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Introduction

Though partial differential equations (PDEs) may admit some explicit
closed-form solutions, in practice one has to solve them numerically.

Example: the Laplace equation Au(x, y) := uxx + Uy, = 0 has exact
solutions

u=(x+a)®—(y+b)?, u= e*3cos(y+b), u=log[(x+a)’+(y+b)?3,...
The Dirichlet problem
V(x,y) €Q : Au(x,y) =0, V(x,y)€9Q : u(x,y)=1(x,y),

where 022 is the boundary of domain Q and f(x, y) is a given function,
can be solved only numerically.
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Introduction (cont.)

Finite differences along with finite elements and finite volumes are
most important discretization schemes for numerical solving of PDEs.

Mathematical operations used in the construction of difference
schemes are substantially symbolic.

Thereby, it is a challenge to computer algebra to provide an algorithmic
tool for automatization of the difference schemes constructing as well
as for investigating properties of the difference schemes. In (Gerdt,
Blinkov, Mozzhilkin’06) we suggest difference elimination to generate
the schemes.
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Introduction (cont.)

One of the most fundamental requirements for a difference scheme is
its stability which can be analyzed with the use of computer algebra
methods and software (Ganzha, Vorozhtsov'96; Gerdt, Blinkov,
Mozzhilkin’06).

Furthermore, if PDEs admit a conservation law form or/and have some
symmetries, it is worthwhile to preserve these features at the level of
difference schemes too.

In particular, a tool for automatic construction of difference schemes
should produce conservative schemes whenever the original PDEs
can be written in the integral conservation law form.
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Basic Idea: Conservation Law Form

A wide class of PDEs can be written in the conservation law form
ov 0

Here v is a m—vector function in unknown n—vector function u and its
partial derivatives uy, uy, Uy .. .; F is a function that maps R™ into R™.

By Green’s theorem (curl theorem in the plane), the above equation is
equivalent to

?{—F(v)dx +vdy =0.
.

where I is arbitrary closed contour.
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Basic Idea: Discretization

We set u(x, y) = u(Xj, ¥k) = Ujk, Ux(X,y) = Ux(X}, Yk) =

choose the integration contour, e.g.,

k+2

k+1

and add the relations
Xj2

Juxdx = u(xj2,y) —u(x;,y

Xj
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Basic Idea: Difference Elimination

Using a numerical integration method, e.g. the midpoint one, with

Xjs1 — Xj = Y41 — Yok = Ah

we rewrite the equations and the relations as

—(F(V)js16 = F(V)j1 k42) + (Vis2kt1 — Vjkst) =0,
(Ux)jt1k - 28N =Ujiok — Ujk,
(Uy)jktt1 - 20h=Ujri0 — Ujg,

A fully conservative difference scheme for u is obtained by elimination
of all partial derivatives uy, Uy, Uy, .... The elimination can be
achieved by constructing a Grobner basis (GB), if they exist (finite),
e.g., for linear PDEs.
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Rings of Difference Polynomials

Let {y',...,y™} be the set of difference indeterminates, e.g. functions
of n—variables {x1,...,Xa}, and 64, ..., 6, be the set of mutually
commuting difference operators (differences), e.g.,

Oioy =yi(xq,....xi+1,...,xn).
A difference ring R with differences 61, ..., 0, is a commutative ring R

with a unity such thatvVf,ge R, 1 <i,j<néf;of e Rand

0i0; = 6,0, Ojo(f+g) =6iof+6iog, 0io(fg)=(0iof)(biog)

Similarly one defines a difference field.
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Rings of Difference Polynomials (cont.)

Let K be a difference field. Denote by R := K{y',...,y™} the
difference ring of polynomials over K in variables

{0Foyf |peZle, k=1,...,m}.
Denote by R, the set of linear polynomials in R and use the notations
©={0"| necZ2ly},.
A difference ideal I in R is an ideal / € R close under the action of any
operator from ©. If F:={f,..., fx} C Ris afinite set, then the

smallest difference ideal containing F denoted by Id(F). If F C R,
then Id(F) is linear difference ideal.
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Ranking

A total ordering < over the set of §,, ylis a ranking if it satisfies
Q 9010yl —otoyl
eeuyj>0'/°yk = eieuoyj>'9i6,/oyk Vi,j,k,ﬂ,l/.

If 4 = v =0, 0y - 6, 0 y¥ the ranking is orderly.
lfi>j= 0,0yl 6,0 yK the ranking is elimination.

Given a ranking -,

@ every linear polynomial f € R, \ {0} has the leading term a# o y/,
0 €O,

@ Ic(f) :== a € K\ {0} is the leading coefficient,
@ Im(f) := 6 o y/ is the leading monomial.
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Grobner Bases

Given nonzero linear difference ideal / = 1d(G) and term order >, its
generating set G = {91,...,9s} C Ry is a Grébner basis (GB)
(Buchberger,Winkler'98; Kondratieva,Levin,Mikhalev,Pankratiev’99) of /
if

Vie INR \ {0} 3g € G, € © : Im(f) =0olm(g).

It follows that f € I is reducible modulo G

fof =f-l(f6o(g/lo(g). fel.... f-0.

In our algorithmic construction of GB we shall use a restricted set of
reductions called Janet-like (Gerdt, Blinkov’'05) J

Based on these reductions an involutive algorithm that computes
Janet-like Grébner bases has been implemented in Maple (Gerdt,
Robertz’'06) extends the polynomial algorithm (Gerdt, Blinkov'05) to

linear difference ideals.
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Laplace Equation

Consider the Laplace equation uyx + uy, = 0 and rewrite it as the
conservation law

f—uydx +uxdy = 0.
/

Add the integral relations

Xj+2 Yt2

/ Uxdx = U(xjy2, ¥) — U(X,Y), / Uydy = U(x, Yes2) — UK, Vi)

Xj Yk

Thus, we obtain 3 integral relations for 3 unknown functions

U(X’y)v UX(va)’ Uy(va)'
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Laplace Equation (cont.)

Choose the midpoint integration method for above rectangular contour.

This yields the discrete system

(Ux)j1k - 2AN = Upyok — Ujk,

{ —((uy)j+1k — (Uy)jr1k+2) + ((Ux)jz2k+1 — (Uy)jk+1) =0,
(Uy)jk41 - 20h = Ujgyo — Uj.

Its difference form is

(0)(0?,—Hx)OUy+(6)2(9y—9y)OUX:0,
2Ah9XOUX_(0)2(_1)Ou:0,
2Ah9youy—(9}2,—1)oU:0.
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Laplace Equation (cont.)

Computation of GB for elimination order with uy > uy, > u and 6y > 0,

gives

HXOUX_;W](Q)Z(_.l)Ou:O,

Oy o Uy + Ox o Uy — zA7 (Ox0y (05 — 1) +
63 o Uy — §§J;<026y((e§-— D+ (6 -1) -

kT (9§9§ i 959;‘ — 402602 + 0% + 62) o u =

(2 —1)ou=0,
0}/(0)2(—1))OU:07
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Laplace Equation (cont.)

The last equation gives the difference scheme written in double nodes

Uirak — 2Ujk + Uj-2k | Uks2 — 2Ujk + Yk2 _ o
YNE L

Similarly, the trapezoidal rule for the relation integrals generates the
same difference scheme but written in ordinary nodes

U1k — 2Ujk + U1k Uikt — 2Ujk + Ujk—1
Ah? Ah?

=0.
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Heat Equation

Consider now the Heat equation u; + auxx = 0 in its conservation law
form

]{—auxdt +udx =0
/

Again let u(x, t) = u(x;, &) and choose the contour

n+ie ° °
n é ° °
J j+1 j+2
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Heat Equation (cont.)

Add the integral relation

Xj+1
UxdX = U(Xj41, 1) — U(x;, 1),

Xj

and use the midpoint rule for the contour integral and the trapezoidal

method for the relation integral we find two difference equations for two
indeterminates u, uy in the form

{ a5t (14 0: — 02 — 0:62) 0 uy — 2D (Ox0; — Ox) o u =0,
S (O +1) oty — (B —1)ou=0.
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Heat Equation (cont.)

Eliminating uy by means of GB we obtain the famous Crank-Nicholson
scheme

J J JH1 /+1_2U +U ")

umtt _yn Y (it —2u + uMh + (u
At 2/ h?

— (1),

The same scheme is obtained for the midpoint integration method
applied to the relation integral. J
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Wave Equation

The Wave equation uy — uxx = 0 in the conservation law form is
]{uxdt +udx =0
/

For the same cell contour as for Laplace equation and the same
additional integral relations by applying the midpoint rule for the
contour integral and the trapezoidal rule for the integral relations we
obtain the operator equations

Az(gx+1)OUX_(9X_1)OU—O
SHOr+1)ou— (6 —1)ou=0.

They yield the well-known finite difference scheme

n+1 n-1_ ,n _ ,n _
Uttty iy — U1 =0.
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Burgers’ Equation

Consider Burgers’ equation in the form
Ut + fy = v Uy, v = const,

where we denoted u? by f. Convert the this equation into the
conservation law form

f(yux ~f)dt + udx = 0,
J

choose the same rectangular contour as earlier and add the integral

relation
Xj+2

Uxadx = U(Xj42,t) — u(x;, t).

Xj
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Burgers’ Equation (cont.)

For temporal and spartial discretization steps At and Ah we obtain

AR (0x02 — ) o u — AE(020; — 0;) o (vuy + ) = 0,
2Ah9XOUX_(9)2(_1)OU:0

GB for the elimination order with uy, = u = f and 6; = 0y is

2UuNtAhO; o Uy +2ARP02 (0 — 1) o U+ 2AtARGH (62 — 1) o f—
vAL0x(6%? —1)ou =0,

2Ah6Oxouy — (62 —1)ou=0,

2ARP02(02 — 1) o u — vALO(0F — 202 +-1) o U+
2AtAhO19x(02 —1) o f = 0.

The obtained difference scheme (FTFS) is

n+2 _ .n n+1 o, n+1 n+1 n+1 _ enHd
uj+2 2 Vuj+4 2Uj+2 + uj 6‘+3 ';'+1 -0
At 2/A\h?2 Ah i
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Burgers’ Equation (cont.)

Derivation of (generally nonconservative) difference schemes without

recourse to conservation law needs usually more computation.
Example: Burgers’ equation along with with integral relations

Ut + fy = Dy [ ()] + (8] = (U]
ul ,+u?
Judt=u (U Ot = Ut — 25—
J fdx =f = { 28h(F)y =11, —
uxdx = u B
fudc=u | s =gy
| 280 (U], = (U)o — ()]

Elimination with uyx = ux > fx = u > f yields the Lax scheme

n+1 n n n n n n n
Uiy — (Ulg +uly)  flg— Uy —20l o+ U’

j+2 J j _ -0

2At 2Ah 4\ h?
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Burgers’ Equation (cont.)

One can also generate other schemes, for example, the two-step
Lax-Wendroff scheme.

Let T and f denote the values of u and f on the intermediate time
levels. Then the midpoint rule for the spatial integrals, gives:

(u)f + ()] = v (ux)f
(Ut )l’.7+1 T = U/n-j: o /+22+U/' )
2(fy )/"7+1 h = f/12 - f'nv
2(ux ) h = Ui, —ul,
Z(Uxx );’+1 h = (UX )/+2 (UX )]n )
(@) + ()] = v (Uu)f,
20 )T = u]”+1 - g"
2(f )jf’+1 h = fj+2 —f
2(uy )/’,’+1 h = u/Jr2 — u/ ,
2(Uxx )]’-’+1 h = (ux )j’-’+2 — (Ux )/'-7.
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Burgers’ Equation (cont.)

For the elimination ranking with
Uxx = Uxx = Uy = Ox = Up = Up = Fy = Fx = F=u>=F =T

the Grobner basis contains the Lax-Wendroff scheme

Uy —(uf g t+uly) 4 Ha=H _  Ula—2ul+u]
2Nt 2Ah T 4 A\h? 2
- oo
Ul —Uie | Fia—Ti _  Tha—TlptT)
2Nt 2 Ah - 4 ANh2

With all possible combinations of the trapezoidal and midpoint rules
one obtains 49 different Lax-Wendroff schemes.
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Burgers’ Equation (cont.)

It is especially difficult to simulate numerically nonsmooth and
discontinuous solutions which are among most interesting problems in
computational fluid and gas dynamics. Most of the known difference
schemes fail to handle these singularities. The most appropriate are
Godunov’s schemes based on solving a local Riemann problem.

We apply the Grébner bases technique to generate the Godunov-type
scheme for inviscid Burgers’ equation when v = 0. For this purpose we
discretize the corresponding system in in the following way

(U )} + (5 )P =0,
(ur)? At =t —ur,

(5 )7 50— (1, — ) (e )fsy 50 — (17, — 7)) = 0,
2(u )j+1Ah—u/’er—ul”,

2 (Uxx )iq Ah = (ux)} o — (Ux )7 -
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Burgers’ Equation (cont.)

To do the elimination from the nonlinear system we apply the Grébner
factoring approach: if a Grébner basis contains a polynomial which
factors, then the computation is split into the computation of two or
more Grobner bases corresponding to the factors.

We choose the elimination ranking
Uxx = Ux = Ut =y == u
and compute two Grébner bases, for every of two factors. Then we

compose the product of two obtained difference polynomials in u and f
that gives us the Godunov-type difference scheme

+1 1
UJZ—Z _uﬁi-Z + GI-LZ_GL X uﬁé _uin+2 + 013_6"47-2 -0
At Ah At Ah -
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Falkowich-Karman Equation

Consider now one more nonlinear equation, namely, the
Falkowich-Karman equation describing transonic flow in gas dynamics

Oxx(K = (v +1)ex) + ¢y —20x — ot = 0

in its non-stationary form. One can use this form to find a stationary
solution by the steady-state method. Rewrite the equation in the
(partially discrete) conservation law form

thi1
+1

/ ( Fpy+onti ~ 115 ’sox)dy) ot -
th r

Xj+2 Yki2 fn+1

- / / (2ox + )|  dxdy =0.
Xj Yk t
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Falkowich-Karman Equation (cont.)

We use a grid decomposition of the three-dimensional domain in
(x,y, t) into the elementary volumes of the form

n+1
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Falkowich-Karman Equation (cont.)

Again we add the integral relations similar to those used for the
Laplace Equation and use the trapezoidal integration rule for ¢y, ¢y
and the midpoint rule for .

Then it gives the nonlinear difference equations

(—(Bx — 0x82) 0 0y + (620, — 8)) o (px(K — ©F0))) - 2AKAL-
—(6r — 1)(620) — 0y) 020 - 2Ah — 040y 0 @1 - 4Ah2 =0

(9X+1)OSOX'AT,7=(9X—1)°<P

By +1)owy -G =0,-1)oyp

Oropt-2At= (62 —1)op

To construct GB, we use the lexicographical term order such that
©x = @y = ot = ¢ and then Oy > 0, > 6;.
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Falkowich-Karman Equation (cont.)

(Ox —1)20y 0 0 (v + 1)oxRE + 040y 0 o - Ah =
= ((6x — 1)29y0<ﬂ (K= (6x = 1)20y 0 (v + 1))+
+0x(0y — 1)2 0 ) Rf — (020y — 0y)(0r — 1) 0 0,
Oy +1)opy = (8 — )O‘P'ﬁa
Oropr=(02—1)op- 5,
0 = Ox(0x — 1)20,0;0 0 - [((0x — 1)20,01 0 0 - (K—
—(63 — 62 4 0y — 1)0y01 o O o)+
+0x(0y — 1)20; 0 ) RF — (62 — 1)0, (62 — 0¢) 0 p—
—0x0y (0 —1)% 0 - 2A,]+
+(0x — 1)29},91 o - [(Ox(0x — 1)29y9t op- (K-
(03 = 0% + Ox = 1)6,01 0 0 o)+
+02(0, — 1)20; 0 0) 5 — (63 — 0x)0, (62 — 0r) 0 o—
—620, (0 — 1)2 0 - zm]
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Falkowich-Karman Equation (cont.)

The last element is the finite-difference scheme

+1
(Ol — 207K + g i) - [((ofk — 2071 + oo ) (K = (gAh)(<P/+1 k
Pk TPk = Plek) TPk = 20k ok 1))Ah

+1 +1 +1
(e — ok — P+ ak) — (0] 1k — 201+ 9] st

1
(0% = 2071+ 9jlak) - (0« — 207 + 114 k)(i(t - (gAh)((p/—H k
Pk TPk = Pek) T (Pfkar — 200k + Ok 1)) AR

1 +1 +1 —1yAhy _
(90711 k ‘97—1 Kk~ Pk TP k) — (Spjnk — 2¢7) + %nk )zail = 0

In its stationary form this scheme is given by

(D (i1 k) + Dx(ef- 1)) + Dy (/1 «
Dy (@f1 k) + Dx(#f214))) + Dyy (o]

D(ef) - [Pxx (0] 1 &)
Dioc(]1 ) - [Dxx(s27)

(K
(K
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Falkowich-Karman Equation (cont.)

Note that the scheme obtained is fully conservative and does not
contain switches that are typically used in calculation of transonic
flows. The stencil used for the stationary case is

K+1 ®
k @ ® ® ®
k—1 ® ®

j—2 -1 i+

We applied this scheme to the one-dimensional flow in a channel with

a straight density jump.
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Conclusions

@ GB are the most universal algorithmic tool for linear difference
systems.

@ GB can be effectively applied to derivation of differences schemes
for linear PDEs.

@ By construction, the schemes derived from the conservation law
form are fully conservative. Their form depends on the numerical
integration rules used.

@ There is an efficient algorithm for construction of GB for linear
difference ideals. The algorithm is based on the concept of
Janet-like reductions. Its first implementation in Maple is already
available.

@ For classical linear PDEs: Laplace Equation (elliptic), Heat
Equation (parabolic), Wave Equation (hyperbolic) and Advection

Equation (hyperbolic) our algorithmic technique leads to the
well-known finite difference schemes.
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Conclusions (cont.)

@ For Burgers’ equation by applying Grébner bases for the
difference elimination of partial derivatives we generated such
well-known schemes as FTFS, Lax and Lax-Wendroff and also
Godunov-type scheme.

@ The new finite-difference scheme generated for the
Falkowich-Karman Equation possesses a stable convergence in
time to the exact solution with a one-dimensional shock wave. As
a consequence of the full conservatism of the scheme, it does not
reveal non-uniqueness in solution of difference equations that is a
typical feature of the traditional difference schemes.

@ An area of the shock transition has a size of one grid step what
can be explained by preserving, at the discrete level, all algebraic
properties of the initial continuous equations.
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