^{O D P}$, we obtain zero ideal, hence

$$
\phi \in \operatorname{Mor}\left(U\left(\mathfrak{s l}_{2}\right), W_{1}\right) .
$$

Computing another elimination $I_{\phi}^{\circ} \cap U\left(\mathfrak{s l}_{2}\right)$, we get

$$
\operatorname{ker} \phi=\left\langle 4 e f+h^{2}-2 h\right\rangle \text {. }
$$

So, there is an embedding

$$
0 \rightarrow U\left(\mathfrak{s l}_{2}\right) /\left\langle 4 e f+h^{2}-2 h\right\rangle \longrightarrow A_{1}
$$

Limitations of the Asymmetric method

With this method, we can check whether a map is a morphism and compute the kernel of a morphism, or the preimage of a two-sided ideal.

Problem

We cannot compute the preimage of a left ideal.

Lemma (No Module Structure)

Consider the set $X:=\{f-\phi(f) \mid f \in A\} \subseteq A \otimes_{\mathbb{K}} B$. It is spanned by $\left\{x^{\alpha}-\phi\left(x^{\alpha}\right) \mid \alpha \in \mathbb{N}^{n}\right\}$. Let $S=\left\{x_{i}-\phi\left(x_{i}\right) \mid 1 \leq i \leq n\right\} \subseteq A \otimes_{\mathbb{K}} B$.
There are the following inclusions of \mathbb{K}-vector-spaces:

$$
X \subset{ }_{A}\langle S\rangle_{\phi(A)} \subseteq{ }_{A}\langle S\rangle_{B} .
$$

Symmetric Deformation: Motivation

Let $\phi: A \rightarrow B$ be a map of K-algebras. There are the natural actions of A on B, induced by ϕ :

$$
a \circ_{L} b:=\phi(a) b \text { and } b \cdot a:=b \circ_{R} a:=b \phi(a)
$$

Observation

These actions provide a well-defined left and right A-module structures on B if and only if ϕ is a morphism.

Hence, B is an (A, A)-bimodule. We extend both actions to A by $a_{1} \circ_{L} a_{2}:=a_{1} \cdot a_{2}$ and thus turn $A \otimes_{\mathbb{K}} B$ into an (A, A)-bimodule.

Lemma

Consider the set $G=\{g-\phi(g) \mid g \in A\} \subset A \otimes_{\mathbb{K}} B$. Then

$$
G={ }_{A}\left\langle\left\{x_{i}-\phi\left(x_{i}\right) \mid 1 \leq i \leq n\right\}\right\rangle_{A} \subset A \otimes_{\mathbb{K}} B .
$$

Symmetric Deformation: Method

For $1 \leq i \leq n, 1 \leq j \leq m$, define $q_{i j} \in \mathbb{K} \backslash\{0\}$ to be $q_{i j}:=\frac{\operatorname{lc}\left(y_{j} f_{i}\right)}{\operatorname{lc}\left(f_{i} y_{j}\right)}$ and $r_{i j} \in B \subset A \otimes_{\mathbb{K}} B$ to be $r_{i j}:=y_{j} f_{i}-q_{i j} f_{i} y_{j}$. Then, for all indices in the same range as above $y_{j} x_{i}=q_{i j} \cdot x_{i} y_{j}+r_{i j}$ or $\left[y_{j}, x_{i}\right]_{q_{i j}}=\left[y_{j}, f_{i}\right]_{q_{i j}}$.

Observation

If all $q_{i j}=1$, we have $r_{i j}=y_{j} f_{i}-f_{i} y_{j}=\left[y_{j}, f_{i}\right]$ and relation becomes just $\left[y_{j}, x_{i}\right]=\left[y_{j}, f_{i}\right]$ for all $1 \leq i \leq n, 1 \leq j \leq m$.

Notation

$(A, B, \phi) \rightarrow A \otimes_{\mathbb{K}}^{\phi} B$
Given $G R$-algebras \mathcal{A}, \mathcal{B}, we construct $\mathcal{A} \otimes_{\mathbb{K}}^{\Phi} \mathcal{B}$ as a factor-algebra of $A \otimes_{\mathbb{K}}^{\phi} B$ by the two-sided ideal $T=T_{A}+T_{B}$.

Symmetric Deformation: Theorem

Theorem

Let \mathcal{A}, \mathcal{B} be $G R$-algebras and $\Phi \in \operatorname{Mor}(\mathcal{A}, \mathcal{B})$.
Let l_{Φ} be the $(\mathcal{A}, \mathcal{A})$-bimodule $\mathcal{A}_{\mathcal{A}}\left\langle\left\{x_{i}-\Phi\left(x_{i}\right) \mid 1 \leq i \leq n\right\}\right\rangle_{\mathcal{A}} \subset \mathcal{A} \otimes_{\mathbb{K}} \mathcal{B}$ and $f_{i}:=\Phi\left(x_{i}\right)$. Suppose there exists an elimination ordering for B on $A \otimes_{\mathbb{K}} B$, such that

$$
1 \leq i \leq n, 1 \leq j \leq m, \quad \operatorname{Im}\left(\operatorname{lc}\left(f_{i} y_{j}\right) y_{j} f_{i}-\operatorname{lc}\left(y_{j} f_{i}\right) f_{i} y_{j}\right) \prec x_{i} y_{j} .
$$

Then

1) $A \otimes_{\mathbb{K}}^{\phi} B$ is a G-algebra (resp. $\mathcal{A} \otimes_{\mathbb{K}}^{\Phi} \mathcal{B}$ is a GR-algebra).
2) Let $\mathcal{J} \subset \mathcal{B}$ be a left ideal, then

$$
\Phi^{-1}(\mathcal{J})=\left(I_{\Phi}+\mathcal{J}\right) \cap \mathcal{A}
$$

Symmetric Deformation: Example

Example $\left(U\left(\mathfrak{s l}_{2}\right) \rightarrow A_{1}\right)$

Let $A_{1}=\mathbb{K}\langle x, \partial \mid \partial x=x \partial+1\rangle$ be the first Weyl algebra.
Consider the map $U\left(\mathfrak{s l}_{2}\right) \xrightarrow{\phi} A_{1}$, defined by $e \mapsto x, f \mapsto-x^{2} \partial, h \mapsto 2 x \partial$.
We already showed that $\phi \in \operatorname{Mor}\left(U\left(\mathfrak{s l}_{2}\right), A_{1}\right)$.
Define $E^{\prime}=U\left(\mathfrak{s l}_{2}\right) \otimes_{\mathbb{K}}^{\phi} A_{1}$, by introducing new relations
$\left\{[d, e]=1,[x, f]=2 x d,[d, f]=-d^{2},[x, h]=-2 x,[d, h]=2 d\right\}$.
The ordering restrictions on $E^{\prime} f x \succ x d$ and $f d \succ d^{2}$ hold iff $f \succ d$. But then the elimination condition $\{x, d\} \gg\{e, f, h\}$ cannot be satisfied on E^{\prime} and preimage cannot be computed.

Still,

For many cases, preimage can be efficiently computed.

Central Character Decomposition

Let \mathbb{K} be algebraically closed and $C \subset A$ be a fin. gen. commutative subalgebra of A. Denote by C^{*} the set of maximal ideals of C.
Let M be a fin. gen. A-module and $\chi \in C^{*}$. Define $M^{\chi}=\left\{v \in M \mid \exists n \in \mathbb{N}, \forall c \in C\right.$, $\left.(c-\chi(c))^{n} v=0\right\}$. We call $\operatorname{Supp}_{C} M=\left\{\chi \in C^{*} \mid M^{\chi} \neq 0\right\}$ a support of M w.r.t. C.

Lemma

Let $M \cong A^{N} / I_{M}$ for a left submodule $I_{M} \subset A^{N}$. We define a module

$$
J_{M}=\operatorname{preAnn}(M)=\bigcap_{j=1}^{N} \operatorname{Ann}_{A}^{M} e_{j} .
$$

Then $Z \cap J_{M}=Z \cap A n n_{A} M$ and the Zariski closure of $\mathrm{Supp}_{Z} M$ equals $V\left(J_{M} \cap Z(A)\right)$.

Central Character Decomposition

Definition

Let $I \subset A^{N}$ be a left submodule and $Z=Z(A)$ be a center of A.
(1) For $z \in Z,(I: z):=\left\{v \in A^{N} \mid z v \in I\right\}$
(2) For an ideal $J \subset Z$, $(I: J):=\left\{v \in A^{N} \mid z v \in I\right.$ for all $\left.z \in J\right\}$.
(3) The submodule $I: z^{\infty}=\lim _{n \in \mathbb{N}} I: z^{n}$.
(9) The submodule $I: J^{\infty}=\lim _{n \in \mathbb{N}} I: J^{n}$ (a central saturation of $/$ by J).

Theorem (Khomenko, V. L.)
Suppose that $\left|\operatorname{Supp}_{z} M\right|=s<\infty$. Then $M=\bigoplus_{\chi \in Z^{*}} M^{\chi}$,

$$
M^{\chi} \cong A^{N} / I_{M}: J_{\chi}^{\infty} \text {, where } J_{\chi}=\bigcap_{\substack{\psi \in \mathrm{supp}_{Z} M \\ \psi \neq \chi}} \operatorname{ker} \psi \text {. }
$$

Central Character Decomposition: Example

Let $S=\left\{e^{3}, f^{3}, h^{3}-4 h\right\} \subset U\left(\mathfrak{s l}_{2}\right)$ and I_{L} be a left ideal and I_{T} be a two-sided ideal, generated by S. Easy computation shows $I_{L} \supset I_{T}$. For $M_{T}=U\left(\mathfrak{s l}_{2}\right) / I_{T}, \operatorname{dim}_{\mathbb{K}} M_{T}=10$ and $\operatorname{Supp}_{Z} M_{T}=\{z, z-8\}$.

Decomposition of M_{T} :

$M_{T}=M_{T}^{(z)} \oplus M_{T}^{(z-8)}=U\left(\mathfrak{s l}_{2}\right) / \mathfrak{m} \oplus U\left(\mathfrak{s l}_{2}\right) / l_{9}$
For $M_{L}=U\left(\mathfrak{s l}_{2}\right) / I_{L}, \operatorname{dim}_{\mathbb{K}} M_{L}=15$ and $\operatorname{Supp}_{z} M_{L}=\{z, z-8, z-24\}$.
Decomposition of M_{L} :
$M_{L}=M_{L}^{(z)} \oplus M_{L}^{(z-8)} \oplus M_{L}^{(z-24)}=U\left(\mathfrak{s l}_{2}\right) / \mathfrak{m} \oplus U\left(\mathfrak{s l}_{2}\right) / I_{9} \oplus U\left(\mathfrak{s l}_{2}\right) / I_{5}$
We denote $\mathfrak{m}=\langle e, f, h\rangle, I_{5}=\left\langle e^{3}, f^{3}\right.$, ef $\left.-6, h\right\rangle, I_{9}=$ $\left\langle 4 e f+h^{2}-2 h-8, h^{3}-4 h, e^{3}, f^{3}, f h^{2}-2 f h, e h^{2}+2 e h, f^{2} h-2 f^{2}, e^{2} h+2 e^{2}\right\rangle$.
The \mathbb{K}-dimensions of corresponding modules are $1,5,9$ respectively.

NC Cohen-Macaulay Program: Foundations

Definition

Let A be an associative \mathbb{K}-algebra and M be a left A-module.
(1) The grade of M is defined to be
$j(M)=\min \left\{i \geq 0 \mid \operatorname{Ext}_{A}^{i}(M, A) \neq 0\right\}$,
or $j(M)=\infty$, if no such i exists or $M=\{0\}$.
(2) Given a dimension function γ on A, then A is called a

Cohen-Macaulay algebra w.r.t. γ, if for every fin. gen. nonzero A-module $M, j(M)+\gamma(M)=\gamma(A)<\infty$.

Theorem (Gomez-Torrecillaz, Lobillo)

G-algebra is Cohen-Macaulay and Auslander regular.

NC CM: Exact values of global dimensions

Theorem
Let A be a G-algebra in n variables over \mathbb{K}. If A has finite-dimensional representations in \mathbb{K}, then $\operatorname{gl} . \operatorname{dim} A=n$.

Conjecture

gl. $\operatorname{dim} A=n$ if and only if A has fin.-dim. representations in \mathbb{K}.

Open Question

Given a GR-algebra \mathcal{A}, determine gl. $\operatorname{dim} \mathcal{A}$ algorithmically.

Exact values of global dimensions: Example

Example

Consider the algebra $X_{\mathbb{K}}=\mathbb{K}\left\langle x, y \mid y x=x y+y^{2}+1\right\rangle$.
We know, that gl. dim $X_{\mathbb{K}} \leq 2$. At the same time, gl. dim $X_{\mathbb{K}} \geq 1$, since the ideal $I=x_{\mathrm{K}}\left\langle x, y^{2}+1\right\rangle$ is proper and
$\operatorname{syz}(I)=x_{\mathbb{K}}\left\langle\left(-\left(y^{2}+1\right), x+2 y\right)^{t}\right\rangle$.
Since $X_{\mathbb{C}}$ has one-dim. representations $\{(0, \pm i)\}$, gl. $\operatorname{dim} X_{\mathbb{C}}=2$. However, $X_{\mathbb{R}}, X_{\mathbb{Q}}, X_{\mathbb{F}_{3}}$ have no one-dim. representations.
But for any \mathbb{K} there is a family of representations of $X_{\mathbb{K}}$, parametrized by $a \in \mathbb{K}^{*}$, given by

$$
\rho_{a}: X_{\mathbb{F}} \rightarrow M_{2}(\mathbb{F}), \quad x \mapsto\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad y \mapsto\left(\begin{array}{cc}
0 & -a \\
1 / a & 0
\end{array}\right) .
$$

Hence, gl. $\operatorname{dim} X_{\mathbb{K}}=2$.

NC Cohen-Macaulay Program: Details

Various Dimensions

CM property is defined with respect to the dimension function

- Krull dimension (various generalizations)
- e. g. Krull-Rentschler-Gabriel dimension
- relative or absolute GK-dimension
- combined dimension?

Study different dimensions w.r.t. CM property!

NC Cohen-Macaulay Program: Details

More General Algebras

- Factor-algebras
e. g. factor-algebras of CM algebras (G-algebras) commutative pre-history and lots of results at least 3 different methods for showing CM property
- Ore localizations
local commutative rings are classically CM NC extensions of rings like $\mathbb{K}[[x]], \mathbb{K}[x]_{\langle x\rangle}$? NC extensions of skew fields like $\mathbb{K}(\underline{x})$?

Perspectives

Gröbner bases for more non-commutative algebras

- tensor product of commutative local algebras with certain non-commutative algebras
- different localizations of G-algebras
- localization at some "coordinate" ideal of commutative variables (producing e.g. local Weyl algebras $\mathbb{K}[x]_{\langle x\rangle}\langle D \mid D x=x D+1\rangle$)
\Rightarrow local orderings and the generalization of standard basis algorithm, Gröbner basics and homological algebra
- localization as field of fractions of commutative variables (producing e.g. rational Weyl algebras $\mathbb{K}(x)\langle D \mid D x=x D+1\rangle$), including Ore Algebras (F. Chyzak, B. Salvy)
\Rightarrow global orderings and a generalization Gröbner basis algorithm.

Thank you!

$\alpha /$ SINGULAR $_{\text {Plural }}$

Please visit the SinguLAR homepage

- http://www.singular.uni-kl.de/

