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Involutive Methods

Vladimir Gerdt

Laboratory of Information Technologies

Joint Institute for Nuclear Research

141980 Dubna, Russia

gerdt@jinr.ru

Talk at RICAM Linz 28.02.2006



Gerdt V.P. Computation of GB by involutive methods 1

Contents

1. Introduction

2. Involutive Division
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Constructive Theory of Involutivity

Cartan (1899, 1901): Involutivity of exterior PDEs.

Riquier (1910), Janet (1920), Thomas (1937): Involutivity of PDEs.

Spencer (1965), Kuranishi (1967), Goldschmidt (1969), Pommaret (1978): Formal

Theory of differential systems.

Reid (1991): Standard Form of linear PDEs.

Wu (1991): Relation of Riquier-Janet theory to Gröbner bases.

Zharkov, Blinkov (1993): Pommaret Bases of polynomial ideals.

Reid, Wittkopf, Boulton (1996): Reduced Involutive Form of PDEs.

Gerdt, Blinkov (1995-1998): Involutive Division =⇒ general Involutive Bases.

Apel (1998): Admissible Involutive Division on a monomial set.

Gerdt (1999): Involutive Systems of Linear PDEs.

Seiler (2002): Combinatorial Aspects of Involutivity.

Chen, Gao (2002): Involutive Characteristic Sets for PDEs.

Hemmecke (2003): Sliced Involutive Division.

Evans (2004): Noncommutative Involutive Bases.

Gerdt, Blinkov (2005): Janet-like Division.
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Implementation

Arais, Shapeev, Yanenko (1974): Cartan algorithm in Auto-Analytik.

Schwarz (1984): Riquier-Janet theory in Reduce.

Hartley, Tucker (1991): Cartan algorithm in Reduce.

Schwarz (1992): Linear differential Janet bases (DJB) in Reduce.

Reid, Wittkopf, Boulton (1993): Standard Form and Rif (2000) in Maple.

Seiler (1994): Formal theory in Axiom.

Zharkov, Blinkov (1993); G., Blinkov (1995): Pol. Pommaret bases (PPB) in Reduce.

Kredel (1996): PPB in MAS.

Nischke (1996): Polynomial JB (PJB) and PPB in C++ (PoSSoLib).

Berth (1999): Polynomial and differential involutive bases in Mathematica.

Cid (2000)-Robertz (2002-2005): PJB, DJB and Difference JB in Maple.

Blinkov (2000-2005): PJB in Reduce, C++.

Yanovich (2001-2004): PJB in C, Singular.

Hausdorf, Seiler (2000-2002): DJB and DPB in MuPAD.

Chen, Gao (2002): Involutive Extended Characteristic Sets in Maple.

Hemmecke (2002): Sliced Division Algorithm in Aldor.

Evans (2005): Noncommutative Involutive Bases in C.
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Involutive Division

Definition: (G.,Blinkov’98) An involutive division L of variables is defined
on M if for any finite monomial set U ⊂M and for any u ∈ U there is defined a
subset M(u,U) ⊆ X = {x1, . . . , xn} of variables generating monoid
L(u,U) ≡MM(u,U) such that

1. u, v ∈ U, uL(u,U) ∩ vL(v, U) 6= ∅ ⇐⇒ u ∈ vL(v, U)
or v ∈ uL(u, U).

2. v ∈ U, v ∈ uL(u,U) ⇐⇒ L(v, U) ⊆ L(u, U).

3. V ⊆ U =⇒ L(u,U) ⊆ L(u, V ) ∀u ∈ V .

Variables in M(u,U) are called (L−)multiplicative for u and those in
NM(u, U) ≡ X \M(u,U) are (L−)nonmultiplicative for u, respectively.

If w ∈ uL(u,U) then u is involutive divisor of w: u |L w =⇒ involutive
reduction and involutive normal form NFL(f, F ) where f ∈ R and F ⊂ R.

involutive separation ⇐⇒ involutive division (G., Blinkov)
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Janet Division

Definition: (Janet’20, G.,Blinkov’98) For each finite monomial set U ⊂M and
0 ≤ i ≤ n partition U into groups labeled by d0, . . . , di ∈ N≥0 (U = [0])

[d0, d1, . . . , di] := {u ∈ U | d0 = 0, d1 = deg1(u), · · · , di = degi(u)}.

Variable xi is J-multiplicative for u ∈ U if u ∈ [d0, . . . , di−1] and

degi(u) = max{degi(v) | v ∈ [d0, . . . , di−1]} .

Notation: degi ≡ degxi
, u @ v ⇐⇒ u | v ∧ u 6= v

Definition: ( Pommaret division ). For v = xd1
1 · · ·xdk

k with dk > 0 (k ≤ n) the
variables xj , j ≥ k are multiplicative and the other variables are
nonmultiplicative. For v = 1 all the variables are multiplicative.
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Example: lm(F ) = {x2y, x2z, xy2, xz2, y3, yz, z3} (x Â y Â z)

Leading Janet separation of variables

monomial nonmultiplicative multiplicative

x2y − x, y, z

x2z y x, z

xy2 x y, z

xz2 x, y z

y3 x y, z

yz x, y z

z3 x, y z
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Example: U = {x2
1x3, x1x2, x1x

2
3}

Element Separation of variables

in U Janet Pommaret

MJ NMJ MP NMP

x2
1x3 x1, x2, x3 − x3 x1, x2

x1x2 x2, x3 x1 x2, x3 x1

x1x
2
3 x3 x1, x2 x3 x1, x2

Definition: A monomial set U ∈M is L-complete or L-involutive if

(∀w ∈M) (∀u ∈ U) (∃v ∈ U) [ v |L u · w ]

The corresponding J-and P−completion of U = {x2
1x3, x1x2, x1x

2
3}

Janet : {x2
1x3, x1x2, x1x

2
3, x

2
1x2},

Pommaret : {x2
1x3, x1x2, x1x

2
3, x

2
1x2, . . . , x

i+2
1 x2, . . . , x

j+2
1 x3, . . .}

The Pommaret division is non-Noetherian
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Gröbner and Involutive Bases

A finite set F = {f1, . . . , fm} ∈ R := K[x1, . . . , xn] of multivariate polynomials is
a basis of the ideal I

I =< F >= {
m∑

i=1

hifi | hj ∈ R }

Given a polynomial set F and a linear monomial order Â such that

(i) m 6= 1 =⇒ m Â 1, (ii) m1 Â m2 ⇐⇒ m1m Â m2m

holds for any monomials m,m1,m2, one can select the leading monomial
lm(f) of any f ∈ R and define a Gröbner basis G ⊂ R of ideal I =< G >:

(∀f ∈ I) (∃g ∈ G) [ lm(g) | lm(f) ]

Similarly, given an involutive division L, an involutive basis H of I is defined as

(∀f ∈ I) (∃h ∈ H) [ lm(g) |L lm(f) ]

An involutive L-basis is a (generally redundant) Gröbner basis with the
L-complete set of leading monomials
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Definition: Given a finite set F ⊂ R, a polynomial p ∈ R, and a monomial
order Â, a normal form NF (p, F ) of p modulo F is defined as

NF (p, F ) = p′ = p−
∑

ij

αijmijfj

where αij ∈ K, fj ∈ F, mij ∈M, lm(mijgj) ¹ lm(p) and there are no
monomial in p′ multiple of any leading monomial of elements in F .

Similarly, given an involutive division L, an (L−)involutive normal form
NFL(p, F ) is defined. The only distinction is that in the latter case all the
monomial factors mij must be L−multiplicative for fj , i.e. mij ∈ L(fj , F ), and
p′ cannot contain monomials L−multiple of any leading monomials in F .

This yields another definition of a Gröbner (GB) G and an involutive (IB) basis
H of ideal I:

GB : p ∈ I ⇐⇒ NF (p,G) = 0 ,

IB : p ∈ I ⇐⇒ NFL(p,H) = 0 .
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IB can be computed by the following Involutive algorithm (G.,Blinkov’98) for
any (noetherian) involutive division:

Buchberger algorithm:
Start with G := F .
For a pair of polynomials f1, f2 ∈ G:

Compute S(f1, f2).
Compute h := NF (S(f1, f2), G).
If h = 0, consider the next pair.
If h 6= 0, add h to G and iterate.

S(f1, f2) = c1t1f1 − c2t2f2, c1, c2 ∈ K,
t1, t2 ∈M, c1t1lm(f1) = c2t2lm(f2).

Involutive algorithm:
Start with G := F .
Choose a pair of f ∈ G, x ∈ NML(f, G)
with minimal lm(f · x) w.r.t. Â:

Compute h := NFL(f · x,G).
If h = 0, consider the next pair.
If h 6= 0, add h to G and iterate.

N.B. For linear PDEs instead of f · x
one should take ∂x(f).
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Algorithm: Involutive Basis (F,≺,L)

Input: F , a polynomial set; ≺, a monomial order; L, an involutive division
Output: G, a minimal involutive basis of Id(F )
1: choose f ∈ F without g ∈ F \{f} : lm(g) @ lm(f); G := {f}; Q := F \G

2: do
3: h := 0
4: while Q 6= ∅ and h = 0 do
5: choose p ∈ Q without q ∈ Q \ {f} : lm(q) @ lm(p)
6: Q := Q \ {p}; h := NFL(p, T )
7: od
8: if h 6= 0 then
9: for all {g ∈ G | lm(g) A lm(h)} do

10: Q := Q ∪ {g}; G := G \ {g}
11: od
12: G := G ∪ {h}; Q := Q ∪ { g · x | g ∈ G, x ∈ NML(g,G) }
13: fi
14: od while Q 6= ∅ return G
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Table 1: Computation of Janet basis for F = {x2y − 1, xy2 − 1}

Steps of Sets G and Q

algorithm elements in G NMJ Q

initialization xy2 − 1 − {x2y − 1}
iteration x2y − 1 −

xy2 − 1 x {x2y2 − x}
x− y − {xy2 − 1, x2y − 1}
x− y −
y3 − 1 x {x2y − 1, xy3 − x}
x− y −
y3 − 1 x { }
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Some optimizations

To avoid useless repeated prolongations and to apply the involutive analogues of
the Buchberger criteria one has to keep the history of computation.

Definition: An ancestor of a polynomial f ∈ F ⊂ R \ {0} is a polynomial
g ∈ F of the smallest deg(lm(g)) among those satisfying f = g · u modulo
Id(F \ {f}) with u ∈M. If deg(lm(g)) < deg(lm(f)) (u 6= 1) the ancestor g of f

is called proper.

Remark: If an intermediate polynomial h that arose in the course of a
completion algorithm has a proper ancestor g, then h has been obtained from g

via a sequence of L-head irreducible non-multiplicative prolongations. For the
ancestor g itself the equality lm(anc(g)) = lm(g) holds.



Gerdt V.P. Computation of GB by involutive methods 14

Let now every element f ∈ F in the intermediate set of polynomials be endowed
with the triple structure

p = {f, g, vars}
where

pol(p) = f is the polynomial f itself,

anc(p) = g is a polynomial ancestor of f in F,

nmp(p) = vars is a (possibly empty) subset of variables.

The set vars associated with polynomial f accumulates those non-multiplicative
variables of f have been already used in the algorithm for construction of
non-multiplicative prolongations. It keeps information on non-multiplicative
prolongations of polynomial f that have been already examined in the course of
completion and serves to avoid useless repeated prolongations.

Remark: The reduced GB is a subset of IB containing all the
polynomials which have no proper ancestors. Due to the above triple
structure associated with intermediate polynomials, the reduced GB is an
internally fixed subset of IB. Therefore, having IB computed, the reduced GB is
extracted without any extra computational costs.
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Computational Peculiarities of Janet Division Algorithm

Pro’s: (G.’05)

Automatic avoidance of some useless critical pairs

Table 2: Example of avoidance of such a pair

Polynomial NMJ Prolongation S−polynomial

p1 = xy − 1 − − −
p2 = xz − 1 y y p2 S(p2, p1) = y p2 − z p1

p3 = yz − 1 x x p3 S(p3, p1) = x p3 − z p1
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Weakened role of criteria

Table 3: Timings for C code (Opteron 242 computer)

Applicability Timing (sec.)

Example C1 C2 C3 C4 – C1 C1÷2 C1÷3 C1÷4

Cyclic6 98 2 4 – 0.18 0.14 0.13 0.13 0.12

Cyclic7 698 190 22 – 85.18 63.82 58.61 58.14 58.72

Katsura8 173 1 1 – 32.16 27.59 26.92 27.08 27.48

Katsura9 344 – 1 – 402.38 335.50 332.94 335.69 337.52

Cohn3 – 114 169 7 90.20 90.32 87.66 76.05 76.72

Assur44 89 60 171 3 12.39 12.28 11.95 10.29 10.35

Reimer6 63 235 179 12 35.49 38.56 21.93 9.42 9.69

Reimer7 327 1723 497 71 9385.17 9817.16 3290.06 714.08 719.37

Hairer2 3766 1158 256 91 2107.24 246.90 104.80 70.02 62.91

C1 ∧ C2 ∧ C3 ∧ C4 ⇐⇒ Buchberger criteria (Apel, Hemmecke’02)
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Smooth growth of intermediate coefficients

Example: (Arnold’03) Consider ideal I = Id(F ) in Q[x, y, z] generated by the
polynomial set:

F =





8 x2y2 + 5x y3 + 3x3z + x2y z,

x5 + 2 y3z2 + 13 y2 z3 + 5 y z4,

8 x3 + 12 y3 + x z2 + 3,

7 x2y4 + 18 x y3z2 + y3z3.

Its Gröbner basis for the degree-reverse-lexicographical order with x Â y Â z is
small G = {x, 4 y3 + 1, z2} whereas in the course of Buchberger’s algorithm, as it
implemented in Macaulay 2, there arise intermediate coefficients with about
80,000 digits. As to algorithm Involutive Basis II, it outputs Gröbner basis
G or Janet basis {x, 4 y3 + 1, z2, y z2, y2z2}, with not more than 400 digits in
the intermediate coefficients.
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Table 4: Coefficient size in 64 bit words

Example Input Intermediate Output Swell factor

Cyclic6 1 3 1 3.00

Cyclic7 1 11 5 2.20

Katsura8 1 5 4 1.25

Katsura9 1 8 6 1.33

Cohn3 1 168 19 8.84

Assur44 1 93 19 4.89

Reimer6 1 4 4 1.00

Reimer7 1 10 10 1.00

Hairer2 1 10 6 1.00
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Fast search for Janet divisor (Janet tree)
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Comparison with Binary Search

Let d be the maximal total degree of the leading monomials of polynomials in n

variables which constitute the finite set F .

Then the complexity bound of the search for a Janet divisor in the Janet tree
and the binary search algorithm is given by

tJ−divisor = O(d + n),

tBinarySearch = O(n((d + n) log(d + n)− n log(n)− d log(d))).

Uniqueness of reduction sequence

By properties of an involutive division L, any monomial may have at most one
L-devisor among the leading monomials of the intermediate basis G. Thereby,
the reduction sequence is unique.
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Parallelism

Table 5: Timings (in seconds) and speedup due to parallelism

Example 1 Thread 3 Threads Speedup t1 th/t3 th

Cyclic6 0.79 1.16 -0.37 0.68

Cyclic7 386.89 182.86 +294.03 2.12

Katsura8 119.92 53.72 +66.20 2.23

Katsura9 1356.37 587.82 +768.55 2.31

Cohn3 554.75 222.69 +332.06 2.49

Assur44 73.93 31.34 +42.59 2.36

Reimer6 88.99 52.56 +36.43 1.69
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Con’s (G.,Blinkov’02)

Example 1: Toric ideal I (Bigatti, Scala, Robbiano’99) (x Â y Â z Â w).

{ x7 − y2z, x4w − y3, x3y − zw } .

Example 2: Polynomial ideal (Gräbe, Hemmecke) (w Â x Â y Â z).

{ z20 + z10 − x2, z30 + z10 − x y3, w40x4 − y6 } .

Example 3: Toric ideal II (Morales) (x0 Â x1 Â x2 Â x3 Â x4).

{ x0x1x2x3x4 − 1, x29
2 x5

3 − x14
1 x20

4 , x39
1 − x25

2 x14
3 } .

Example 4: Toric ideal III (Morales’95) (x Â y Â z Â w).

{ y250 − x239z11, x150z12 − y161w, y89z − x89w x61z13 − y72w2,

x33z27 − y55w5, z55 − x23y21w11, x5z41 − y38w8, y17z14 − x28w3 } .
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Table 6: Cardinalities of Gröbner and Janet bases for Examples 1 - 4

Example Cardinality

Gröbner basis Janet basis

1 4 11

2 9 983

3 19 7769

4 8 37901



Gerdt V.P. Computation of GB by involutive methods 24

Janet-like Division

Definition: (G.,Blinkov’05) Let U ⊂M be a monomial set and its elements be
partitioned into groups as for the Janet division. For every u ∈ U and 1 ≤ i ≤ n

consider

hi(u,U) := max{degi(v) | u, v ∈ [d0, . . . , di−1]} − degi(u).

If hi(u,U) > 0, then the power xki
i where

ki := min{degi(v)− degi(u) | v, u ∈ [d0, . . . , di−1], degi(v) > degi(u)}
is a nonmultiplicative power for u.

Notation: NMP (u,U) is the set of all nonmultiplicative powers for u ∈ U .

Definition: (Janet-like division). For a set U ⊂M and u ∈ U , elements of
the monoid ideal

NM(u,U) := {v ∈M | ∃w ∈ NMP (u,U) : w | v}
are J -nonmultipliers for u ∈ U . Elements in M(u,U) :=M \ NM(u,U) are
J -multipliers for u, respectively. u ∈ U is a Janet-like divisor or J−divisor
of w ∈M (denotation u |J w) if w = u · v with v ∈M(u,U).
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Example: U = {x5
1, x

2
1x

2
2x3, x

2
1x

2
3, x

4
2x3, x2x

2
3, x

5
3} ⊂ K[x1, x2, x3].

Table 7: Comparison with Janet division

Element Division

in U Janet Janet-like

MJ NMJ NMP

x5
1 x1, x2, x3 − −

x2
1x

2
2x3 x2, x3 x1 x3

1

x2
1x

2
3 x3 x1, x2 x3

1, x
2
2

x4
2x3 x2, x3 x1 x2

1

x2x
2
3 x3 x1, x2 x2

1, x
3
2

x5
3 x3 x1, x2 x2

1, x2
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Corollary: u |J w =⇒ u |J w . The converse is generally not true.

Remark: Janet-like division is not involutive division since M(u,U) is not
monoid. However, this division possesses all the above listed attractive
algorithmic properties of the Janet division.

Definition: (Janet-like basis) Let I ⊂ R be a nonzero ideal and Â be a
monomial order. Then a minimal J -autoreduced subset G ⊂ R such that
I = Id(G) is Janet-like basis (JLB) or J−basis of I if

∀f ∈ I, ∃g ∈ G : lm(g) |J lm(f) .

From the above corollary it follows

card(GB) ≤ card(JLB) ≤ card(JB)
monicity

=⇒ GB ⊆ JLB ⊆ JB
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Table 8: Cardinalities of bases for Examples 1-4

Example Cardinality

Gröbner basis Janet-like basis Janet basis

1 4 5 11

2 9 14 983

3 19 190 7769

4 8 18 37901
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Selection Strategy

Apart from improvement of the division, there is another important source of
optimization in the involutive algorithms: selection of non-multiplicative
prolongations that (when L-head reducible) play in the involutive approach the
same role as S−polynomials play in Buchberger’s algorithm.

Though in the involutive approach an admissible choice of a non-multiplicative
prolongation is subject to certain restrictions, for examples large enough,
one can choose from many possible prolongations. For example, in the 7th
order cyclic root example at the intermediate algorithmic steps there arise several
hundreds prolongations such that any of them can be chosen. By this reason it is
important to investigate a heuristical efficiency of different selection strategies.

Below we present three different selection strategies which as we recently found
(G., Blinkov’06) are computationally good for the Janet division. In so going,
we restrict ourselves with degree compatible orders. Due to the FGLM
and Gröbner walk conversion algorithms, this is a reasonable restriction.
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Janet Division Algorithm: Strategy I (F ∈ R \ {0}, degree compatible ≺)

1: choose f ∈ F of the minimal deg(lm(f)); G := {f}; Q := F \G

2: do

3: S := { q ∈ Q | deg(lm(q)) = mindeg(lm(Q)) }; P := ∅; Q := Q \ S

4: for all s ∈ S do

5: S := S \ {s}; p := HNFJ(s, G) /* Head Normal Form */

6: if p 6= 0 then

7: P := P ∪ {p}
8: fi

9: od

10: while P 6= ∅ do

11: choose p ∈ P with minimal lm(p) w.r.t. Â; P := P \ {p}; h := NFJ(p, G)

12: for all {g ∈ G | lm(g) A lm(h)} do

13: Q := Q ∪ {g}; G := G \ {g}
14: od

15: G := G ∪ {h}; Q := Q ∪ { g · x | g ∈ G, x ∈ NMJ(lm(g), lm(G)) }
16: od

17: od while Q 6= ∅
18: return G := { g ∈ G : g = anc(g) } /* reduced GB */
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Janet Division Algorithm: Strategy II (F ∈ R \ {0}, degree compatible ≺)

1: choose f ∈ F of the minimal deg(lm(f)); G := {f}; Q := F \G

2: do

3: S := { q ∈ Q | deg(lm(q)) = mindeg(lm(Q)) }; P := ∅; Q := Q \ S

4: for all s ∈ S do

5: S := S \ {s}; p := NFJ(s, G) /* Full Normal Form */

6: if p 6= 0 then

7: P := P ∪ {p}
8: fi

9: od

10: P := Update(P,≺)

11: for all p ∈ P do

12: for all {g ∈ G | lm(g) A lm(p)} do

13: Q := Q ∪ {g}; G := G \ {g}
14: od

15: G := G ∪ {p}; Q := Q ∪ { g · x | g ∈ G, x ∈ NMJ(lm(g), lm(G)) }
16: od

17: od while Q 6= ∅
18: return G := { g ∈ G : g = anc(g) } /* reduced GB */
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Algorithm: Update(P,Â)

Input: P ⊂ R \ {0}, a finite set; Â, an order
Output: H ⊂ R \ {0}, an updated input set
1: choose f ∈ P with the highest/lowest lm(f) w.r.t. Â
2: H := {f}; P := P \ {f}
3: while P 6= ∅ do
4: choose p ∈ P with the highest/lowest lm(p) w.r.t. Â
5: P := P \ {p}
6: h := NFJ(p,H)
7: if h 6= 0 then
8: H := H ∪ {h}
9: fi

10: od
11: return H
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Benchmarking

Strategy I was implemented in C as a part of package JB (Yanovich’02) whose
version is also included in the library of Singular, and in the C++ as a part of
the open source software GINV (Gröbner INVolutive) (Blinkov’05). The last
software implements also Strategy II for both options in subalgorithm Update.

The timings in the following table were obtained on the following machines:

JB: 2xOpteron-242 (1.6 Ghz) with 4Gb of RAM running under Gentoo
Linux 2004.3 with gcc-3.4.2 compiler.

GINV: Turion-3400 (1.8 Ghz) with 2Gb of RAM running under Gentoo
Linux 2005.1 with gcc-3.4.4 compiler.

Magma: dual processor Pentium III (1 Ghz) with 2 GB of RAM running
under SuSE Linux 8.0 (kernel 2.4.18-64GB-SMP) with gcc-2.95.3 compiler.

All timings in the table are given in seconds, and (*) shows that the example was
not computed because of the memory overflow.
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Timings
Example Strategy I Strategy I Strategy II Strategy II Magma Magma

(JB) (GINV) high (GINV) low (GINV) V2.11-8 V2.12-17

assur44 10.35 14.20 6.33 6.4 4.56 4.99

butcher8 1.06 1.02 0.38 0.39 4.68 5.00

chemequs 0.67 0.61 0.57 0.6 12.80 11.99

chemkin 17.83 16.87 10.95 9.95 32.34 29.83

cohn3 76.72 107.14 30.21 25.47 37.73 39.20

cpdm5 1.78 1.57 1.69 1.68 0.69 0.70

cyclic6 0.12 0.19 0.14 0.14 0.09 0.08

cyclic7 58.72 60.94 68.59 65.28 6.64 7.08

cyclic8 12056.24 14046.26 5826.18 4424.96 235.73 245.65

d1 8.77 12.58 1.99 2.08 28.49 8.29

des18 3 0.19 0.18 0.19 0.19 1.81 1.89

des22 24 0.68 0.62 0.77 0.79 1.37 1.46

discret3 23322.8 20956.31 12642.49 13521.65 33658.09 19369.53

dl 270.17 278.89 80.77 89.52 14.57 11.95

eco8 0.40 0.44 0.44 0.46 0.20 0.20

eco9 3.22 5.60 4.99 5.08 1.25 1.20

eco10 52.56 56.70 65.71 68.06 7.07 6.91

eco11 765.98 741.74 718.53 679.3 62.33 51.08

extcyc5 1.35 1.53 1.46 1.37 0.37 0.38

extcyc6 324.70 184.49 276.06 155.64 45.36 47.96
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Timings (cont.)
Example Strategy I Strategy I Strategy II Strategy II Magma Magma

(JB) (GINV) high (GINV) low (GINV) V2.11-8 V2.12-17

extcyc7 * * * * 8242.00 8492.13

f744 4.88 7.71 2.22 2.68 1.47 1.38

f855 132.97 139.79 37.64 38.45 48.63 37.06

fabrice24 108.52 116.77 8.2 7.7 9.45 8.70

filter9 20.97 5.76 1.13 1.6 80.04 56.67

hairer2 62.91 108.17 126.69 125.43 92.07 85.86

hairer3 1.96 0.92 0.32 1.4 * *

hcyclic7 64.17 53.87 65.81 73.0 6.26 6.76

hcyclic8 6024.97 4316.59 * 7560.99 229.70 237.12

hf744 22.17 8.58 7.18 11.26 1.39 1.32

hf855 2157.88 534.08 806.51 988.38 48.15 36.69

hietarinta1 0.77 0.71 0.38 0.53 2.63 2.15

i1 98.24 122.36 58.29 58.21 55.07 42.35

ilias13 1167.18 5851.97 3013.1 2469.62 336.21 309.64

ilias k 2 323.59 669.68 445.51 270.21 55.41 54.71

ilias k 3 452.32 846.19 1162.7 622.14 90.67 89.97

jcf26 224.96 211.24 16.44 14.65 31.64 25.59

katsura7 2.15 1.77 2.08 1.98 0.72 0.79

katsura8 27.48 24.66 28.8 27.09 4.7 5.06

katsura9 337.52 294.59 340.45 311.98 33.47 34.87
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Timings (cont.)
Example Strategy I Strategy I Strategy II Strategy II Magma Magma

(JB) (GINV) high (GINV) low (GINV) V2.11-8 V2.12-17

katsura10 4790.55 4983.11 7220.29 6204.95 287.38 292.02

kin1 15.18 20.32 7.11 7.11 50.56 45.33

kotsireas 6.33 37.94 4.93 4.27 3.45 3.67

noon6 0.97 1.29 1.27 1.29 0.60 0.62

noon7 28.87 32.58 37.52 38.52 4.93 4.77

noon8 1552.26 2292.84 3322.62 3152.57 43.65 42.80

pinchon1 10.37 0.04 0.01 0.01 4.09 3.54

rbpl 210.94 177.51 173.8 173.98 38.33 35.79

rbpl24 108.78 116.78 8.23 7.7 9.62 8.74

redcyc6 0.16 0.17 0.13 0.14 0.10 0.10

redcyc7 913.75 1048.69 48.19 48.61 5.73 6.36

redeco10 18.51 18.66 23.91 22.4 2.33 2.40

redeco11 178.32 187.36 253.34 228.41 14.56 14.85

redeco12 1735.95 2172.75 4666.8 3385.97 101.51 103.02

reimer5 0.22 0.36 0.34 0.38 0.74 0.70

reimer6 9.69 21.60 24.19 23.96 42.13 42.40

reimer7 719.37 3808.91 4756.4 4314.12 5216.53 5032.73

virasoro 9.69 8.90 10.96 10.68 1.72 1.77
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Conclusion

• Our involutive Janet division algorithm is rather efficient in computing GB.

• Some useless critical pairs (S−polynomials) are automatically avoided.

• The intermediate coefficients growth is smoothed.

• The role of criteria is weakened. Even without any criteria the algorithm
works reasonably fast.

• Janet trees form the data structures providing very fast search for involutive
divisor which is unique.

• The algorithm admits an effective parallelization.

• Janet-like division improves the Janet division.

• Having JB computed, the reduced GB is extracted from JB without any
extra computational costs.

• Experimenting with three different selection strategies shows rather good
stability of the algorithm.

• Our publications, computer experiments and GINV software are available on
the Web: http://invo.jinr.ru


