Computational Aspects of Constructing Gröbner Bases by Involutive Methods

Vladimir Gerdt
Laboratory of Information Technologies
Joint Institute for Nuclear Research
141980 Dubna, Russia
gerdt@jinr.ru

Talk at RICAM Linz 28.02.2006

Contents

1. Introduction
2. Involutive Division
3. Gröbner and Involutive Bases
4. Computational Peculiarities of Janet Division Algorithm
5. Janet-like Division
6. Selection Strategy
7. Benchmarking
8. Conclusion

Constructive Theory of Involutivity

Cartan (1899, 1901): Involutivity of exterior PDEs.
Riquier (1910), Janet (1920), Thomas (1937): Involutivity of PDEs.
Spencer (1965), Kuranishi (1967), Goldschmidt (1969), Pommaret (1978): Formal
Theory of differential systems.
Reid (1991): Standard Form of linear PDEs.
Wu (1991): Relation of Riquier-Janet theory to Gröbner bases.
Zharkov, Blinkov (1993): Pommaret Bases of polynomial ideals.
Reid, Wittkopf, Boulton (1996): Reduced Involutive Form of PDEs.
Gerdt, Blinkov (1995-1998): Involutive Division \Longrightarrow general Involutive Bases.
Apel (1998): Admissible Involutive Division on a monomial set.
Gerdt (1999): Involutive Systems of Linear PDEs.
Seiler (2002): Combinatorial Aspects of Involutivity.
Chen, Gao (2002): Involutive Characteristic Sets for PDEs.
Hemmecke (2003): Sliced Involutive Division.
Evans (2004): Noncommutative Involutive Bases.
Gerdt, Blinkov (2005): Janet-like Division.

Implementation

Arais, Shapeev, Yanenko (1974): Cartan algorithm in Auto-Analytik.
Schwarz (1984): Riquier-Janet theory in Reduce.
Hartley, Tucker (1991): Cartan algorithm in Reduce.
Schwarz (1992): Linear differential Janet bases (DJB) in Reduce.
Reid, Wittkopf, Boulton (1993): Standard Form and Rif (2000) in Maple.
Seiler (1994): Formal theory in Axiom.
Zharkov, Blinkov (1993); G., Blinkov (1995): Pol. Pommaret bases (PPB) in Reduce.
Kredel (1996): PPB in MAS.
Nischke (1996): Polynomial JB (PJB) and PPB in C++ (PoSSoLib).
Berth (1999): Polynomial and differential involutive bases in Mathematica.
Cid (2000)-Robertz (2002-2005): PJB, DJB and Difference JB in Maple.
Blinkov (2000-2005): PJB in Reduce, C++.
Yanovich (2001-2004): PJB in C, Singular.
Hausdorf, Seiler (2000-2002): DJB and DPB in MuPAD.
Chen, Gao (2002): Involutive Extended Characteristic Sets in Maple.
Hemmecke (2002): Sliced Division Algorithm in Aldor.
Evans (2005): Noncommutative Involutive Bases in C.

Involutive Division

Definition: (G., Blinkov'98) An involutive division \mathcal{L} of variables is defined on \mathbb{M} if for any finite monomial set $U \subset \mathbb{M}$ and for any $u \in U$ there is defined a subset $M(u, U) \subseteq \mathbb{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ of variables generating monoid $\mathcal{L}(u, U) \equiv \mathbb{M}_{M(u, U)}$ such that

1. $u, v \in U, u \mathcal{L}(u, U) \cap v \mathcal{L}(v, U) \neq \emptyset \Longleftrightarrow u \in v \mathcal{L}(v, U)$
or $v \in u \mathcal{L}(u, U)$.
2. $v \in U, v \in u \mathcal{L}(u, U) \Longleftrightarrow \mathcal{L}(v, U) \subseteq L(u, U)$.
3. $V \subseteq U \Longrightarrow \mathcal{L}(u, U) \subseteq \mathcal{L}(u, V) \quad \forall u \in V$.

Variables in $M(u, U)$ are called $(\mathcal{L}-)$ multiplicative for u and those in $N M(u, U) \equiv \mathbb{X} \backslash M(u, U)$ are $(\mathcal{L}-)$ nonmultiplicative for u, respectively.

If $w \in u \mathcal{L}(u, U)$ then u is involutive divisor of $w:\left.u\right|_{\mathcal{L}} w \Longrightarrow$ involutive reduction and involutive normal form $N F_{\mathcal{L}}(f, F)$ where $f \in \mathbb{R}$ and $F \subset \mathbb{R}$. involutive separation \Longleftrightarrow involutive division (G., Blinkov)

Janet Division

Definition: (Janet'20, G.,Blinkov'98) For each finite monomial set $U \subset \mathbb{M}$ and $0 \leq i \leq n$ partition U into groups labeled by $d_{0}, \ldots, d_{i} \in \mathbb{N}_{\geq 0}(U=[0])$

$$
\left[d_{0}, d_{1}, \ldots, d_{i}\right]:=\left\{u \in U \mid d_{0}=0, d_{1}=\operatorname{deg}_{1}(u), \cdots, d_{i}=\operatorname{deg}_{i}(u)\right\}
$$

Variable x_{i} is J-multiplicative for $u \in U$ if $u \in\left[d_{0}, \ldots, d_{i-1}\right]$ and

$$
\operatorname{deg}_{i}(u)=\max \left\{\operatorname{deg}_{i}(v) \mid v \in\left[d_{0}, \ldots, d_{i-1}\right]\right\}
$$

Notation: $\operatorname{deg}_{i} \equiv \operatorname{deg}_{x_{i}}, \quad u \sqsubset v \Longleftrightarrow u \mid v \wedge u \neq v$
Definition: (Pommaret division). For $v=x_{1}^{d_{1}} \cdots x_{k}^{d_{k}}$ with $d_{k}>0(k \leq n)$ the variables $x_{j}, j \geq k$ are multiplicative and the other variables are nonmultiplicative. For $v=1$ all the variables are multiplicative.

Example: $\operatorname{lm}(F)=\left\{x^{2} y, x^{2} z, x y^{2}, x z^{2}, y^{3}, y z, z^{3}\right\} \quad(x \succ y \succ z)$

Leading	Janet separation of variables	
monomial	nonmultiplicative	multiplicative
$x^{2} y$	-	x, y, z
$x^{2} z$	y	x, z
$x y^{2}$	x	y, z
$x z^{2}$	x, y	z
y^{3}	x	y, z
$y z$	x, y	z
z^{3}	x, y	z

Example: $U=\left\{x_{1}^{2} x_{3}, x_{1} x_{2}, x_{1} x_{3}^{2}\right\}$

Element	Separation of variables			
	Janet		Pommaret	
	M_{J}	$N M_{J}$	M_{P}	$N M_{P}$
$x_{1}^{2} x_{3}$	x_{1}, x_{2}, x_{3}	-	x_{3}	x_{1}, x_{2}
$x_{1} x_{2}$	x_{2}, x_{3}	x_{1}	x_{2}, x_{3}	x_{1}
$x_{1} x_{3}^{2}$	x_{3}	x_{1}, x_{2}	x_{3}	x_{1}, x_{2}

Definition: A monomial set $U \in \mathcal{M}$ is \mathcal{L}-complete or \mathcal{L}-involutive if

$$
(\forall w \in \mathcal{M})(\forall u \in U)(\exists v \in U)\left[\left.v\right|_{\mathcal{L}} u \cdot w\right]
$$

The corresponding J-and P-completion of $U=\left\{x_{1}^{2} x_{3}, x_{1} x_{2}, x_{1} x_{3}^{2}\right\}$
Janet: $\left\{x_{1}^{2} x_{3}, x_{1} x_{2}, x_{1} x_{3}^{2}, x_{1}^{2} x_{2}\right\}$,
Pommaret : $\left\{x_{1}^{2} x_{3}, x_{1} x_{2}, x_{1} x_{3}^{2}, x_{1}^{2} x_{2}, \ldots, x_{1}^{i+2} x_{2}, \ldots, x_{1}^{j+2} x_{3}, \ldots\right\}$
The Pommaret division is non-Noetherian

Gröbner and Involutive Bases

A finite set $F=\left\{f_{1}, \ldots, f_{m}\right\} \in \mathbb{R}:=\mathcal{K}\left[x_{1}, \ldots, x_{n}\right]$ of multivariate polynomials is a basis of the ideal I

$$
I=<F>=\left\{\sum_{i=1}^{m} h_{i} f_{i} \mid h_{j} \in \mathbb{R}\right\}
$$

Given a polynomial set F and a linear monomial order \succ such that

$$
(i) m \neq 1 \Longrightarrow m \succ 1, \quad(i i) m_{1} \succ m_{2} \Longleftrightarrow m_{1} m \succ m_{2} m
$$

holds for any monomials m, m_{1}, m_{2}, one can select the leading monomial $\operatorname{lm}(f)$ of any $f \in \mathbb{R}$ and define a Gröbner basis $G \subset \mathbb{R}$ of ideal $I=<G>$:

$$
(\forall f \in I)(\exists g \in G) \quad[\operatorname{lm}(g) \mid \operatorname{lm}(f)]
$$

Similarly, given an involutive division \mathcal{L}, an involutive basis H of I is defined as

$$
(\forall f \in I)(\exists h \in H) \quad\left[\left.\operatorname{lm}(g)\right|_{\mathcal{L}} l m(f)\right]
$$

An involutive \mathcal{L}-basis is a (generally redundant) Gröbner basis with the \mathcal{L}-complete set of leading monomials

Definition: Given a finite set $F \subset \mathbb{R}$, a polynomial $p \in \mathbb{R}$, and a monomial order \succ, a normal form $N F(p, F)$ of p modulo F is defined as

$$
N F(p, F)=p^{\prime}=p-\sum_{i j} \alpha_{i j} m_{i j} f_{j}
$$

where $\quad \alpha_{i j} \in \mathcal{K}, f_{j} \in F, m_{i j} \in \mathcal{M}, \operatorname{lm}\left(m_{i j} g_{j}\right) \preceq \operatorname{lm}(p)$ and there are no monomial in p^{\prime} multiple of any leading monomial of elements in F.
Similarly, given an involutive division \mathcal{L}, an $(\mathcal{L}-)$ involutive normal form $N F_{\mathcal{L}}(p, F)$ is defined. The only distinction is that in the latter case all the monomial factors $m_{i j}$ must be \mathcal{L}-multiplicative for f_{j}, i.e. $m_{i j} \in \mathcal{L}\left(f_{j}, F\right)$, and p^{\prime} cannot contain monomials \mathcal{L}-multiple of any leading monomials in F.

This yields another definition of a Gröbner (GB) G and an involutive (IB) basis H of ideal I :

$$
\begin{aligned}
\mathrm{GB}: & p \in I \Longleftrightarrow N F(p, G)=0, \\
\mathrm{IB}: & p \in I \Longleftrightarrow N F_{\mathcal{L}}(p, H)=0 .
\end{aligned}
$$

IB can be computed by the following Involutive algorithm (G.,Blinkov'98) for any (noetherian) involutive division:

Buchberger algorithm:

Start with $G:=F$.
For a pair of polynomials $f_{1}, f_{2} \in G$: Compute $S\left(f_{1}, f_{2}\right)$.
Compute $h:=N F\left(S\left(f_{1}, f_{2}\right), G\right)$. If $h=0$, consider the next pair.
If $h \neq 0$, add h to G and iterate.
$S\left(f_{1}, f_{2}\right)=c_{1} t_{1} f_{1}-c_{2} t_{2} f_{2}, c_{1}, c_{2} \in \mathcal{K}$, $t_{1}, t_{2} \in \mathcal{M}, c_{1} t_{1} \operatorname{lm}\left(f_{1}\right)=c_{2} t_{2} \operatorname{lm}\left(f_{2}\right)$.

Involutive algorithm:

Start with $G:=F$.
Choose a pair of $f \in G, x \in N M_{\mathcal{L}}(f, G)$ with minimal $\operatorname{lm}(f \cdot x)$ w.r.t. \succ :

Compute $h:=N F_{\mathcal{L}}(f \cdot x, G)$.
If $h=0$, consider the next pair.
If $h \neq 0$, add h to G and iterate.
N.B. For linear PDEs instead of $f \cdot x$ one should take $\partial_{x}(f)$.

Algorithm: Involutive Basis (F, \prec, \mathcal{L})

```
Input: \(F\), a polynomial set; \(\prec\), a monomial order; \(\mathcal{L}\), an involutive division
Output: \(G\), a minimal involutive basis of \(\operatorname{Id}(F)\)
    choose \(f \in F\) without \(g \in F \backslash\{f\}: \operatorname{lm}(g) \sqsubset \operatorname{lm}(f) ; G:=\{f\} ; Q:=F \backslash G\)
    do
        \(h:=0\)
        while \(Q \neq \emptyset\) and \(h=0\) do
            choose \(p \in Q\) without \(q \in Q \backslash\{f\}: \operatorname{lm}(q) \sqsubset \operatorname{lm}(p)\)
            \(Q:=Q \backslash\{p\} ; \quad h:=N F_{\mathcal{L}}(p, T)\)
        od
        if \(h \neq 0\) then
            for all \(\{g \in G \mid \operatorname{lm}(g) \sqsupset l m(h)\}\) do
            \(Q:=Q \cup\{g\} ; G:=G \backslash\{g\}\)
            od
            \(G:=G \cup\{h\} ; Q:=Q \cup\left\{g \cdot x \mid g \in G, x \in N M_{\mathcal{L}}(g, G)\right\}\)
        fi
    od while \(Q \neq \emptyset \quad\) return \(G\)
```

Table 1: Computation of Janet basis for $F=\left\{x^{2} y-1, x y^{2}-1\right\}$

Steps of algorithm	Sets G and Q		
	elements in G	$N M_{J}$	Q
initialization	$x y^{2}-1$	-	$\left\{x^{2} y-1\right\}$
iteration	$x^{2} y-1$	-	
	$x y^{2}-1$	x	$\left\{x^{2} y^{2}-x\right\}$
	$x-y$	-	$\left\{x y^{2}-1, x^{2} y-1\right\}$
	$x-y$	-	
	$y^{3}-1$	x	$\left\{x^{2} y-1, x y^{3}-x\right\}$
	$x-y$	-	
	$y^{3}-1$	x	$\}$

Some optimizations

To avoid useless repeated prolongations and to apply the involutive analogues of the Buchberger criteria one has to keep the history of computation.

Definition: An ancestor of a polynomial $f \in F \subset \mathbb{R} \backslash\{0\}$ is a polynomial $g \in F$ of the smallest $\operatorname{deg}(\operatorname{lm}(g))$ among those satisfying $f=g \cdot u$ modulo $\operatorname{Id}(F \backslash\{f\})$ with $u \in \mathbb{M}$. If $\operatorname{deg}(\operatorname{lm}(g))<\operatorname{deg}(\operatorname{lm}(f))(u \neq 1)$ the ancestor g of f is called proper.

Remark: If an intermediate polynomial h that arose in the course of a completion algorithm has a proper ancestor g, then h has been obtained from g via a sequence of \mathcal{L}-head irreducible non-multiplicative prolongations. For the ancestor g itself the equality $\operatorname{lm}(\operatorname{anc}(g))=\operatorname{lm}(g)$ holds.

Let now every element $f \in F$ in the intermediate set of polynomials be endowed with the triple structure

$$
p=\{f, g, \text { vars }\}
$$

where

$$
\begin{aligned}
\operatorname{pol}(p) & =f \text { is the polynomial } f \text { itself, } \\
\operatorname{anc}(p) & =g \text { is a polynomial ancestor of } f \text { in } F, \\
\operatorname{nmp}(p) & =\text { vars is a (possibly empty) subset of variables. }
\end{aligned}
$$

The set vars associated with polynomial f accumulates those non-multiplicative variables of f have been already used in the algorithm for construction of non-multiplicative prolongations. It keeps information on non-multiplicative prolongations of polynomial f that have been already examined in the course of completion and serves to avoid useless repeated prolongations.

Remark: The reduced GB is a subset of IB containing all the

 polynomials which have no proper ancestors. Due to the above triple structure associated with intermediate polynomials, the reduced GB is an internally fixed subset of IB. Therefore, having IB computed, the reduced GB is extracted without any extra computational costs.
Computational Peculiarities of Janet Division Algorithm

Pro's: (G.'05)

Automatic avoidance of some useless critical pairs

Table 2: Example of avoidance of such a pair

Polynomial	$N M_{J}$	Prolongation	S-polynomial
$p_{1}=x y-1$	-	-	-
$p_{2}=x z-1$	y	$y p_{2}$	$S\left(p_{2}, p_{1}\right)=y p_{2}-z p_{1}$
$p_{3}=y z-1$	x	$x p_{3}$	$S\left(p_{3}, p_{1}\right)=x p_{3}-z p_{1}$

Weakened role of criteria

Table 3: Timings for C code (Opteron 242 computer)

	Applicability				Timing (sec.)				
Example	C_{1}	C_{2}	C_{3}	C_{4}	-	C_{1}	$C_{1 \div 2}$	$C_{1 \div 3}$	$C_{1 \div 4}$
Cyclic6	98	2	4	-	0.18	0.14	0.13	0.13	0.12
Cyclic7	698	190	22	-	85.18	63.82	58.61	58.14	58.72
Katsura8	173	1	1	-	32.16	27.59	26.92	27.08	27.48
Katsura9	344	-	1	-	402.38	335.50	332.94	335.69	337.52
Cohn3	-	114	169	7	90.20	90.32	87.66	76.05	76.72
Assur44	89	60	171	3	12.39	12.28	11.95	10.29	10.35
Reimer6	63	235	179	12	35.49	38.56	21.93	9.42	9.69
Reimer7	327	1723	497	71	9385.17	9817.16	3290.06	714.08	719.37
Hairer2	3766	1158	256	91	2107.24	246.90	104.80	70.02	62.91

$C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4} \Longleftrightarrow$ Buchberger criteria (Apel, Hemmecke'02)

Smooth growth of intermediate coefficients

Example: (Arnold'03) Consider ideal $\mathcal{I}=I d(F)$ in $\mathbb{Q}[x, y, z]$ generated by the polynomial set:

$$
F=\left\{\begin{array}{l}
8 x^{2} y^{2}+5 x y^{3}+3 x^{3} z+x^{2} y z \\
x^{5}+2 y^{3} z^{2}+13 y^{2} z^{3}+5 y z^{4} \\
8 x^{3}+12 y^{3}+x z^{2}+3 \\
7 x^{2} y^{4}+18 x y^{3} z^{2}+y^{3} z^{3}
\end{array}\right.
$$

Its Gröbner basis for the degree-reverse-lexicographical order with $x \succ y \succ z$ is small $G=\left\{x, 4 y^{3}+1, z^{2}\right\}$ whereas in the course of Buchberger's algorithm, as it implemented in Macaulay 2, there arise intermediate coefficients with about $\mathbf{8 0 , 0 0 0}$ digits. As to algorithm Involutive Basis II, it outputs Gröbner basis G or Janet basis $\left\{x, 4 y^{3}+1, z^{2}, y z^{2}, y^{2} z^{2}\right\}$, with not more than 400 digits in the intermediate coefficients.

Table 4: Coefficient size in 64 bit words

Example	Input	Intermediate	Output	Swell factor
Cyclic6	1	3	1	3.00
Cyclic7	1	11	5	2.20
Katsura8	1	5	4	1.25
Katsura9	1	8	6	1.33
Cohn3	1	168	19	8.84
Assur44	1	93	19	4.89
Reimer6	1	4	4	1.00
Reimer7	1	10	10	1.00
Hairer2	1	10	6	1.00

Fast search for Janet divisor (Janet tree)

Comparison with Binary Search

Let d be the maximal total degree of the leading monomials of polynomials in n variables which constitute the finite set F.

Then the complexity bound of the search for a Janet divisor in the Janet tree and the binary search algorithm is given by

$$
\begin{aligned}
t_{\mathbf{J}-\text { divisor }} & =O(d+n) \\
t_{\text {BinarySearch }} & =O(n((d+n) \log (d+n)-n \log (n)-d \log (d)))
\end{aligned}
$$

Uniqueness of reduction sequence

By properties of an involutive division \mathcal{L}, any monomial may have at most one \mathcal{L}-devisor among the leading monomials of the intermediate basis G. Thereby, the reduction sequence is unique.

Parallelism

Table 5: Timings (in seconds) and speedup due to parallelism

Example	1 Thread	3 Threads	Speedup	$t_{1 t h} / t_{3 t h}$
Cyclic6	0.79	1.16	-0.37	0.68
Cyclic7	386.89	182.86	+294.03	2.12
Katsura8	119.92	53.72	+66.20	2.23
Katsura9	1356.37	587.82	+768.55	2.31
Cohn3	554.75	222.69	+332.06	2.49
Assur44	73.93	31.34	+42.59	2.36
Reimer6	88.99	52.56	+36.43	1.69

Con's (G., Blinkov'02)

Example 1: Toric ideal I (Bigatti, Scala, Robbiano'g9) $(x \succ y \succ z \succ w)$.

$$
\left\{x^{7}-y^{2} z, x^{4} w-y^{3}, x^{3} y-z w\right\}
$$

Example 2: Polynomial ideal (Gräbe, Hemmecke) $(w \succ x \succ y \succ z)$.

$$
\left\{z^{20}+z^{10}-x^{2}, z^{30}+z^{10}-x y^{3}, w^{40} x^{4}-y^{6}\right\}
$$

Example 3: Toric ideal II (Morales) $\left(x_{0} \succ x_{1} \succ x_{2} \succ x_{3} \succ x_{4}\right)$.

$$
\left\{x_{0} x_{1} x_{2} x_{3} x_{4}-1, x_{2}^{29} x_{3}^{5}-x_{1}^{14} x_{4}^{20}, x_{1}^{39}-x_{2}^{25} x_{3}^{14}\right\} .
$$

Example 4: Toric ideal III (Morales'95) $(x \succ y \succ z \succ w)$.

$$
\begin{aligned}
& \left\{y^{250}-x^{239} z^{11}, x^{150} z^{12}-y^{161} w, y^{89} z-x^{89} w x^{61} z^{13}-y^{72} w^{2}\right. \\
& \left.x^{33} z^{27}-y^{55} w^{5}, z^{55}-x^{23} y^{21} w^{11}, x^{5} z^{41}-y^{38} w^{8}, y^{17} z^{14}-x^{28} w^{3}\right\}
\end{aligned}
$$

Table 6: Cardinalities of Gröbner and Janet bases for Examples 1-4

Example	Cardinality	
	Gröbner basis	Janet basis
1	4	11
2	9	983
3	19	7769
4	8	37901

Janet-like Division

Definition: (G.,Blinkov'05) Let $U \subset \mathbb{M}$ be a monomial set and its elements be partitioned into groups as for the Janet division. For every $u \in U$ and $1 \leq i \leq n$ consider

$$
h_{i}(u, U):=\max \left\{\operatorname{deg}_{i}(v) \mid u, v \in\left[d_{0}, \ldots, d_{i-1}\right]\right\}-\operatorname{deg}_{i}(u)
$$

If $h_{i}(u, U)>0$, then the power $x_{i}^{k_{i}}$ where

$$
k_{i}:=\min \left\{\operatorname{deg}_{i}(v)-\operatorname{deg}_{i}(u) \mid v, u \in\left[d_{0}, \ldots, d_{i-1}\right], \operatorname{deg}_{i}(v)>\operatorname{deg}_{i}(u)\right\}
$$

is a nonmultiplicative power for u.
Notation: $N M P(u, U)$ is the set of all nonmultiplicative powers for $u \in U$.
Definition: (Janet-like division). For a set $U \subset \mathbb{M}$ and $u \in U$, elements of the monoid ideal

$$
\mathcal{N} \mathcal{M}(u, U):=\{v \in \mathbb{M}|\exists w \in N M P(u, U): w| v\}
$$

are \mathcal{J}-nonmultipliers for $u \in U$. Elements in $\mathcal{M}(u, U):=\mathbb{M} \backslash \mathcal{N} \mathcal{M}(u, U)$ are \mathcal{J}-multipliers for u, respectively. $u \in U$ is a Janet-like divisor or \mathcal{J}-divisor of $w \in \mathbb{M}$ (denotation $\left.\left.u\right|_{\mathcal{J}} w\right)$ if $w=u \cdot v$ with $v \in \mathcal{M}(u, U)$.

Example: $U=\left\{x_{1}^{5}, x_{1}^{2} x_{2}^{2} x_{3}, x_{1}^{2} x_{3}^{2}, x_{2}^{4} x_{3}, x_{2} x_{3}^{2}, x_{3}^{5}\right\} \subset \mathbb{K}\left[x_{1}, x_{2}, x_{3}\right]$.

Table 7: Comparison with Janet division

Element in U	Division		
	Janet		Janet-like
	M_{J}	$N M_{J}$	$N M P$
x_{1}^{5}	x_{1}, x_{2}, x_{3}	-	-
$x_{1}^{2} x_{2}^{2} x_{3}$	x_{2}, x_{3}	x_{1}	x_{1}^{3}
$x_{1}^{2} x_{3}^{2}$	x_{3}	x_{1}, x_{2}	x_{1}^{3}, x_{2}^{2}
$x_{2}^{4} x_{3}$	x_{2}, x_{3}	x_{1}	x_{1}^{2}
$x_{2} x_{3}^{2}$	x_{3}	x_{1}, x_{2}	x_{1}^{2}, x_{2}^{3}
x_{3}^{5}	x_{3}	x_{1}, x_{2}	x_{1}^{2}, x_{2}

Corollary: $\left.\left.u\right|_{J} w \Longrightarrow u\right|_{\mathcal{J}} w$. The converse is generally not true.
Remark: Janet-like division is not involutive division since $\mathcal{M}(u, U)$ is not monoid. However, this division possesses all the above listed attractive algorithmic properties of the Janet division.

Definition: (Janet-like basis) Let $\mathcal{I} \subset \mathbb{R}$ be a nonzero ideal and \succ be a monomial order. Then a minimal \mathcal{J}-autoreduced subset $G \subset \mathbb{R}$ such that $\mathcal{I}=I d(G)$ is Janet-like basis (JLB) or \mathcal{J}-basis of \mathcal{I} if

$$
\forall f \in \mathcal{I}, \exists g \in G:\left.\operatorname{lm}(g)\right|_{\mathcal{J}} \operatorname{lm}(f)
$$

From the above corollary it follows

$$
\operatorname{card}(G B) \leq \operatorname{card}(J L B) \leq \operatorname{card}(J B) \stackrel{\text { monicity }}{\Longrightarrow} G B \subseteq J L B \subseteq J B
$$

Table 8: Cardinalities of bases for Examples 1-4

Example	Cardinality		
	Gröbner basis	Janet-like basis	Janet basis
1	4	5	11
2	9	14	983
3	19	190	7769
4	8	18	37901

Selection Strategy

Apart from improvement of the division, there is another important source of optimization in the involutive algorithms: selection of non-multiplicative prolongations that (when \mathcal{L}-head reducible) play in the involutive approach the same role as S-polynomials play in Buchberger's algorithm.

Though in the involutive approach an admissible choice of a non-multiplicative prolongation is subject to certain restrictions, for examples large enough, one can choose from many possible prolongations. For example, in the 7th order cyclic root example at the intermediate algorithmic steps there arise several hundreds prolongations such that any of them can be chosen. By this reason it is important to investigate a heuristical efficiency of different selection strategies.

Below we present three different selection strategies which as we recently found (G., Blinkov'06) are computationally good for the Janet division. In so going, we restrict ourselves with degree compatible orders. Due to the FGLM and Gröbner walk conversion algorithms, this is a reasonable restriction.

Janet Division Algorithm: Strategy I $(F \in \mathbb{R} \backslash\{0\}$, degree compatible \prec)

```
choose \(f \in F\) of the minimal \(\operatorname{deg}(\operatorname{lm}(f)) ; G:=\{f\} ; \quad Q:=F \backslash G\)
    do
        \(S:=\{q \in Q \mid \operatorname{deg}(\operatorname{lm}(q))=\operatorname{mindeg}(\operatorname{lm}(Q))\} ; \quad P:=\emptyset ; \quad Q:=Q \backslash S\)
        for all \(s \in S\) do
            \(S:=S \backslash\{s\} ; p:=H N F_{J}(s, G) \quad /^{*}\) Head Normal Form */
            if \(p \neq 0\) then
            \(P:=P \cup\{p\}\)
            fi
        od
        while \(P \neq \emptyset\) do
            choose \(p \in P\) with minimal \(\operatorname{lm}(p)\) w.r.t. \(\succ ; P:=P \backslash\{p\} ; h:=N F_{J}(p, G)\)
            for all \(\{g \in G \mid \operatorname{lm}(g) \sqsupset \operatorname{lm}(h)\}\) do
            \(Q:=Q \cup\{g\} ; \quad G:=G \backslash\{g\}\)
            od
            \(G:=G \cup\{h\} ; Q:=Q \cup\left\{g \cdot x \mid g \in G, x \in N M_{J}(\operatorname{lm}(g), \operatorname{lm}(G))\right\}\)
        od
    od while \(Q \neq \emptyset\)
    return \(G:=\{g \in G: g=\operatorname{anc}(g)\} \quad / *\) reduced \(G B^{*} /\)
```

Janet Division Algorithm: Strategy II ($F \in \mathbb{R} \backslash\{0\}$, degree compatible \prec)

```
choose \(f \in F\) of the minimal \(\operatorname{deg}(\operatorname{lm}(f)) ; G:=\{f\} ; \quad Q:=F \backslash G\)
    do
    \(S:=\{q \in Q \mid \operatorname{deg}(\operatorname{lm}(q))=\operatorname{mindeg}(\operatorname{lm}(Q))\} ; \quad P:=\emptyset ; \quad Q:=Q \backslash S\)
    for all \(s \in S\) do
    \(S:=S \backslash\{s\} ; p:=N F_{J}(s, G) \quad / *\) Full Normal Form */
    if \(p \neq 0\) then
            \(P:=P \cup\{p\}\)
        fi
        od
        \(P:=\operatorname{Update}(P, \prec)\)
        for all \(p \in P\) do
            for all \(\{g \in G \mid \operatorname{lm}(g) \sqsupset \operatorname{lm}(p)\}\) do
            \(Q:=Q \cup\{g\} ; \quad G:=G \backslash\{g\}\)
            od
            \(G:=G \cup\{p\} ; \quad Q:=Q \cup\left\{g \cdot x \mid g \in G, x \in N M_{J}(\operatorname{lm}(g), \operatorname{lm}(G))\right\}\)
        od
    od while \(Q \neq \emptyset\)
18: return \(G:=\{g \in G: g=\operatorname{anc}(g)\} \quad / *\) reduced \(G B * /\)
```


Algorithm: Update (P, \succ)

Input: $P \subset \mathbb{R} \backslash\{0\}$, a finite set; \succ, an order
Output: $H \subset \mathbb{R} \backslash\{0\}$, an updated input set
1: choose $f \in P$ with the highest/lowest $\operatorname{lm}(f)$ w.r.t. \succ
$H:=\{f\} ; \quad P:=P \backslash\{f\}$
while $P \neq \emptyset$ do
choose $p \in P$ with the highest/lowest $\operatorname{lm}(p)$ w.r.t. \succ
$P:=P \backslash\{p\}$
$h:=N F_{J}(p, H)$
if $h \neq 0$ then
$H:=H \cup\{h\}$
fi
od
return H

Benchmarking

Strategy I was implemented in C as a part of package JB (Yanovich'02) whose version is also included in the library of Singular, and in the C++ as a part of the open source software GINV (Gröbner INVolutive) (Blinkov'05). The last software implements also Strategy II for both options in subalgorithm Update.

The timings in the following table were obtained on the following machines:
JB: 2xOpteron-242 (1.6 Ghz) with 4Gb of RAM running under Gentoo Linux 2004.3 with gcc-3.4.2 compiler.

GINV: Turion-3400 (1.8 Ghz) with 2 Gb of RAM running under Gentoo Linux 2005.1 with gcc-3.4.4 compiler.

Magma: dual processor Pentium III (1 Ghz) with 2 GB of RAM running under SuSE Linux 8.0 (kernel 2.4.18-64GB-SMP) with gcc-2.95.3 compiler.

All timings in the table are given in seconds, and $\left(^{*}\right)$ shows that the example was not computed because of the memory overflow.

Timings

Example	Strategy I (JB)	Strategy I (GINV)	Strategy II high (GINV)	Strategy II low (GINV)	Magma V2.11-8	Magma V2.12-17
assur44	10.35	14.20	6.33	6.4	4.56	4.99
butcher8	1.06	1.02	0.38	0.39	4.68	5.00
chemequs	0.67	0.61	0.57	0.6	12.80	11.99
chemkin	17.83	16.87	10.95	9.95	32.34	29.83
cohn3	76.72	107.14	30.21	25.47	37.73	39.20
cpdm5	1.78	1.57	1.69	1.68	0.69	0.70
cyclic6	0.12	0.19	0.14	0.14	0.09	0.08
cyclic7	58.72	60.94	68.59	65.28	6.64	7.08
cyclic8	12056.24	14046.26	5826.18	4424.96	235.73	245.65
d1	8.77	12.58	1.99	2.08	28.49	8.29
des18_3	0.19	0.18	0.19	0.19	1.81	1.89
des22_24	0.68	0.62	0.77	0.79	1.37	1.46
discret3	23322.8	20956.31	12642.49	13521.65	33658.09	19369.53
dl	270.17	278.89	80.77	89.52	14.57	11.95
eco8	0.40	0.44	0.44	0.46	0.20	0.20
eco9	3.22	5.60	4.99	5.08	1.25	1.20
eco10	52.56	56.70	65.71	68.06	7.07	6.91
eco11	765.98	741.74	718.53	679.3	62.33	51.08
extcyc5	1.35	1.53	1.46	1.37	0.37	0.38
extcyc6	324.70	184.49	276.06	155.64	45.36	47.96

Timings (cont.)

Example	Strategy I (JB)	Strategy I (GINV)	Strategy II high (GINV)	Strategy II low (GINV)	Magma V2.11-8	Magma V2.12-17
extcyc7	4.88	7.71	$*$	$*$	8242.00	8492.13
f744	132.97	139.79	2.22	2.68	1.47	1.38
f855	108.52	116.77	37.64	38.45	48.63	37.06
fabrice24	20.97	5.76	8.2	7.7	9.45	8.70
filter9	62.91	108.17	1.13	1.6	80.04	56.67
hairer2	1.96	0.92	126.69	125.43	92.07	85.86
hairer3	64.17	53.87	0.32	1.4	$*$	$*$
hcyclic7	6024.97	4316.59	65.81	73.0	6.26	6.76
hcyclic8	22.17	8.58	$*$	7560.99	229.70	237.12
hf744	2157.88	534.08	7.18	11.26	1.39	1.32
hf855	0.77	0.71	806.51	988.38	48.15	36.69
hietarinta1	98.24	122.36	0.38	0.53	2.63	2.15
i1	58.29	58.21	55.07	42.35		
ilias13	1167.18	5851.97	3013.1	2469.62	336.21	309.64
ilias_k_2	323.59	669.68	445.51	270.21	55.41	54.71
ilias_k_3	452.32	846.19	1162.7	622.14	90.67	89.97
jcf26	224.96	211.24	16.44	14.65	31.64	25.59
katsura7	2.15	1.77	24.08	1.98	0.72	0.79
katsura8	27.48	24.66	28.8	27.09	4.7	5.06
katsura9	337.52	294.59	340.45	311.98	33.47	34.87

Timings (cont.)

Example	Strategy I (JB)	Strategy I (GINV)	Strategy II high (GINV)	Strategy II low (GINV)	Magma V2.11-8	Magma V2.12-17
katsura10	4790.55	4983.11	7220.29	6204.95	287.38	292.02
kin1	15.18	20.32	7.11	7.11	50.56	45.33
kotsireas	6.33	37.94	4.93	4.27	3.45	3.67
noon6	0.97	1.29	1.27	1.29	0.60	0.62
noon7	28.87	32.58	37.52	38.52	4.93	4.77
noon8	1552.26	2292.84	3322.62	3152.57	43.65	42.80
pinchon1	10.37	0.04	0.01	0.01	4.09	3.54
rbpl	210.94	177.51	173.8	173.98	38.33	35.79
rbpl24	108.78	116.78	8.23	7.7	9.62	8.74
redcyc6	0.16	0.17	0.13	0.14	0.10	0.10
redcyc7	913.75	1048.69	48.19	48.61	5.73	6.36
redeco10	18.51	18.66	23.91	22.4	2.33	2.40
redeco11	178.32	187.36	253.34	228.41	14.56	14.85
redeco12	1735.95	2172.75	4666.8	3385.97	101.51	103.02
reimer5	0.22	0.36	0.34	0.38	0.74	0.70
reimer6	9.69	21.60	24.19	23.96	42.13	42.40
reimer7	719.37	3808.91	4756.4	4314.12	5216.53	5032.73
virasoro	9.69	8.90	10.96	10.68	1.72	1.77

Conclusion

- Our involutive Janet division algorithm is rather efficient in computing GB.
- Some useless critical pairs (S-polynomials) are automatically avoided.
- The intermediate coefficients growth is smoothed.
- The role of criteria is weakened. Even without any criteria the algorithm works reasonably fast.
- Janet trees form the data structures providing very fast search for involutive divisor which is unique.
- The algorithm admits an effective parallelization.
- Janet-like division improves the Janet division.
- Having JB computed, the reduced GB is extracted from JB without any extra computational costs.
- Experimenting with three different selection strategies shows rather good stability of the algorithm.
- Our publications, computer experiments and GINV software are available on the Web: http://invo.jinr.ru

