# Proving and Finding Algebraic Dependencies of Combinatorial Sequences 

Manuel Kauers
RISC-Linz

## Algebraic Relations - Beginner's Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.

## Algebraic Relations - Beginner's Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.
Suppose that $p\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is such that

$$
p\left(f_{1}(n), f_{2}(n), \ldots, f_{m}(n)\right)=0 \quad(n \geq 0) .
$$

## Algebraic Relations - Beginner's Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.
Suppose that $p\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is such that

$$
p\left(f_{1}(n), f_{2}(n), \ldots, f_{m}(n)\right)=0 \quad(n \geq 0)
$$

Then $p$ is called an algebraic relation of the sequences $f_{i}(n)$.

## Algebraic Relations - Beginner's Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.
Suppose that $p\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is such that

$$
p\left(f_{1}(n), f_{2}(n), \ldots, f_{m}(n)\right)=0 \quad(n \geq 0)
$$

Then $p$ is called an algebraic relation of the sequences $f_{i}(n)$.
Observations:

## Algebraic Relations - Beginner's Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.
Suppose that $p\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is such that

$$
p\left(f_{1}(n), f_{2}(n), \ldots, f_{m}(n)\right)=0 \quad(n \geq 0)
$$

Then $p$ is called an algebraic relation of the sequences $f_{i}(n)$.
Observations:

- If $p$ and $q$ are algebraic relations, then so is $p+q$


## Algebraic Relations - Beginner's Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.
Suppose that $p\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is such that

$$
p\left(f_{1}(n), f_{2}(n), \ldots, f_{m}(n)\right)=0 \quad(n \geq 0)
$$

Then $p$ is called an algebraic relation of the sequences $f_{i}(n)$.
Observations:

- If $p$ and $q$ are algebraic relations, then so is $p+q$
- If $p$ is an algebraic relation, then so is $r \cdot p$ for any polynomial $r$


## Algebraic Relations - Beginner's Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.
Suppose that $p\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is such that

$$
p\left(f_{1}(n), f_{2}(n), \ldots, f_{m}(n)\right)=0 \quad(n \geq 0)
$$

Then $p$ is called an algebraic relation of the sequences $f_{i}(n)$.
Observations:

- If $p$ and $q$ are algebraic relations, then so is $p+q$
- If $p$ is an algebraic relation, then so is $r \cdot p$ for any polynomial $r$
- If $p^{n}$ is an algebraic relation, then so is $p$


## Algebraic Relations - Beginner’s Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.
Suppose that $p\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is such that

$$
p\left(f_{1}(n), f_{2}(n), \ldots, f_{m}(n)\right)=0 \quad(n \geq 0) .
$$

Then $p$ is called an algebraic relation of the sequences $f_{i}(n)$.
Observations:

- If $p$ and $q$ are algebraic relations, then so is $p+q$
- If $p$ is an algebraic relation, then so is $r \cdot p$ for any polynomial $r$
- If $p^{n}$ is an algebraic relation, then so is $p$

Consequence: The set of all algebraic relations forms a radical ideal.

## Algebraic Relations - Algebraist's Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.

## Algebraic Relations - Algebraist's Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.
Consider the ring homomorphism defined via

$$
\phi: \mathbb{K}\left[x_{1}, \ldots, x_{m}\right] \rightarrow \mathbb{K}^{\mathbb{N}},
$$

## Algebraic Relations - Algebraist's Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.
Consider the ring homomorphism defined via

$$
\begin{aligned}
& \phi: \mathbb{K}\left[x_{1}, \ldots, x_{m}\right] \\
& \rightarrow \mathbb{K}^{\mathbb{N}}, \\
& c \mapsto(c)_{n \geq 0} \\
&(c \in \mathbb{K}),
\end{aligned}
$$

## Algebraic Relations - Algebraist's Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.
Consider the ring homomorphism defined via

$$
\begin{aligned}
\phi: & \mathbb{K}\left[x_{1}, \ldots, x_{m}\right] \rightarrow \mathbb{K}^{\mathbb{N}} \\
& c \mapsto(c)_{n \geq 0} \quad(c \in \mathbb{K}) \\
& x_{i} \mapsto\left(f_{i}(n)\right)_{n \geq 0} \quad(i=1, \ldots, m)
\end{aligned}
$$

## Algebraic Relations - Algebraist's Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.
Consider the ring homomorphism defined via

$$
\begin{aligned}
\phi: & \mathbb{K}\left[x_{1}, \ldots, x_{m}\right] \rightarrow \mathbb{K}^{\mathbb{N}} \\
& c \mapsto(c)_{n \geq 0} \quad(c \in \mathbb{K}) \\
& x_{i} \mapsto\left(f_{i}(n)\right)_{n \geq 0} \quad(i=1, \ldots, m)
\end{aligned}
$$

The ideal of algebraic relations among $f_{1}(n), \ldots, f_{m}(n)$ is precisely the kernel of this map, $\operatorname{ker} \phi$.

## Algebraic Relations - Geometer's Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.

## Algebraic Relations - Geometer's Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.
Consider the set of points

$$
P:=\left\{\left(f_{1}(n), \ldots, f_{m}(n)\right): n \in \mathbb{N}\right\} \subseteq \mathbb{K}^{m} .
$$

## Algebraic Relations - Geometer's Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.
Consider the set of points

$$
P:=\left\{\left(f_{1}(n), \ldots, f_{m}(n)\right): n \in \mathbb{N}\right\} \subseteq \mathbb{K}^{m}
$$

The ideal of algebraic relations among $f_{1}(n), \ldots, f_{m}(n)$ is precisely the vanishing ideal of this set, $I(P)$.

## Algebraic Relations - Geometer's Viewpoint

Let $f_{1}(n), f_{2}(n), \ldots, f_{m}(n)$ be sequences in a field $\mathbb{K}$.
Consider the set of points

$$
P:=\left\{\left(f_{1}(n), \ldots, f_{m}(n)\right): n \in \mathbb{N}\right\} \subseteq \mathbb{K}^{m}
$$

The ideal of algebraic relations among $f_{1}(n), \ldots, f_{m}(n)$ is precisely the vanishing ideal of this set, $I(P)$.

$$
\begin{array}{|l}
\text { Summary: } \\
\left\{p \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]: p\left(f_{1}, \ldots, f_{m}\right) \equiv 0\right\}=\operatorname{ker} \phi=I(P) .
\end{array}
$$

## Example: Fibonacci Numbers

Let $F_{n}$ denote the $n$th Fibonacci number $(n \in \mathbb{Z})$.

## Example: Fibonacci Numbers

Let $F_{n}$ denote the $n$th Fibonacci number $(n \in \mathbb{Z})$.
Exercise 6.81: (Graham/Knuth/Patashnik) Let $P(x, y)$ be a polynomial in $x$ and $y$ with integer coefficients. Find a necessary and sufficient condition that $P\left(F_{n+1}, F_{n}\right)=0$ for all $n \geq 0$.

## Example: Fibonacci Numbers

Let $F_{n}$ denote the $n$th Fibonacci number $(n \in \mathbb{Z})$.

Exercise 6.81: (Graham/Knuth/Patashnik) Let $P(x, y)$ be a polynomial in $x$ and $y$ with integer coefficients. Find a necessary and sufficient condition that $P\left(F_{n+1}, F_{n}\right)=0$ for all $n \geq 0$.

In other words: Find the ideal $\mathfrak{a} \unlhd \mathbb{C}[x, y]$ of algebraic relations among $\left(F_{n}\right)_{n \geq 0}$ and $\left(F_{n+1}\right)_{n \geq 0}$.

## Example: Fibonacci Numbers

Let $F_{n}$ denote the $n$th Fibonacci number $(n \in \mathbb{Z})$.

Exercise 6.81: (Graham/Knuth/Patashnik) Let $P(x, y)$ be a polynomial in $x$ and $y$ with integer coefficients. Find a necessary and sufficient condition that $P\left(F_{n+1}, F_{n}\right)=0$ for all $n \geq 0$.

In other words: Find the ideal $\mathfrak{a} \unlhd \mathbb{C}[x, y]$ of algebraic relations among $\left(F_{n}\right)_{n \geq 0}$ and $\left(F_{n+1}\right)_{n \geq 0}$.

Answer: $\mathfrak{a}=\left\langle\left(x^{2}-x y-y^{2}-1\right)\left(x^{2}-x y-y^{2}+1\right)\right\rangle$.

## Example: Fibonacci Numbers

Answer: $\mathfrak{a}=\left\langle\left(x^{2}-x y-y^{2}-1\right)\left(x^{2}-x y-y^{2}+1\right)\right\rangle$.

## Example: Fibonacci Numbers

Answer: $\mathfrak{a}=\left\langle\left(x^{2}-x y-y^{2}-1\right)\left(x^{2}-x y-y^{2}+1\right)\right\rangle$.
This is $V(\mathfrak{a})$.


## Example: Fibonacci Numbers

Answer: $\mathfrak{a}=\left\langle\left(x^{2}-x y-y^{2}-1\right)\left(x^{2}-x y-y^{2}+1\right)\right\rangle$.


This is $V(\mathfrak{a})$.
It consists of two irreducible components.

## Example: Fibonacci Numbers

Answer: $\mathfrak{a}=\left\langle\left(x^{2}-x y-y^{2}-1\right)\left(x^{2}-x y-y^{2}+1\right)\right\rangle$.
This is $V(\mathfrak{a})$.
It consists of two irreducible components.

Each component carries "half" of the points $\left(F_{n+1}, F_{n}\right)$

## Example: Fibonacci Numbers

Answer: $\mathfrak{a}=\left\langle\left(x^{2}-x y-y^{2}-1\right)\left(x^{2}-x y-y^{2}+1\right)\right\rangle$.
This is $V(\mathfrak{a})$.
It consists of two irreducible components.

> Each component carries "half" of the points $\left(F_{n+1}, F_{n}\right)$

Based on the geometric interpretation, it is straightforward to prove that $\mathfrak{a}$ is really the ideal claimed above.

## Why are Algebraic Relations Interesting?

## Why are Algebraic Relations Interesting?

Because they can be used for doing summation!

## Why are Algebraic Relations Interesting?

Let $u, v, p, q \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$ and $f_{1}(k), \ldots, f_{m}(k) \in \mathbb{K}^{\mathbb{N}}$ be such that

$$
\sum_{k=0}^{n} \frac{u\left(f_{1}(k), \ldots, f_{m}(k)\right)}{v\left(f_{1}(k), \ldots, f_{m}(k)\right)}=\frac{p\left(f_{1}(n), \ldots, f_{m}(n)\right)}{q\left(f_{1}(n), \ldots, f_{m}(n)\right)} .
$$

## Why are Algebraic Relations Interesting?

Let $u, v, p, q \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$ and $f_{1}(k), \ldots, f_{m}(k) \in \mathbb{K}^{\mathbb{N}}$ be such that

$$
\sum_{k=0}^{n} \frac{u\left(f_{1}(k), \ldots, f_{m}(k)\right)}{v\left(f_{1}(k), \ldots, f_{m}(k)\right)}=\frac{p\left(f_{1}(n), \ldots, f_{m}(n)\right)}{q\left(f_{1}(n), \ldots, f_{m}(n)\right)}
$$

Then

$$
q\left(f_{1}(n), \ldots, f_{m}(n)\right) S(n)-p\left(f_{1}(n), \ldots, f_{m}(n)\right)=0
$$

is an algebraic relation between $f_{1}(n), \ldots, f_{m}(n)$ and the sum $S(n)$.

## Why are Algebraic Relations Interesting?

Let $u, v, p, q \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$ and $f_{1}(k), \ldots, f_{m}(k) \in \mathbb{K}^{\mathbb{N}}$ be such that

$$
\sum_{k=0}^{n} \frac{u\left(f_{1}(k), \ldots, f_{m}(k)\right)}{v\left(f_{1}(k), \ldots, f_{m}(k)\right)}=\frac{p\left(f_{1}(n), \ldots, f_{m}(n)\right)}{q\left(f_{1}(n), \ldots, f_{m}(n)\right)} .
$$

Then

$$
q\left(f_{1}(n), \ldots, f_{m}(n)\right) S(n)-p\left(f_{1}(n), \ldots, f_{m}(n)\right)=0
$$

is an algebraic relation between $f_{1}(n), \ldots, f_{m}(n)$ and the sum $S(n)$.

Consequence: If we can prove [discover] algebraic relations for a certain class of sequences, then we can prove [discover] summation identities for that class.

## Program for today

## Program for today

- Proving Algebraic Relations automatically


## Program for today

- Proving Algebraic Relations automatically
- Discovering Algebraic Relations automatically

1. Proving Algebraic Relations

## Problem Specification

## Problem Specification



## Problem Specification

## INPUT:

- Sequences $f_{1}(n), \ldots, f_{m}(n)$ over $\mathbb{K}$.


## Problem Specification

## INPUT:

- Sequences $f_{1}(n), \ldots, f_{m}(n)$ over $\mathbb{K}$.
- A multivariate polynomial $p \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$


## Problem Specification

## INPUT:

- Sequences $f_{1}(n), \ldots, f_{m}(n)$ over $\mathbb{K}$.
- A multivariate polynomial $p \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$

OUTPUT:

## Problem Specification

## INPUT:

- Sequences $f_{1}(n), \ldots, f_{m}(n)$ over $\mathbb{K}$.
- A multivariate polynomial $p \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$

OUTPUT:

- "True" if $p\left(f_{1}(n), \ldots, f_{m}(n)\right)=0(n \geq 0)$,


## Problem Specification

## INPUT:

- Sequences $f_{1}(n), \ldots, f_{m}(n)$ over $\mathbb{K}$.
- A multivariate polynomial $p \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$

OUTPUT:

- "True" if $p\left(f_{1}(n), \ldots, f_{m}(n)\right)=0(n \geq 0)$,
- "False" otherwise.


## Problem Specification

## INPUT:

- Sequences $f_{1}(n), \ldots, f_{m}(n)$ over $\mathbb{K}$.
- A multivariate polynomial $p \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$

OUTPUT:

- "True" if $p\left(f_{1}(n), \ldots, f_{m}(n)\right)=0(n \geq 0)$,
- "False" otherwise.

In other words: If $\mathfrak{a}$ is the ideal of algebraic relations of $f_{1}(n), \ldots, f_{m}(n)$, we wish to decide

$$
p \stackrel{?}{\oplus} \mathfrak{a} .
$$

## Problem Specification

## INPUT:

- Sequences $f_{1}(n), \ldots, f_{m}(n)$ over $\mathbb{K}$.
- A multivariate polynomial $p \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$

OUTPUT:

- "True" if $p\left(f_{1}(n), \ldots, f_{m}(n)\right)=0(n \geq 0)$,
- "False" otherwise.

In other words: If $\mathfrak{a}$ is the ideal of algebraic relations of $f_{1}(n), \ldots, f_{m}(n)$, we wish to decide

$$
p \stackrel{?}{\oplus} \mathfrak{a} .
$$

(Trivial Gröbner basis computation if we knew $\mathfrak{a}$. But in general, we don't.)

## What Sequences are we Talking About?

## What Sequences are we Talking About?

What do we mean by "Given sequences $f_{1}(n), \ldots, f_{m}(n)$ "?

## What Sequences are we Talking About?

What do we mean by "Given sequences $f_{1}(n), \ldots, f_{m}(n)$ "?
We assume that the sequences are defined by a system of difference equations of the form

$$
\begin{aligned}
f_{1}(n+1) & =r_{1}\left(f_{1}(n), \ldots, f_{1}(n-r), \ldots, f_{m}(n), \ldots, f_{m}(n-r)\right) \\
f_{2}(n+1) & =r_{2}\left(f_{1}(n), \ldots, f_{1}(n-r), \ldots, f_{m}(n), \ldots, f_{m}(n-r)\right) \\
& \vdots \\
f_{m}(n+1) & =r_{m}\left(f_{1}(n), \ldots, f_{1}(n-r), \ldots, f_{m}(n), \ldots, f_{m}(n-r)\right)
\end{aligned}
$$

where $r_{1}, \ldots, r_{m}$ are fixed explicit rational functions.

## What Sequences are we Talking About?

What do we mean by "Given sequences $f_{1}(n), \ldots, f_{m}(n)$ "?
We assume that the sequences are defined by a system of difference equations of the form

$$
\begin{aligned}
& f_{1}(n+1)=r_{1}\left(f_{1}(n), \ldots, f_{1}(n-r), \ldots, f_{m}(n), \ldots, f_{m}(n-r)\right), \\
& f_{2}(n+1)=r_{2}\left(f_{1}(n), \ldots, f_{1}(n-r), \ldots, f_{m}(n), \ldots, f_{m}(n-r)\right),
\end{aligned}
$$

$f_{m}(n+1)=r_{m}\left(f_{1}(n), \ldots, f_{1}(n-r), \ldots, f_{m}(n), \ldots, f_{m}(n-r)\right)$,
where $r_{1}, \ldots, r_{m}$ are fixed explicit rational functions.
Together with a suitable number of initial values, such a system uniquely defines $m$ sequences $f_{1}(n), \ldots, f_{m}(n)$.

## What Sequences are we Talking About?

What do we mean by "Given sequences $f_{1}(n), \ldots, f_{m}(n)$ "?
We assume that the sequences are defined by a system of difference equations of the form

$$
\begin{aligned}
& f_{1}(n+1)=r_{1}\left(f_{1}(n), \ldots, f_{1}(n-r), \ldots, f_{m}(n), \ldots, f_{m}(n-r)\right), \\
& f_{2}(n+1)=r_{2}\left(f_{1}(n), \ldots, f_{1}(n-r), \ldots, f_{m}(n), \ldots, f_{m}(n-r)\right),
\end{aligned}
$$

$f_{m}(n+1)=r_{m}\left(f_{1}(n), \ldots, f_{1}(n-r), \ldots, f_{m}(n), \ldots, f_{m}(n-r)\right)$,
where $r_{1}, \ldots, r_{m}$ are fixed explicit rational functions.
Together with a suitable number of initial values, such a system uniquely defines $m$ sequences $f_{1}(n), \ldots, f_{m}(n)$.
(We assume that application of the recurrence equations will never lead to a division by zero.)

## What Sequences are we Talking About?

Here are some members of this class:

## What Sequences are we Talking About?

Here are some members of this class:

$$
f(n)=n
$$

## What Sequences are we Talking About?

Here are some members of this class:

$$
f(n)=n
$$

by

$$
f(n+1)=f(n)+1
$$

## What Sequences are we Talking About?

Here are some members of this class:

$$
f(n)=H_{n}=\sum_{k=1}^{n} 1 / k
$$

## What Sequences are we Talking About?

Here are some members of this class:

$$
f(n)=H_{n}=\sum_{k=1}^{n} 1 / k
$$

by

$$
\begin{aligned}
f_{1}(n+1) & =f_{1}(n)+1 \\
f(n+1) & =f(n)+1 / f_{1}(n)
\end{aligned}
$$

## What Sequences are we Talking About?

Here are some members of this class:

$$
f(n)=2^{2^{n}}
$$

## What Sequences are we Talking About?

Here are some members of this class:

$$
f(n)=2^{2^{n}}
$$

by

$$
f(n+1)=f(n)^{2}
$$

## What Sequences are we Talking About?

Here are some members of this class:

$$
f(n)=\text { Fibonacci(Fibonacci }(n))
$$

## What Sequences are we Talking About?

Here are some members of this class:

$$
f(n)=\text { Fibonacci(Fibonacci }(n))
$$

by

$$
\begin{aligned}
f_{1}(n+1) & =f(n) f_{1}(n-1)+f_{1}(n) f(n-1)-f_{1}(n) f_{1}(n-1) \\
f(n+1) & =f_{1}(n) f_{1}(n-1)+f(n) f(n-1)
\end{aligned}
$$

## What Sequences are we Talking About?

The class is closed under the following operations:

## What Sequences are we Talking About?

The class is closed under the following operations:

- arithmetic operations $+,-, \cdot, \div$


## What Sequences are we Talking About?

The class is closed under the following operations:

- arithmetic operations $+,-, \cdot, \div$
- indefinite summation and products $\Sigma, \Pi$


## What Sequences are we Talking About?

The class is closed under the following operations:

- arithmetic operations $+,-, \cdot, \div$
- indefinite summation and products $\Sigma, \Pi$
- continued fractions


## What Sequences are we Talking About?

The class is closed under the following operations:

- arithmetic operations $+,-, \cdot, \div$
- indefinite summation and products $\Sigma, \Pi$
- continued fractions
- affine translations $f(\lfloor a n+b\rfloor)(a, b \in \mathbb{Q})$


## What Sequences are we Talking About?

The class is closed under the following operations:

- arithmetic operations $+,-, \cdot, \div$
- indefinite summation and products $\Sigma, \Pi$
- continued fractions
- affine translations $f(\lfloor a n+b\rfloor)(a, b \in \mathbb{Q})$

Example:

$$
\sum_{k=0}^{n} \frac{\left(\sum_{i=0}^{3 k+1} \frac{i+1}{i!+(-2)^{i}}\right)^{17}+\mathrm{K}_{i=1}^{2 k}\left(2^{2^{i}} ; F_{F_{i}}\right)+2 H_{k}}{\left(P_{k}^{(a, b)}(x)+\prod_{i=1}^{\lfloor k / 3\rfloor} P_{i}^{(b, a)}(x)\right)\left(3^{F_{k}}+F_{3^{k}}\right)}\binom{2 k}{k}
$$

## Proving Algebraic Relations

## Proving Algebraic Relations

Observation: If $f_{1}(n), \ldots, f_{m}(n)$ are admissible sequences and $p \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$, then

$$
f_{m+1}(n):=p\left(f_{1}(n), \ldots, f_{m}(n)\right)
$$

is admissible, too.

## Proving Algebraic Relations

Observation: If $f_{1}(n), \ldots, f_{m}(n)$ are admissible sequences and $p \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$, then

$$
f_{m+1}(n):=p\left(f_{1}(n), \ldots, f_{m}(n)\right)
$$

is admissible, too.
Deciding whether $p$ is an algebraic relation is hence nothing more than deciding zero equivalence of an admissible sequence.

## Deciding Zero Equivalence

To show:
$\forall n \in \mathbb{N}: f(n)=0$.

## Deciding Zero Equivalence

To show:

$$
\forall n \in \mathbb{N}: f(n)=0 .
$$

To do: Eliminate the quantifier.

## Deciding Zero Equivalence

To show:

$$
\forall n \in \mathbb{N}: f(n)=0
$$

To do: Eliminate the quantifier. Find $N \in \mathbb{N}$ such that

$$
(\forall n \in \mathbb{N}: f(n)=0) \Longleftrightarrow(f(1)=0 \wedge f(2)=0 \wedge \cdots \wedge f(N)=0)
$$

## Deciding Zero Equivalence

To show:

$$
\forall n \in \mathbb{N}: f(n)=0
$$

To do: Eliminate the quantifier. Find $N \in \mathbb{N}$ such that
$(\forall n \in \mathbb{N}: f(n)=0) \Longleftrightarrow(f(1)=0 \wedge f(2)=0 \wedge \cdots \wedge f(N)=0)$.
For this, it is clearly sufficient if $N$ is such that
$\forall n \in \mathbb{N}:(f(n)=0 \wedge \cdots \wedge f(n+N-1)=0 \Rightarrow f(n+N)=0)$.

## Deciding Zero Equivalence

To show:

$$
\forall n \in \mathbb{N}: f(n)=0
$$

To do: Eliminate the quantifier. Find $N \in \mathbb{N}$ such that
$(\forall n \in \mathbb{N}: f(n)=0) \Longleftrightarrow(f(1)=0 \wedge f(2)=0 \wedge \cdots \wedge f(N)=0)$.
For this, it is clearly sufficient if $N$ is such that
$\forall n \in \mathbb{N}:(f(n)=0 \wedge \cdots \wedge f(n+N-1)=0 \Rightarrow f(n+N)=0)$.
For this, it is clearly sufficient if

$$
\forall x_{0}, \ldots, x_{N} \in \mathbb{K}: x_{0}=0 \wedge \cdots \wedge x_{N-1}=0 \Rightarrow x_{N}=0
$$

## Deciding Zero Equivalence

To show:

$$
\forall n \in \mathbb{N}: f(n)=0
$$

To do: Eliminate the quantifier. Find $N \in \mathbb{N}$ such that
$(\forall n \in \mathbb{N}: f(n)=0) \Longleftrightarrow(f(1)=0 \wedge f(2)=0 \wedge \cdots \wedge f(N)=0)$.
For this, it is clearly sufficient if $N$ is such that

$$
\forall n \in \mathbb{N}:(f(n)=0 \wedge \cdots \wedge f(n+N-1)=0 \Rightarrow f(n+N)=0)
$$

For this, it is clearly sufficient if

$$
\forall x_{0}, \ldots, x_{N} \in \mathbb{K}: x_{0}=0 \wedge \cdots \wedge x_{N-1}=0 \Rightarrow x_{N}=0
$$

But this is clearly false :-(

## Deciding Zero Equivalence

To show:

$$
\forall n \in \mathbb{N}: f(n)=0 .
$$

Fix: We can securely put algebraic relations $p_{1}, \ldots, p_{k} \in$ $\mathbb{K}\left[x_{0}, \ldots, x_{N}\right]$ into the assumption part:

## Deciding Zero Equivalence

To show:

$$
\forall n \in \mathbb{N}: f(n)=0
$$

Fix: We can securely put algebraic relations $p_{1}, \ldots, p_{k} \in$ $\mathbb{K}\left[x_{0}, \ldots, x_{N}\right]$ into the assumption part:

$$
\begin{gathered}
\forall x_{0}, \ldots, x_{N} \in \mathbb{K}: p_{1}\left(x_{0}, \ldots, x_{N}\right)=0 \wedge \cdots \wedge p_{k}\left(x_{0}, \ldots, x_{N}\right)=0 \\
\wedge x_{0}=0 \wedge \cdots \wedge x_{N-1}=0 \Rightarrow x_{N}=0
\end{gathered}
$$

## Deciding Zero Equivalence

To show:

$$
\forall n \in \mathbb{N}: f(n)=0
$$

Fix: We can securely put algebraic relations $p_{1}, \ldots, p_{k} \in$ $\mathbb{K}\left[x_{0}, \ldots, x_{N}\right]$ into the assumption part:

$$
\begin{gathered}
\forall x_{0}, \ldots, x_{N} \in \mathbb{K}: p_{1}\left(x_{0}, \ldots, x_{N}\right)=0 \wedge \cdots \wedge p_{k}\left(x_{0}, \ldots, x_{N}\right)=0 \\
\wedge x_{0}=0 \wedge \cdots \wedge x_{N-1}=0 \Rightarrow x_{N}=0
\end{gathered}
$$

This can be decided with Gröbner bases:

$$
x_{N} \stackrel{?}{\in} \operatorname{Rad}\left\langle p_{1}, \ldots, p_{k}, x_{0}, \ldots, x_{N-1}\right\rangle .
$$

## Deciding Zero Equivalence

To show:

$$
\forall n \in \mathbb{N}: f(n)=0
$$

Fix: We can securely put algebraic relations $p_{1}, \ldots, p_{k} \in$ $\mathbb{K}\left[x_{0}, \ldots, x_{N}\right]$ into the assumption part:

$$
\begin{gathered}
\forall x_{0}, \ldots, x_{N} \in \mathbb{K}: p_{1}\left(x_{0}, \ldots, x_{N}\right)=0 \wedge \cdots \wedge p_{k}\left(x_{0}, \ldots, x_{N}\right)=0 \\
\wedge x_{0}=0 \wedge \cdots \wedge x_{N-1}=0 \Rightarrow x_{N}=0
\end{gathered}
$$

This can be decided with Gröbner bases:

$$
x_{N} \stackrel{?}{\in} \operatorname{Rad}\left\langle p_{1}, \ldots, p_{k}, x_{0}, \ldots, x_{N-1}\right\rangle .
$$

Suitable polynomials $p_{i}$ can be obtained form the defining recurrence equation system of $f(n)$

## Deciding Zero Equivalence

To show:

$$
\forall n \in \mathbb{N}: f(n)=0 .
$$

Theorem: For sufficiently large $N$, the above radical membership test will yield True.

## Deciding Zero Equivalence

To show:

$$
\forall n \in \mathbb{N}: f(n)=0 .
$$

Theorem: For sufficiently large $N$, the above radical membership test will yield True.

This gives the decision procedure:

## Deciding Zero Equivalence

To show:

$$
\forall n \in \mathbb{N}: f(n)=0 .
$$

Theorem: For sufficiently large $N$, the above radical membership test will yield True.

This gives the decision procedure:

1. Check $x_{N} \stackrel{?}{\in} \operatorname{Rad}\left\langle p_{1}, \ldots, p_{k}, x_{0}, \ldots, x_{N-1}\right\rangle$ for $N=0,1,2,3, \ldots$ until the result is True.

## Deciding Zero Equivalence

To show:

$$
\forall n \in \mathbb{N}: f(n)=0
$$

Theorem: For sufficiently large $N$, the above radical membership test will yield True.

This gives the decision procedure:

1. Check $x_{N} \stackrel{?}{\in} \operatorname{Rad}\left\langle p_{1}, \ldots, p_{k}, x_{0}, \ldots, x_{N-1}\right\rangle$ for $N=0,1,2,3, \ldots$ until the result is True.
2. Evaluate $f(0), \ldots, f(N)$ and compare them to zero.

## Example

Let us show that
$\forall n \in \mathbb{N}:\left(F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}-1\right)\left(F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}+1\right)=0$,
where $F_{n}$ are again the Fibonacci numbers.

## Example

Let us show that
$\forall n \in \mathbb{N}:\left(F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}-1\right)\left(F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}+1\right)=0$,
where $F_{n}$ are again the Fibonacci numbers.
Introduce variables $x_{0}, x_{1}, x_{2}, \ldots$ representing the terms $F_{n}, F_{n+1}, F_{n+2}, \ldots$.

## Example

Let us show that
$\forall n \in \mathbb{N}:\left(F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}-1\right)\left(F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}+1\right)=0$,
where $F_{n}$ are again the Fibonacci numbers.
Introduce variables $x_{0}, x_{1}, x_{2}, \ldots$ representing the terms $F_{n}, F_{n+1}, F_{n+2}, \ldots$.
$N=0$ :

$$
\left(x_{1}^{2}-x_{1} x_{0}-x_{0}^{2}-1\right)\left(x_{1}^{2}-x_{1} x_{0}-x_{0}^{2}+1\right) \in \operatorname{Rad}\rangle=\{0\}
$$

## Example

Let us show that
$\forall n \in \mathbb{N}:\left(F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}-1\right)\left(F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}+1\right)=0$,
where $F_{n}$ are again the Fibonacci numbers.
Introduce variables $x_{0}, x_{1}, x_{2}, \ldots$ representing the terms $F_{n}, F_{n+1}, F_{n+2}, \ldots$.
$N=0$ :

$$
\left(x_{1}^{2}-x_{1} x_{0}-x_{0}^{2}-1\right)\left(x_{1}^{2}-x_{1} x_{0}-x_{0}^{2}+1\right) \in \operatorname{Rad}\rangle=\{0\}
$$

This is false.

## Example

Let us show that
$\forall n \in \mathbb{N}:\left(F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}-1\right)\left(F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}+1\right)=0$,
where $F_{n}$ are again the Fibonacci numbers.
Introduce variables $x_{0}, x_{1}, x_{2}, \ldots$ representing the terms $F_{n}, F_{n+1}, F_{n+2}, \ldots$
$N=1$ :

$$
\begin{aligned}
& \left(x_{2}^{2}-x_{2} x_{1}-x_{1}^{2}-1\right)\left(x_{2}^{2}-x_{2} x_{1}-x_{1}^{2}+1\right) \\
& \quad \in \operatorname{Rad}\left\langle x_{2}-x_{1}-x_{0}\right. \\
& \left.\quad\left(x_{1}^{2}-x_{1} x_{0}-x_{0}^{2}-1\right)\left(x_{1}^{2}-x_{1} x_{0}-x_{0}^{2}+1\right)\right\rangle
\end{aligned}
$$

## Example

Let us show that
$\forall n \in \mathbb{N}:\left(F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}-1\right)\left(F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}+1\right)=0$,
where $F_{n}$ are again the Fibonacci numbers.
Introduce variables $x_{0}, x_{1}, x_{2}, \ldots$ representing the terms $F_{n}, F_{n+1}, F_{n+2}, \ldots$
$N=1$ :

$$
\begin{aligned}
& \left(x_{2}^{2}-x_{2} x_{1}-x_{1}^{2}-1\right)\left(x_{2}^{2}-x_{2} x_{1}-x_{1}^{2}+1\right) \\
& \quad \in \operatorname{Rad}\left\langle x_{2}-x_{1}-x_{0}\right. \\
& \left.\quad\left(x_{1}^{2}-x_{1} x_{0}-x_{0}^{2}-1\right)\left(x_{1}^{2}-x_{1} x_{0}-x_{0}^{2}+1\right)\right\rangle
\end{aligned}
$$

This is true.

## Example

Let us show that
$\forall n \in \mathbb{N}:\left(F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}-1\right)\left(F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}+1\right)=0$,
where $F_{n}$ are again the Fibonacci numbers.
Introduce variables $x_{0}, x_{1}, x_{2}, \ldots$ representing the terms $F_{n}, F_{n+1}, F_{n+2}, \ldots$

Checking of a single initial value completes the proof:

$$
\begin{aligned}
& \left(F_{1+1}^{2}-F_{1+1} F_{1}-F_{1}^{2}-1\right)\left(F_{1+1}^{2}-F_{1+1} F_{1}-F_{1}^{2}+1\right) \\
& \quad=(1-1-1-1)(1-1-1+1)=0
\end{aligned}
$$

2. Finding Algebraic Relations

## Problem Specification

## Problem Specification



## Problem Specification



## Problem Specification



## Problem Specification

INPUT:

- Sequences $f_{1}(n), \ldots, f_{m}(n)$ over $\mathbb{K}$.

OUTPUT:

- Polynomials $p_{1}, \ldots, p_{k} \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$ which generate the ideal of algebraic relations amongst the $f_{i}(n)$.


## Problem Specification

INPUT:

- Sequences $f_{1}(n), \ldots, f_{m}(n)$ over $\mathbb{K}$.

OUTPUT:

- Polynomials $p_{1}, \ldots, p_{k} \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$ which generate the ideal of algebraic relations amongst the $f_{i}(n)$.

We consider the same class of sequences as before.

## Problem Specification

## INPUT:

- Sequences $f_{1}(n), \ldots, f_{m}(n)$ over $\mathbb{K}$.

OUTPUT:

- Polynomials $p_{1}, \ldots, p_{k} \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$ which generate the ideal of algebraic relations amongst the $f_{i}(n)$.

We consider the same class of sequences as before.
From now on, let $f_{1}(n), \ldots, f_{m}(n)$ be given, and let $\mathfrak{a} \unlhd \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$ be the ideal of their algebraic relations.

## Problem Specification

## INPUT:

- Sequences $f_{1}(n), \ldots, f_{m}(n)$ over $\mathbb{K}$.

OUTPUT:

- Polynomials $p_{1}, \ldots, p_{k} \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$ which generate the ideal of algebraic relations amongst the $f_{i}(n)$.

We consider the same class of sequences as before.
From now on, let $f_{1}(n), \ldots, f_{m}(n)$ be given, and let $\mathfrak{a} \unlhd \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$ be the ideal of their algebraic relations.
We want to find a basis for $\mathfrak{a}$.

## A Geometric Approach

## A Geometric Approach

Recall:

$$
V(\mathfrak{a})=\overline{\left\{\left(f_{1}(n), \ldots, f_{m}(n)\right): n \in \mathbb{N}\right\}}
$$

## A Geometric Approach

Recall:

$$
V(\mathfrak{a})=\overline{\left\{\left(f_{1}(n), \ldots, f_{m}(n)\right): n \in \mathbb{N}\right\}}
$$

Consequence: For every $N \in \mathbb{N}$,

$$
V(\mathfrak{a}) \supseteq \overline{\left\{\left(f_{1}(n), \ldots, f_{m}(n)\right): n \leq N\right\}}
$$

## A Geometric Approach

Recall:

$$
V(\mathfrak{a})=\overline{\left\{\left(f_{1}(n), \ldots, f_{m}(n)\right): n \in \mathbb{N}\right\}}
$$

Consequence: For every $N \in \mathbb{N}$,

$$
\begin{aligned}
V(\mathfrak{a}) & \supseteq \overline{\left\{\left(f_{1}(n), \ldots, f_{m}(n)\right): n \leq N\right\}} \\
& =\left\{\left(f_{1}(n), \ldots, f_{m}(n)\right): n \leq N\right\}
\end{aligned}
$$

## A Geometric Approach

Recall:

$$
V(\mathfrak{a})=\overline{\left\{\left(f_{1}(n), \ldots, f_{m}(n)\right): n \in \mathbb{N}\right\}}
$$

Consequence: For every $N \in \mathbb{N}$,

$$
\begin{aligned}
V(\mathfrak{a}) & \supseteq \overline{\left\{\left(f_{1}(n), \ldots, f_{m}(n)\right): n \leq N\right\}} \\
& =\left\{\left(f_{1}(n), \ldots, f_{m}(n)\right): n \leq N\right\}
\end{aligned}
$$

Consequence: For every $N \in \mathbb{N}$,

$$
\mathfrak{a} \subseteq \bigcap_{n=1}^{N}\left\langle x_{1}-f_{1}(n), \ldots, x_{m}-f_{m}(n)\right\rangle:=\mathfrak{a}_{N}
$$

## A Geometric Approach

Recall:

$$
V(\mathfrak{a})=\overline{\left\{\left(f_{1}(n), \ldots, f_{m}(n)\right): n \in \mathbb{N}\right\}}
$$

Consequence: For every $N \in \mathbb{N}$,

$$
\begin{aligned}
V(\mathfrak{a}) & \supseteq \overline{\left\{\left(f_{1}(n), \ldots, f_{m}(n)\right): n \leq N\right\}} \\
& =\left\{\left(f_{1}(n), \ldots, f_{m}(n)\right): n \leq N\right\}
\end{aligned}
$$

Consequence: For every $N \in \mathbb{N}$,

$$
\mathfrak{a} \subseteq \bigcap_{n=1}^{N}\left\langle x_{1}-f_{1}(n), \ldots, x_{m}-f_{m}(n)\right\rangle:=\mathfrak{a}_{N}
$$

Theorem: For sufficiently large $N$, a Gröbner basis for $\mathfrak{a}_{N}$ will contain a Gröbner basis for $\mathfrak{a}$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=1$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=2$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=3$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=4$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=5$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=6$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=7$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$. for $N=8$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=9$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=10$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=11$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$



## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=13$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=14$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=15$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=16$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=17$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=18$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=19$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=20$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=21$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=22$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=23$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=24$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=25$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=26$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=27$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=28$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=29$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=30$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$. for $N=30$.
The cone of $x^{4}$ will not disappear as $N \rightarrow \infty$, because it belongs to a generator of $\mathfrak{a}$.

## Example

Consider the leading term ideal of

$$
\mathfrak{a}_{N}:=\bigcap_{n=1}^{N}\left\langle x-F_{n+1}, y-F_{n}\right\rangle
$$


$\ldots$ for $N=30$.
The cone of $x^{4}$ will not disappear as $N \rightarrow \infty$, because it belongs to a generator of $\mathfrak{a}$.

Remark: A Gröbner basis for $\mathfrak{a}_{N}$ can be efficiently computed by the Buchberger-Möller algorithm.

A More Direct Approach

## A More Direct Approach

For $d \in \mathbb{N}$, let now $\mathfrak{a}_{d}:=\langle p \in \mathfrak{a}: \operatorname{deg} p<d\rangle$.

## A More Direct Approach

For $d \in \mathbb{N}$, let now $\mathfrak{a}_{d}:=\langle p \in \mathfrak{a}: \operatorname{deg} p<d\rangle$.
Generators for $\mathfrak{a}_{d}$ can be obtained by an ansatz

$$
p=\sum_{0 \leq e_{1}+\cdots+e_{m} \leq d} a_{e_{1}, \ldots, e_{m}} x_{1}^{e_{1}} x_{2}^{e_{2}} \ldots x_{m}^{e_{m}}
$$



## A More Direct Approach

For $d \in \mathbb{N}$, let now $\mathfrak{a}_{d}:=\langle p \in \mathfrak{a}: \operatorname{deg} p<d\rangle$.
Generators for $\mathfrak{a}_{d}$ can be obtained by an ansatz

$$
p=\sum_{0 \leq e_{1}+\cdots+e_{m} \leq d} a_{e_{1}, \ldots, e_{m}} x_{1}^{e_{1}} x_{2}^{e_{2}} \ldots x_{m}^{e_{m}}
$$

Applying the zero equivalence prover to

$$
p\left(f_{1}(n), \ldots, f_{m}(n)\right)=0
$$

gives a number $N$ of initial values that need to be satisfied.

## A More Direct Approach

For $d \in \mathbb{N}$, let now $\mathfrak{a}_{d}:=\langle p \in \mathfrak{a}: \operatorname{deg} p<d\rangle$.
Generators for $\mathfrak{a}_{d}$ can be obtained by an ansatz

$$
p=\sum_{0 \leq e_{1}+\cdots+e_{m} \leq d} a_{e_{1}, \ldots, e_{m}} x_{1}^{e_{1}} x_{2}^{e_{2}} \ldots x_{m}^{e_{m}}
$$



Applying the zero equivalence prover to

$$
p\left(f_{1}(n), \ldots, f_{m}(n)\right)=0
$$

gives a number $N$ of initial values that need to be satisfied.
Forcing $p\left(f_{1}(n), \ldots, f_{m}(n)\right)=0$ for $n=1, \ldots, N$ leads to a linear system for the coefficients whose solutions are generators of $\mathfrak{a}_{d}$.

## A More Direct Approach

For $d \in \mathbb{N}$, let now $\mathfrak{a}_{d}:=\langle p \in \mathfrak{a}: \operatorname{deg} p<d\rangle$.
Generators for $\mathfrak{a}_{d}$ can be obtained by an ansatz

$$
p=\sum_{0 \leq e_{1}+\cdots+e_{m} \leq d} a_{e_{1}, \ldots, e_{m}} x_{1}^{e_{1}} x_{2}^{e_{2}} \ldots x_{m}^{e_{m}}
$$



Applying the zero equivalence prover to

$$
p\left(f_{1}(n), \ldots, f_{m}(n)\right)=0
$$

gives a number $N$ of initial values that need to be satisfied.
Forcing $p\left(f_{1}(n), \ldots, f_{m}(n)\right)=0$ for $n=1, \ldots, N$ leads to a linear system for the coefficients whose solutions are generators of $\mathfrak{a}_{d}$.

Note: If $d$ is sufficiently large, then $\mathfrak{a}_{d}=\mathfrak{a}$.

## Specification not quite fulfilled. . .

None of the methods above actually delivers, in a finite number of steps, a basis for $\mathfrak{a}$.

## Specification not quite fulfilled. . .

None of the methods above actually delivers, in a finite number of steps, a basis for $\mathfrak{a}$.

The best we can do is to recursively enumerate a basis.

## Specification not quite fulfilled. . .

None of the methods above actually delivers, in a finite number of steps, a basis for $\mathfrak{a}$.

The best we can do is to recursively enumerate a basis.
This is possible with both methods described.

## Specification not quite fulfilled. . .

None of the methods above actually delivers, in a finite number of steps, a basis for $\mathfrak{a}$.

The best we can do is to recursively enumerate a basis.
This is possible with both methods described.
We should better not hope for more, because:

## Specification not quite fulfilled. . .

None of the methods above actually delivers, in a finite number of steps, a basis for $\mathfrak{a}$.

The best we can do is to recursively enumerate a basis.
This is possible with both methods described.
We should better not hope for more, because:
Theorem: If there exists an algorithm, which computes, in a finite number of steps, a basis for the ideal of algebraic relations among $f_{1}(n), \ldots, f_{m}(n)$, then there exists an algorithm which decides

$$
\exists n \in \mathbb{N}: f(n)=0
$$

for given sequences $f(n)$.

## Specification not quite fulfilled. . .

None of the methods above actually delivers, in a finite number of steps, a basis for $\mathfrak{a}$.

The best we can do is to recursively enumerate a basis.
This is possible with both methods described.
We should better not hope for more, because:
Theorem: If there exists an algorithm, which computes, in a finite number of steps, a basis for the ideal of algebraic relations among $f_{1}(n), \ldots, f_{m}(n)$, then there exists an algorithm which decides

$$
\exists n \in \mathbb{N}: f(n)=0
$$

for given sequences $f(n)$.
Deciding the existence of roots is very difficult.

The C-finite Case (joint work with B. Zimmermann)

## The C-finite Case (joint work with B. Zimmermann)

A sequence $f(n)$ is called C-finite, if

$$
f(n+r)=a_{0} f(n)+a_{1} f(n+1)+\cdots+a_{r-1} f(n+r-1)
$$

for some constants $a_{i} \in \mathbb{Q}$.

## The C-finite Case (joint work with B. Zimmermann)

A sequence $f(n)$ is called C-finite, if

$$
f(n+r)=a_{0} f(n)+a_{1} f(n+1)+\cdots+a_{r-1} f(n+r-1)
$$

for some constants $a_{i} \in \mathbb{Q}$.
Let $f_{1}(n), \ldots, f_{m}(n)$ be C-finite, and $\mathfrak{a} \unlhd \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ be the ideal of their algebraic relations.

## The C-finite Case (joint work with B. Zimmermann)

A sequence $f(n)$ is called C-finite, if

$$
f(n+r)=a_{0} f(n)+a_{1} f(n+1)+\cdots+a_{r-1} f(n+r-1)
$$

for some constants $a_{i} \in \mathbb{Q}$.
Let $f_{1}(n), \ldots, f_{m}(n)$ be C-finite, and $\mathfrak{a} \unlhd \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ be the ideal of their algebraic relations.

Then, a basis of $\mathfrak{a}$ can be computed from defining recurrence equations and initial values of the $f_{i}(n)$.

## The C-finite Case (joint work with B. Zimmermann)

A sequence $f(n)$ is called C-finite, if

$$
f(n+r)=a_{0} f(n)+a_{1} f(n+1)+\cdots+a_{r-1} f(n+r-1)
$$

for some constants $a_{i} \in \mathbb{Q}$.
Let $f_{1}(n), \ldots, f_{m}(n)$ be C-finite, and $\mathfrak{a} \unlhd \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ be the ideal of their algebraic relations.

Then, a basis of $\mathfrak{a}$ can be computed from defining recurrence equations and initial values of the $f_{i}(n)$.

Consequence: In this class, we can also prove automatically that certain quantities are not related.
3. An Example

## Somos Sequences

A sequence $C_{n}$ satisfying a nonlinear recurrence of the form

$$
\begin{gathered}
C_{n+r} C_{n}=\alpha_{1} C_{n+r-1} C_{n+1}+\alpha_{2} C_{n+r-2} C_{n+2}+\cdots \\
\cdots+\alpha_{\lfloor r / 2\rfloor} C_{n+r-\lfloor r / 2\rfloor} C_{n+\lfloor r / 2\rfloor}
\end{gathered}
$$

with $r \in \mathbb{N}$ fixed and $\alpha_{1}, \ldots, \alpha_{\lfloor r / 2\rfloor}$ is called a Somos sequence of order $r$.

## Somos Sequences

A sequence $C_{n}$ satisfying a nonlinear recurrence of the form

$$
\begin{gathered}
C_{n+r} C_{n}=\alpha_{1} C_{n+r-1} C_{n+1}+\alpha_{2} C_{n+r-2} C_{n+2}+\cdots \\
\cdots+\alpha_{\lfloor r / 2\rfloor} C_{n+r-\lfloor r / 2\rfloor} C_{n+\lfloor r / 2\rfloor}
\end{gathered}
$$

with $r \in \mathbb{N}$ fixed and $\alpha_{1}, \ldots, \alpha_{\lfloor r / 2\rfloor}$ is called a Somos sequence of order $r$.

Question: Can a given Somos sequence of order $r$ also be viewed as a Somos sequence for some different order $r^{\prime}$ ?

## Somos Sequences

A sequence $C_{n}$ satisfying a nonlinear recurrence of the form

$$
\begin{gathered}
C_{n+r} C_{n}=\alpha_{1} C_{n+r-1} C_{n+1}+\alpha_{2} C_{n+r-2} C_{n+2}+\cdots \\
\cdots+\alpha_{\lfloor r / 2\rfloor} C_{n+r-\lfloor r / 2\rfloor} C_{n+\lfloor r / 2\rfloor}
\end{gathered}
$$

with $r \in \mathbb{N}$ fixed and $\alpha_{1}, \ldots, \alpha_{\lfloor r / 2\rfloor}$ is called a Somos sequence of order $r$.

Question: Can a given Somos sequence of order $r$ also be viewed as a Somos sequence for some different order $r^{\prime}$ ?

Example: Consider $C_{n}$ defined via

$$
C_{n+4} C_{n}=C_{n+3} C_{n+1}+C_{n+2}^{2}, \quad C_{0}=C_{1}=C_{2}=C_{3}=1 .
$$

Does this sequence satisfy a Somos-like recurrence of orders 5, 6, 7, 8?

## Somos Sequences

Idea: Compute the algebraic relations of total degree $\leq 2$ among the terms

$$
C_{n}, C_{n+1}, \ldots, C_{n+7}, C_{n+8}
$$

## Somos Sequences

Idea: Compute the algebraic relations of total degree $\leq 2$ among the terms

$$
C_{n}, C_{n+1}, \ldots, C_{n+7}, C_{n+8}
$$

Let $\mathfrak{a}=\left\langle p_{1}, \ldots, p_{k}\right\rangle \unlhd \mathbb{Q}\left[x_{0}, \ldots, x_{8}\right]$ be a Gröbner basis for the ideal generated by the quadratic relations.

## Somos Sequences

Idea: Compute the algebraic relations of total degree $\leq 2$ among the terms

$$
C_{n}, C_{n+1}, \ldots, C_{n+7}, C_{n+8}
$$

Let $\mathfrak{a}=\left\langle p_{1}, \ldots, p_{k}\right\rangle \unlhd \mathbb{Q}\left[x_{0}, \ldots, x_{8}\right]$ be a Gröbner basis for the ideal generated by the quadratic relations.

Make an ansatz with indetermined coefficients for the desired relation, e.g.,

$$
C_{n+5} C_{n}=a_{1} C_{n+4} C_{n+1}+a_{2} C_{n+3} C_{n+2}
$$

## Somos Sequences

Idea: Compute the algebraic relations of total degree $\leq 2$ among the terms

$$
C_{n}, C_{n+1}, \ldots, C_{n+7}, C_{n+8}
$$

Let $\mathfrak{a}=\left\langle p_{1}, \ldots, p_{k}\right\rangle \unlhd \mathbb{Q}\left[x_{0}, \ldots, x_{8}\right]$ be a Gröbner basis for the ideal generated by the quadratic relations.

Make an ansatz with indetermined coefficients for the desired relation, e.g.,

$$
C_{n+5} C_{n}=a_{1} C_{n+4} C_{n+1}+a_{2} C_{n+3} C_{n+2}
$$

Reduction modulo $\mathfrak{a}$ gives

$$
x_{5} x_{0}-a_{1} x_{4} x_{1}-a_{2} x_{3} x_{2} \longrightarrow_{\mathfrak{a}}\left(1-\frac{1}{5} a_{2}\right) x_{0} x_{5}-\left(a_{1}+\frac{1}{5} a_{2}\right) x_{1} x_{4}
$$

## Somos Sequences

Idea: Compute the algebraic relations of total degree $\leq 2$ among the terms

$$
C_{n}, C_{n+1}, \ldots, C_{n+7}, C_{n+8}
$$

Let $\mathfrak{a}=\left\langle p_{1}, \ldots, p_{k}\right\rangle \unlhd \mathbb{Q}\left[x_{0}, \ldots, x_{8}\right]$ be a Gröbner basis for the ideal generated by the quadratic relations.

Make an ansatz with indetermined coefficients for the desired relation, e.g.,

$$
C_{n+5} C_{n}=a_{1} C_{n+4} C_{n+1}+a_{2} C_{n+3} C_{n+2}
$$

Reduction modulo $\mathfrak{a}$ gives

$$
x_{5} x_{0}-a_{1} x_{4} x_{1}-a_{2} x_{3} x_{2} \longrightarrow_{\mathfrak{a}}\left(1-\frac{1}{5} a_{2}\right) x_{0} x_{5}-\left(a_{1}+\frac{1}{5} a_{2}\right) x_{1} x_{4}
$$

Comparing coefficients gives $a_{1}=-1, a_{2}=5$.
4. Conclusion

Conclusion

## Conclusion

- For a large class of sequences, algebraic relations can be proven automatically.


## Conclusion

- For a large class of sequences, algebraic relations can be proven automatically.
- For the same class of sequences, algebraic relations up to a prescribed degree can be found automatically.


## Conclusion

- For a large class of sequences, algebraic relations can be proven automatically.
- For the same class of sequences, algebraic relations up to a prescribed degree can be found automatically.
- A basis for the whole ideal is hard to find


## Conclusion

- For a large class of sequences, algebraic relations can be proven automatically.
- For the same class of sequences, algebraic relations up to a prescribed degree can be found automatically.
- A basis for the whole ideal is hard to find
- It can, however, be obtained for the small class of C-finite sequences.


## Conclusion

- For a large class of sequences, algebraic relations can be proven automatically.
- For the same class of sequences, algebraic relations up to a prescribed degree can be found automatically.
- A basis for the whole ideal is hard to find
- It can, however, be obtained for the small class of C-finite sequences.
- All this stuff is implemented in a Mathematica package.

