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Algebraic Relations – Beginner’s Viewpoint

Let f1(n), f2(n), . . . , fm(n) be sequences in a field K.

Suppose that p(x1, . . . , xm) ∈ K[x1, . . . , xn] is such that

p
(

f1(n), f2(n), . . . , fm(n)
)

= 0 (n ≥ 0).

Then p is called an algebraic relation of the sequences fi(n).

Observations:

I If p and q are algebraic relations, then so is p+ q

I If p is an algebraic relation, then so is r ·p for any polynomial r

I If pn is an algebraic relation, then so is p

Consequence: The set of all algebraic relations forms a radical
ideal.
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Let f1(n), f2(n), . . . , fm(n) be sequences in a field K.

Consider the ring homomorphism defined via

φ : K[x1, . . . , xm]→ KN,

c 7→ (c)n≥0 (c ∈ K),

xi 7→ (fi(n))n≥0 (i = 1, . . . ,m).

The ideal of algebraic relations among f1(n), . . . , fm(n) is precisely
the kernel of this map, ker φ.
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Let f1(n), f2(n), . . . , fm(n) be sequences in a field K.

Consider the set of points

P := { (f1(n), . . . , fm(n)) : n ∈ N } ⊆ Km.

The ideal of algebraic relations among f1(n), . . . , fm(n) is precisely
the vanishing ideal of this set, I(P ).

Summary:

{p ∈ K[x1, . . . , xn] : p(f1, . . . , fm) ≡ 0} = ker φ = I(P ).
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In other words: Find the ideal a E C[x, y] of algebraic relations
among (Fn)n≥0 and (Fn+1)n≥0.

Answer: a = 〈(x2 − xy − y2 − 1)(x2 − xy − y2 + 1)〉.



Example: Fibonacci Numbers

Answer: a = 〈(x2 − xy − y2 − 1)(x2 − xy − y2 + 1)〉.



Example: Fibonacci Numbers

Answer: a = 〈(x2 − xy − y2 − 1)(x2 − xy − y2 + 1)〉.

2 4 6 8

-1

1

2

3

4

5
This is V (a).



Example: Fibonacci Numbers

Answer: a = 〈(x2 − xy − y2 − 1)(x2 − xy − y2 + 1)〉.

2 4 6 8

-1

1

2

3

4

5
This is V (a).

It consists of two irreducible com-
ponents.



Example: Fibonacci Numbers

Answer: a = 〈(x2 − xy − y2 − 1)(x2 − xy − y2 + 1)〉.

2 4 6 8

-1

1

2

3

4

5
This is V (a).

It consists of two irreducible com-
ponents.

Each component carries “half” of
the points (Fn+1, Fn)



Example: Fibonacci Numbers

Answer: a = 〈(x2 − xy − y2 − 1)(x2 − xy − y2 + 1)〉.

2 4 6 8
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5
This is V (a).

It consists of two irreducible com-
ponents.

Each component carries “half” of
the points (Fn+1, Fn)

Based on the geometric interpretation, it is straightforward to
prove that a is really the ideal claimed above.
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Then

q
(

f1(n), . . . , fm(n)
)

S(n)− p
(

f1(n), . . . , fm(n)
)

= 0

is an algebraic relation between f1(n), . . . , fm(n) and the
sum S(n).

Consequence: If we can prove [discover] algebraic relations
for a certain class of sequences, then we can prove [discover]
summation identities for that class.
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Problem Specification

INPUT:

I Sequences f1(n), . . . , fm(n) over K.

I A multivariate polynomial p ∈ K[x1, . . . , xm]

OUTPUT:

I “True” if p(f1(n), . . . , fm(n)) = 0 (n ≥ 0),

I “False” otherwise.

In other words: If a is the ideal of algebraic relations of
f1(n), . . . , fm(n), we wish to decide

p
?
∈ a.

(Trivial Gröbner basis computation if we knew a. But in general,
we don’t.)
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What do we mean by “Given sequences f1(n), . . . , fm(n)” ?

We assume that the sequences are defined by a system of
difference equations of the form

f1(n+ 1) = r1(f1(n), . . . , f1(n− r), . . . , fm(n), . . . , fm(n− r)),

f2(n+ 1) = r2(f1(n), . . . , f1(n− r), . . . , fm(n), . . . , fm(n− r)),

...

fm(n+ 1) = rm(f1(n), . . . , f1(n− r), . . . , fm(n), . . . , fm(n− r)),

where r1, . . . , rm are fixed explicit rational functions.

Together with a suitable number of initial values, such a system
uniquely defines m sequences f1(n), . . . , fm(n).

(We assume that application of the recurrence equations will never
lead to a division by zero.)
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Here are some members of this class:

f(n) = Fibonacci(Fibonacci(n))

by

f1(n+ 1) = f(n)f1(n− 1) + f1(n)f(n− 1)− f1(n)f1(n− 1)

f(n+ 1) = f1(n)f1(n− 1) + f(n)f(n− 1)
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What Sequences are we Talking About?

The class is closed under the following operations:

I arithmetic operations +,−, ·,÷

I indefinite summation and products Σ,Π

I continued fractions

I affine translations f(ban+ bc) (a, b ∈ Q)

Example:

n
∑

k=0

(

∑3k+1
i=0

i+1
i!+(−2)i

)17
+K

2k
i=1(2

2i

;FFi
) + 2Hk

(

P
(a,b)
k (x) +

∏bk/3c
i=1 P

(b,a)
i (x)

)

(3Fk + F3k)

(

2k

k

)
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Proving Algebraic Relations

Observation: If f1(n), . . . , fm(n) are admissible sequences and
p ∈ K[x1, . . . , xm], then

fm+1(n) := p(f1(n), . . . , fm(n))

is admissible, too.

Deciding whether p is an algebraic relation is hence nothing more
than deciding zero equivalence of an admissible sequence.
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To show:
∀n ∈ N : f(n) = 0.

To do: Eliminate the quantifier. Find N ∈ N such that

(

∀n ∈ N : f(n) = 0
)

⇐⇒
(

f(1) = 0∧f(2) = 0∧· · ·∧f(N) = 0
)

.

For this, it is clearly sufficient if N is such that

∀n ∈ N :
(

f(n) = 0 ∧ · · · ∧ f(n+N − 1) = 0⇒ f(n+N) = 0
)

.

For this, it is clearly sufficient if

∀x0, . . . , xN ∈ K : x0 = 0 ∧ · · · ∧ xN−1 = 0⇒ xN = 0.

But this is clearly false :-(
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Deciding Zero Equivalence

To show:
∀n ∈ N : f(n) = 0.

Fix: We can securely put algebraic relations p1, . . . , pk ∈
K[x0, . . . , xN ] into the assumption part:

∀x0, . . . , xN ∈ K : p1(x0, . . . , xN ) = 0 ∧ · · · ∧ pk(x0, . . . , xN ) = 0

∧x0 = 0 ∧ · · · ∧ xN−1 = 0⇒ xN = 0

This can be decided with Gröbner bases:

xN
?
∈ Rad〈p1, . . . , pk, x0, . . . , xN−1〉.

Suitable polynomials pi can be obtained form the defining recurrence
equation system of f(n)
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To show:
∀n ∈ N : f(n) = 0.

Theorem: For sufficiently large N , the above radical mem-
bership test will yield True.

This gives the decision procedure:

1. Check xN
?
∈ Rad〈p1, . . . , pk, x0, . . . , xN−1〉 for

N = 0, 1, 2, 3, . . . until the result is True.

2. Evaluate f(0), . . . , f(N) and compare them to zero.
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OUTPUT:

I Polynomials p1, . . . , pk ∈ K[x1, . . . , xm] which generate
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We consider the same class of sequences as before.

From now on, let f1(n), . . . , fm(n) be given, and let
a E K[x1, . . . , xm] be the ideal of their algebraic relations.
We want to find a basis for a.
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V (a) ⊇ { (f1(n), . . . , fm(n)) : n ≤ N }
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Consequence: For every N ∈ N,

a ⊆
N
⋂

n=1

〈x1 − f1(n), . . . , xm − fm(n)〉 := aN

Theorem: For sufficiently large N , a Gröbner basis for aN

will contain a Gröbner basis for a.
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The cone of x4 will not dis-
appear as N → ∞, be-
cause it belongs to a gen-
erator of a.

Remark: A Gröbner basis for aN can be efficiently computed by
the Buchberger-Möller algorithm.
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x x2 x3 x4 x5 x6 x7
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p =
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ae1,...,em
xe1

1 x
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m .

Applying the zero equivalence prover to

p(f1(n), . . . , fm(n)) = 0

gives a number N of initial values that need to be satisfied.

Forcing p(f1(n), . . . , fm(n)) = 0 for n = 1, . . . , N leads to a linear
system for the coefficients whose solutions are generators of ad.

Note: If d is sufficiently large, then ad = a.
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None of the methods above actually delivers, in a finite number of
steps, a basis for a.

The best we can do is to recursively enumerate a basis.

This is possible with both methods described.

We should better not hope for more, because:

Theorem: If there exists an algorithm, which computes, in a
finite number of steps, a basis for the ideal of algebraic rela-
tions among f1(n), . . . , fm(n), then there exists an algorithm
which decides

∃n ∈ N : f(n) = 0

for given sequences f(n).

Deciding the existence of roots is very difficult.
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The C-finite Case (joint work with B. Zimmermann)

A sequence f(n) is called C-finite, if

f(n+ r) = a0f(n) + a1f(n+ 1) + · · ·+ ar−1f(n+ r − 1)

for some constants ai ∈ Q.

Let f1(n), . . . , fm(n) be C-finite, and a E Q[x1, . . . , xn] be the
ideal of their algebraic relations.

Then, a basis of a can be computed from defining recurrence
equations and initial values of the fi(n).

Consequence: In this class, we can also prove automatically that
certain quantities are not related.
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Cn+rCn = α1Cn+r−1Cn+1 + α2Cn+r−2Cn+2 + · · ·

· · ·+ αbr/2cCn+r−br/2cCn+br/2c

with r ∈ N fixed and α1, . . . , αbr/2c is called a Somos sequence of
order r.

Question: Can a given Somos sequence of order r also be viewed
as a Somos sequence for some different order r′?

Example: Consider Cn defined via

Cn+4Cn = Cn+3Cn+1 + C2
n+2, C0 = C1 = C2 = C3 = 1.

Does this sequence satisfy a Somos-like recurrence of orders
5, 6, 7, 8?
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Idea: Compute the algebraic relations of total degree ≤ 2 among
the terms

Cn, Cn+1, . . . , Cn+7, Cn+8.

Let a = 〈p1, . . . , pk〉 E Q[x0, . . . , x8] be a Gröbner basis for the
ideal generated by the quadratic relations.

Make an ansatz with indetermined coefficients for the desired
relation, e.g.,

Cn+5Cn = a1Cn+4Cn+1 + a2Cn+3Cn+2

Reduction modulo a gives

x5x0 − a1x4x1 − a2x3x2 −→a (1− 1
5a2)x0x5 − (a1 +

1
5a2)x1x4

Comparing coefficients gives a1 = −1, a2 = 5.
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Conclusion

I For a large class of sequences, algebraic relations can be
proven automatically.

I For the same class of sequences, algebraic relations up to a
prescribed degree can be found automatically.

I A basis for the whole ideal is hard to find

I It can, however, be obtained for the small class of C-finite
sequences.

I All this stuff is implemented in a Mathematica package.


