Task

Solution strategy

```
Division
```

Leading
image
Monomial
spaces and
operators,
and an
algorithm
Binomial
operators

Monomial decomposition of linear differential operators

Sebastian Gann
University of Innsbruck

sebastian.gann@uibk.ac.at

A glimpse of the next 18

 minutes.
1 Task

2 Solution strategy
3 Division

4 Leading image
5 Monomial spaces and operators, and an algorithm

6 Binomial operators

What do we want to do?

Given $T \in \mathbb{K}[x, \partial], h \in \mathbb{K}[x]$ decide whether there exists $g \in \mathbb{K}[x]$, s.t.

$$
T g=h
$$

In the case of existence construct some g (this is not very precise (but can be fixed)).

Remark: analogue constructions for

$$
T \in \mathbb{K}[[x]][\partial], h \in \mathbb{K}[[x]] \text { and } g \in \mathbb{K}[[x]] .
$$

What do we want to do?

Given $T \in \mathbb{K}[x, \partial], h \in \mathbb{K}[x]$ decide whether there exists $g \in \mathbb{K}[x]$, s.t.

$$
T g=h
$$

In the case of existence construct some g (this is not very precise (but can be fixed)).

Remark: analogue constructions for

$$
T \in \mathbb{K}[[x]][\partial], \hbar \in \mathbb{K}[[x]] \text { and } g \in \mathbb{K}[[x]] .
$$

What do we want to do?

Given $T \in \mathbb{K}[x, \partial], h \in \mathbb{K}[x]$ decide whether there exists $g \in \mathbb{K}[x]$, s.t.

$$
T g=h
$$

In the case of existence construct some g (this is not very precise (but can be fixed)).

Remark: analogue constructions for

$$
T \in \mathbb{K}[[x]][\partial], h \in \mathbb{K}[[x]] \text { and } g \in \mathbb{K}[[x]] .
$$

Example

Task

Solution

 strategyConsider $T=x \partial_{y}+\partial_{x} \in \mathbb{K}\left[x, y, \partial_{x}, \partial_{y}\right]$. For each there exists a unique solution g of the particular equation,

$$
T g=h
$$

In one case we have $|\operatorname{supp}(g)|=2$, in the other case $|\operatorname{supp}(g)|=47$.

There exist infinitely many linear independent solutions g of the homogenous equation $T g=0$.

Example

Consider $T=x \partial_{y}+\partial_{x} \in \mathbb{K}\left[x, y, \partial_{x}, \partial_{y}\right]$. For each

$$
h \in\left\{x^{31}+x^{15}, y^{26}-y^{19}\right\}
$$

there exists a unique solution g of the particular equation,

$$
T g=h
$$

In one case we have $|\operatorname{supp}(g)|=2$, in the other case $|\operatorname{supp}(g)|=47$.

There exist infinitely many linear independent solutions g of the homogenous equation $T g=0$.

Example

Task

Solution

 strategyConsider $T=x \partial_{y}+\partial_{x} \in \mathbb{K}\left[x, y, \partial_{x}, \partial_{y}\right]$. For each

$$
h \in\left\{x^{31}+x^{15}, y^{26}-y^{19}\right\}
$$

there exists a unique solution g of the particular equation,

$$
T g=h
$$

In one case we have $|\operatorname{supp}(g)|=2$, in the other case $|\operatorname{supp}(g)|=47$.

There exist infinitely many linear independent solutions g of the homogenous equation $T g=0$.

Example

Task

Solution

 strategyConsider $T=x \partial_{y}+\partial_{x} \in \mathbb{K}\left[x, y, \partial_{x}, \partial_{y}\right]$. For each

$$
h \in\left\{x^{31}+x^{15}, y^{26}-y^{19}\right\}
$$

there exists a unique solution g of the particular equation,

$$
T g=h
$$

In one case we have $|\operatorname{supp}(g)|=2$, in the other case $|\operatorname{supp}(g)|=47$.

There exist infinitely many linear independent solutions g of the homogenous equation $T g=0$.

Example

Consider $T=x \partial_{y}+\partial_{x} \in \mathbb{K}\left[x, y, \partial_{x}, \partial_{y}\right]$. For each

$$
h \in\left\{x^{31}+x^{15}, y^{26}-y^{19}\right\}
$$

there exists a unique solution g of the particular equation,

$$
T g=h
$$

In one case we have $|\operatorname{supp}(g)|=2$, in the other case $|\operatorname{supp}(g)|=47$.

There exist infinitely many linear independent solutions g of the homogenous equation $T g=0$.

Strategy

We interpret $T=\sum c_{\alpha \beta} x^{\alpha} \partial^{\beta} \in \mathbb{K}[x, \partial]$ as the linear operator

$$
\begin{array}{rccc}
T: & \mathbb{K}[x] & \longrightarrow & \mathbb{K}[x] \\
& g=\sum c_{\gamma} x^{\gamma} & \longmapsto & T g=\sum c_{\alpha \beta} c_{\gamma} \gamma^{\beta} x^{\gamma+\alpha-\beta}
\end{array}
$$

Strategy

A polynomial g s.t. $T g=h$ exists iff $h \in \operatorname{Im}(T)$.

- We will specify a \mathbb{K}-vectorspace J generated by monomials, s.t.
- for h we compute a unique representation

$$
h=q+r
$$

$$
\in \operatorname{Im}(T), r \in J .
$$

- If $r \neq 0$ there exists no g s.t. $T g=h$.

Strategy

A polynomial g s.t. $T g=h$ exists iff $h \in \operatorname{Im}(T)$.

- We will specify a \mathbb{K}-vectorspace J generated by monomials, s.t.

$$
\mathbb{K}[x]=\operatorname{Im}(T) \oplus J
$$

- for h we compute a unique representation $h=q+r$
- If $r \neq 0$ there exists no g s.t. $T g=h$.

Strategy

A polynomial g s.t. $T g=h$ exists iff $h \in \operatorname{Im}(T)$.

- We will specify a \mathbb{K}-vectorspace J generated by monomials, s.t.

$$
\mathbb{K}[x]=\operatorname{Im}(T) \oplus J
$$

- for h we compute a unique representation

$$
h=q+r
$$

where

$$
q \in \operatorname{Im}(T), r \in J
$$

\square

Strategy

A polynomial g s.t. $T g=h$ exists iff $h \in \operatorname{Im}(T)$.

- We will specify a \mathbb{K}-vectorspace J generated by monomials, s.t.

$$
\mathbb{K}[x]=\operatorname{Im}(T) \oplus J
$$

- for h we compute a unique representation

$$
h=q+r
$$

where

$$
q \in \operatorname{Im}(T), r \in J
$$

- If $r \neq 0$ there exists no g s.t. $T g=h$.

Division

$$
h=T g+r
$$

with unique polynomials $T g \in \operatorname{Im}(T), r \in J$.

If $r=0$ the "quotient" g fulfills

$$
T g=h
$$

Ordering

We fix a total ordering $<_{\lambda}$ on \mathbb{Z}^{n} induced by an injective linear form $\lambda: \mathbb{Z}^{n} \longrightarrow \mathbb{K}$ with positive, \mathbb{Q}-linear independent coefficients. We set

$$
\nu<_{\lambda} \mu \Leftrightarrow \lambda \mu<\lambda \nu .
$$

with associated monomial ordering

$$
x^{\nu}<_{\lambda} x^{\mu} \Leftrightarrow \nu<_{\lambda} \mu .
$$

Such $<_{\lambda}$ is artinian on \mathbb{N}^{n}.

Division algorithm

Task

Solution strategy

Division
image
Monomial
spaces and
operators,
and an
algorithm

Divide $h \in \mathbb{K}[x]$ with $x^{\delta}=\operatorname{lt}(h)$ by $T \in \mathbb{K}[x, \partial]$. Is there some $g_{1} \in \mathbb{K}[x]$ s.t. $x^{\delta}=\operatorname{lt}\left(T g_{1}\right)$? yes, then no, then After this division step:

Division algorithm

Divide $h \in \mathbb{K}[x]$ with $x^{\delta}=\operatorname{lt}(h)$ by $T \in \mathbb{K}[x, \partial]$.
Is there some $g_{1} \in \mathbb{K}[x]$ s.t. $x^{\delta}=\operatorname{lt}\left(T g_{1}\right)$?

Division algorithm

Divide $h \in \mathbb{K}[x]$ with $x^{\delta}=\operatorname{lt}(h)$ by $T \in \mathbb{K}[x, \partial]$.
Is there some $g_{1} \in \mathbb{K}[x]$ s.t. $x^{\delta}=\operatorname{lt}\left(T g_{1}\right)$?

$$
\begin{array}{cc}
\text { yes, then } & \text { no, then } \\
h=T g_{1}-\left(T g_{1}-h\right)+0 & h=\left(h-x^{\delta}\right)+x^{\delta}
\end{array}
$$

Division algorithm

Task

Solution strategy

Divide $h \in \mathbb{K}[x]$ with $x^{\delta}=\operatorname{lt}(h)$ by $T \in \mathbb{K}[x, \partial]$. Is there some $g_{1} \in \mathbb{K}[x]$ s.t. $x^{\delta}=\operatorname{lt}\left(T g_{1}\right)$?

$$
\begin{array}{cc}
\text { yes, then } & \text { no, then } \\
h=T g_{1}-\left(T g_{1}-h\right)+0 & h=\left(h-x^{\delta}\right)+x^{\delta}
\end{array}
$$

After this division step:

$$
\operatorname{deg}\left(T g_{1}-h\right), \operatorname{deg}\left(h-x^{\delta}\right)<_{\lambda} \delta
$$

Division algorithm

After finitely many division steps we obtain

$$
h=T g+r
$$

No monomial of the "remainder" r occurs as leading monomial of a polynomial in the image of T.

Leading image

To perform the division process it is necessary to know the leading monomials of polynomials in the image of

$$
\begin{aligned}
T: \mathbb{K}[x] & \longrightarrow \\
& \longrightarrow \mathbb{K}[x] \\
g & \longmapsto
\end{aligned} T g .
$$

Leading image

To perform the division process it is necessary to know the leading monomials of polynomials in the image of

$$
\begin{aligned}
T: \mathbb{K}[x] & \longrightarrow \\
& \longrightarrow \mathbb{K}[x] \\
g & \longmapsto
\end{aligned} T g .
$$

We define

$$
\operatorname{lm}(\operatorname{Im}(T))_{\mathbb{K}}\left\langle x^{\delta} ; \exists g \in \mathbb{K}[x] \text { mit } x^{\delta}=\operatorname{lm}(T g)\right\rangle
$$

as the leading image of T.

Leading image

We define a \mathbb{K}-vectorspace J, generated by monomials, by

$$
\mathbb{K}[x]=\operatorname{lm}(\operatorname{Im}(T)) \oplus J
$$

The sketched division process yields the direct sum decomposition

$$
\mathbb{K}[x]=\operatorname{Im}(T) \oplus J
$$

Leading image

We define a \mathbb{K}-vectorspace J, generated by monomials, by

$$
\mathbb{K}[x]=\operatorname{lm}(\operatorname{Im}(T)) \oplus J
$$

The sketched division process yields the direct sum decomposition

$$
\mathbb{K}[x]=\operatorname{Im}(T) \oplus J
$$

Constructing the leading image is the crucial point know

- solutions of differential equations
- division algorithm
- decide if $x^{\delta} \in \operatorname{lm}(\operatorname{Im}(T))$ for given x^{δ}
- we want to know the leading image of T
- construction of leading image?

Construction of leading image

To describe the leading image, we define

- algebraic monomial spaces
- monomial decomposition of differential operators and give an algorithm for the
- approximation of the leading image by algebraic monomial spaces.

Algebraic monomial spaces

A subspace M of $\mathbb{K}[x]$ is called algebraic monomial, if there exists $\Sigma \subset \mathbb{N}^{n}$ given by finitely many algebraic equations and inequations, such that M consists of all polynomials with support in Σ.

$$
M=\mathbb{K}\left\langle x^{a} ; a^{2}-10 a+21=0, a^{2}+1 \neq 50\right\rangle \subseteq \mathbb{K}[x]
$$

Monomial differential operators

Task

Solution strategy

A monomial differential operator is of the form

$$
T=\sum_{\alpha-\beta=\tau} c_{\alpha \beta} x^{\alpha} \partial^{\beta}
$$

for a $\tau \in \mathbb{Z}^{n}$. Application of T on x^{2} yields
where

c is the (polynomial) coefficient function of T,
τ is the shift of T.

Monomial differential operators

A monomial differential operator is of the form

$$
T=\sum_{\alpha-\beta=\tau} c_{\alpha \beta} x^{\alpha} \partial^{\beta}
$$

for a $\tau \in \mathbb{Z}^{n}$. Application of T on x^{γ} yields

$$
T\left(x^{\gamma}\right)=c(\gamma) \cdot x^{\gamma+\tau}
$$

where

$$
c(\gamma)=\sum_{\alpha-\beta=\tau} c_{\alpha \beta} \gamma^{\underline{\beta}} .
$$

c is the (polynomial) coefficient function of T,
τ is the shift of T.

Examples

Task

Solution strategy

$$
T=x \partial_{y}:
$$

$$
T\left(x^{a} y^{b}\right)=b \cdot x^{a+1} y^{b-1}, \tau=(1,-1), c(a, b)=b
$$

$$
T=\partial_{x}:
$$

$$
T\left(x^{a} y^{b}\right)=a \cdot x^{a-1} y^{b}, \tau=(-1,0), c(a, b)=a
$$

$$
T=x^{4} y^{2} \partial_{x}^{3} \partial_{y}+x^{2} y^{3} \partial_{x} \partial_{y}^{2}+x:
$$

$$
T\left(x^{a} y^{b}\right)=(a(a-1)(a-2) b+a b(b-1)+1) \cdot x^{a+1} y^{b+1}
$$

$$
\tau=(1,1), c(a, b)=a(a-1)(a-2) b+a b(b-1)+1
$$

Monomial differential operators and algebraic monomial spaces

- images and kernels, and
- finite intersections and sums of algebraic monomial spaces
are algebraic monomial spaces.

Monomial decomposition of differential operators

We write $T \in \mathbb{K}[x, \partial]$ as a sum of monomial differential operators,

$$
T=\sum_{\tau \in S} \sum_{\alpha-\beta=\tau} c_{\alpha \beta} x^{\alpha} \partial^{\beta}
$$

where the finite set $S \subseteq \mathbb{Z}^{n}$ consists of the shifts of T.

Approximation of $\operatorname{lm}(\operatorname{Im}(T))$ by algebraic monomial spaces

In the following we describe an algorithm to approximate $\operatorname{lm}(\operatorname{Im}(T))$ by algebraic monomial spaces.

Basic idea: for $g_{1}, g_{2} \in \mathbb{K}[x]$ with $=1 t\left(T g_{1}\right)=\operatorname{lt}\left(T g_{2}\right)$.
the application of T to $g_{1}-g_{2}$ yields

$$
x^{\mu}=\operatorname{lm}\left(T\left(g_{1}-g_{2}\right)\right)=\operatorname{lm}\left(T g_{1}-T g_{2}\right) \neq x^{\delta} .
$$

Approximation of $\operatorname{lm}(\operatorname{Im}(T))$ by algebraic monomial spaces

In the following we describe an algorithm to approximate $\operatorname{lm}(\operatorname{Im}(T))$ by algebraic monomial spaces.

Basic idea: for $g_{1}, g_{2} \in \mathbb{K}[x]$ with

$$
x^{\delta}=\operatorname{lt}\left(T g_{1}\right)=\operatorname{lt}\left(T g_{2}\right)
$$

the application of T to $g_{1}-g_{2}$ yields

$$
x^{\mu}=\operatorname{lm}\left(T\left(g_{1}-g_{2}\right)\right)=\operatorname{lm}\left(T g_{1}-T g_{2}\right) \neq x^{\delta} .
$$

Task

Solution strategy

Division
Leading image

Monomial spaces and operators, and an algorithm

Binomial operators

Approximation of $\operatorname{lm}(\operatorname{Im}(T))$ by algebraic monomial spaces

Here is a sketch of the algorithm:
Initialization:

- $U^{1}=\left\{x^{\gamma} ; \gamma \in \mathbb{N}^{n}\right\}$
- $I^{1}=\operatorname{lm}\left(T\left(U^{1}\right)\right)$ I^{1} is an algebraic monomial space. Iteration: given algebraic monomial spaces I^{3} and sets U^{3}, $j=1, \ldots, k-1$, compute
- $U^{k}=\left\{g_{1}-g_{2} ; g_{1} \in U^{k-1}, g_{2} \in U^{j}, j \leq k-1, \operatorname{lt}\left(T g_{1}\right)=\right.$ lt $\left.\left(T g_{2}\right)\right\}$
- $I^{k}=\operatorname{lm}\left(T\left(U^{k}\right)\right)$

Task

Solution strategy

Approximation of $\operatorname{lm}(\operatorname{Im}(T))$ by algebraic monomial spaces

Here is a sketch of the algorithm:
Initialization:

- $U^{1}=\left\{x^{\gamma} ; \gamma \in \mathbb{N}^{n}\right\}$
- $I^{1}=\operatorname{lm}\left(T\left(U^{1}\right)\right)$
I^{1} is an algebraic monomial space.
given algebraic monomial spaces I^{j} und sets U^{j}, $j=1, \ldots, k-1$, compute
 $\left.\operatorname{lt}\left(T g_{2}\right)\right\}$
- $I^{k}=\operatorname{lm}\left(T\left(U^{k}\right)\right)$

Approximation of $\operatorname{lm}(\operatorname{Im}(T))$ by algebraic monomial spaces

Here is a sketch of the algorithm:
Initialization:

- $U^{1}=\left\{x^{\gamma} ; \gamma \in \mathbb{N}^{n}\right\}$
- $I^{1}=\operatorname{lm}\left(T\left(U^{1}\right)\right)$
I^{1} is an algebraic monomial space.
Iteration:
given algebraic monomial spaces I^{j} und sets U^{j},
$j=1, \ldots, k-1$, compute
- $U^{k}=\left\{g_{1}-g_{2} ; g_{1} \in U^{k-1}, g_{2} \in U^{j}, j \leq k-1, \operatorname{lt}\left(T g_{1}\right)=\right.$ $\left.\operatorname{lt}\left(T g_{2}\right)\right\}$
- $I^{k}=\operatorname{lm}\left(T\left(U^{k}\right)\right)$
I^{k} is an algebraic monomial space.

Approximation of $\operatorname{lm}(\operatorname{Im}(T))$ by algebraic monomial spaces (the woes)

Clearly, we have

$$
I^{1} \subseteq I^{1}+I^{2} \subseteq \cdots \subseteq I^{1}+\cdots+I^{k} \subseteq \operatorname{lm}(\operatorname{Im}(T))
$$

- there exists a termination criterion for the given algorithm, but hard to verify in practice
- in general the algorithm is not finite (i.e. there is no $k_{0} \in \mathbb{N}$ s.t. $\left.I^{1}+\cdots+I^{k_{0}}=\operatorname{lm}(\operatorname{Im}(T))\right)$

Approximation of $\operatorname{lm}(\operatorname{Im}(T))$ by algebraic monomial spaces (the woes)

Clearly, we have

$$
I^{1} \subseteq I^{1}+I^{2} \subseteq \cdots \subseteq I^{1}+\cdots+I^{k} \subseteq \operatorname{lm}(\operatorname{Im}(T))
$$

Termination:

- there exists a termination criterion for the given algorithm, but hard to verify in practice
- in general the algorithm is not finite (i.e. there is no $k_{0} \in \mathbb{N}$ s.t. $\left.I^{1}+\cdots+I^{k_{0}}=\operatorname{lm}(\operatorname{Im}(T))\right)$

Approximation of $\operatorname{lm}(\operatorname{Im}(T))$ by algebraic monomial spaces the profit

Completeness:

- if $x^{\delta} \in \operatorname{lm}(\operatorname{Im}(T))$ then there exists $k \in \mathbb{N}$ s.t. $x^{\delta} \in I^{k}$.
- if $g \in \operatorname{Ker}(T)$ then there exists $k \in \mathbb{N}$ s.t. $g \in \cup_{j=1}^{k} U^{j}$.

Structure: for g fulfilling $T g=h$

- the support of g is contained in the grid in \mathbb{Z}^{n} generated by the differences $\tau_{i}-\tau_{j}$ of shifts of T (roughly speaking)
- the coefficients of g are rational expressions in the coefficient functions of the monomial operators of T

Example 1/2

For $f_{1}, \ldots, f_{d} \in \mathbb{K}[x]$ and new variables t_{1}, \ldots, t_{d} we consider

$$
T=f_{1} \cdot \partial_{t_{1}}+\cdots+f_{d} \cdot \partial_{t_{d}} \in \mathbb{K}\left[x, \partial_{t}\right] \subseteq \mathbb{K}\left[t, x, \partial_{t}, \partial_{x}\right]
$$

The leading image of the $\mathbb{K}[x]$-linear mapping

$$
\begin{aligned}
& T: t_{1} \cdot \mathbb{K}[x] \oplus \cdots \oplus t_{d} \cdot \mathbb{K}[x] \longrightarrow \\
& \mathbb{K}[x] \\
& t_{1} \cdot a_{1}+\cdots+t_{d} \cdot a_{d} \longmapsto \\
& f_{1} \cdot a_{1}+\cdots+f_{d} \cdot a_{d}
\end{aligned}
$$

can be computed in finitely many steps of the sketched algorithm.

Note, that $\operatorname{lm}(\operatorname{Im}(T))$ coincides with $\operatorname{lm}\left(f_{1}, \ldots, f_{d}\right)$, the ideal of leading monomials of the ideal $\left(f_{1}, \ldots, f_{d}\right)$.

Example 2/2

For $T=x \partial_{y}+\partial_{x}$ we obtain

$$
\begin{aligned}
I^{1} & =x \cdot \mathbb{K}[x, y] \oplus \mathbb{K}, \\
I^{k} & =\mathbb{K} \cdot y^{k-1}, \quad k \geq 2
\end{aligned}
$$

Consequently, we have $\operatorname{lm}(\operatorname{Im}(T))=\mathbb{K}[x, y]$ and

$$
I^{1}+\ldots+I^{k} \subsetneq \operatorname{lm}(\operatorname{Im}(T))
$$

for any $k \in \mathbb{N}$.

Binomial operators

Frustration: even for the simple example $T=x \partial_{y}+\partial_{x}$ the algorithm does not terminate.

Consolation: for binomial operators (as in this last example) the monomial stuff yields enough information for deciding the existence and explicitly construct solutions g of $T g=h$ in finite time.

Binomial Operators

$$
T=T_{1}+T_{2}
$$

with monomial operators T_{1}, T_{2} with shifts $\tau_{1}>_{\lambda} \tau_{2}$ and coefficient functions c_{1}, c_{2}.

Task (still): for a given monomial x^{δ} decide, if

$$
x^{\delta} \in \operatorname{lm}(\operatorname{Im}(T)) .
$$

Binomial Operators

Task

Solution strategy

Division
Leading
image
Monomial
spaces and
operators,
and an
algorithm
Binomial
operators

For binomial operators there exist two prototypes of polynomials g mit $x^{\delta}=\operatorname{lm}(T g)$.

Binomial Operators

For binomial operators there exist two prototypes of polynomials g mit $x^{\delta}=\operatorname{lm}(T g)$.

- $g=x^{\delta-\tau_{1}}$ where $c_{1}\left(\delta-\tau_{1}\right) \neq 0$.

- initial monomial $x^{\delta-\tau_{2}}$
- $\operatorname{sinn}(g)$ contained in
$\mathcal{L}=\left\{\delta-\tau_{2}+l \cdot\left(\tau_{1}-\tau_{2}\right), l \in \mathbb{Z}\right\} \subseteq \mathbb{Z}^{n}$
for $\gamma \in \operatorname{supp}(g)$ the following conditions hold:
- $c_{1}(\gamma)=0, c_{2}(\gamma) \neq 0$ if $\gamma=\operatorname{deg}(g)$
- $c_{1}(\gamma) \neq 0, c_{2}(\gamma) \neq 0$ otherwise

Finite criteria for $x^{\delta} \in \operatorname{lm}(\operatorname{Im}(T))$: Check if one of the two prototypes exists.

Binomial Operators

For binomial operators there exist two prototypes of polynomials g mit $x^{\delta}=\operatorname{lm}(T g)$.

- $g=x^{\delta-\tau_{1}}$ where $c_{1}\left(\delta-\tau_{1}\right) \neq 0$.
- $g=\sum g_{\gamma} x^{\gamma}$ where
- initial monomial $x^{\delta-\tau_{2}}$
- $\operatorname{supp}(g)$ contained in straight line

$$
\mathcal{L}=\left\{\delta-\tau_{2}+l \cdot\left(\tau_{1}-\tau_{2}\right), l \in \mathbb{Z}\right\} \subseteq \mathbb{Z}^{n}
$$

- for $\gamma \in \operatorname{supp}(g)$ the following conditions hold:
- $c_{1}(\gamma)=0, c_{2}(\gamma) \neq 0$ if $\gamma=\operatorname{deg}(g)$
- $c_{1}(\gamma) \neq 0, c_{2}(\gamma) \neq 0$ otherwise

Finite criteria for $x^{\delta} \in \operatorname{lm}(\operatorname{Im}(T))$: Check if one of the two prototypes exists.

Binomial Operators

For binomial operators there exist two prototypes of polynomials g mit $x^{\delta}=\operatorname{lm}(T g)$.

- $g=x^{\delta-\tau_{1}}$ where $c_{1}\left(\delta-\tau_{1}\right) \neq 0$.
- $g=\sum g_{\gamma} x^{\gamma}$ where
- initial monomial $x^{\delta-\tau_{2}}$
- $\operatorname{supp}(g)$ contained in straight line

$$
\mathcal{L}=\left\{\delta-\tau_{2}+l \cdot\left(\tau_{1}-\tau_{2}\right), l \in \mathbb{Z}\right\} \subseteq \mathbb{Z}^{n}
$$

- for $\gamma \in \operatorname{supp}(g)$ the following conditions hold:
- $c_{1}(\gamma)=0, c_{2}(\gamma) \neq 0$ if $\gamma=\operatorname{deg}(g)$
- $c_{1}(\gamma) \neq 0, c_{2}(\gamma) \neq 0$ otherwise

Finite criteria for $x^{\delta} \in \operatorname{lm}(\operatorname{Im}(T))$: Check if one of the two prototypes exists.

Example

Task

Solution

 strategy
Division

For $T=x \partial_{y}+\partial_{x}$ check if $x^{a+1} y^{b}, 1, y, y^{2} \in \operatorname{lm}(\operatorname{Im}(T))$. We find

- $x^{a+1} y^{b}=\operatorname{lm}\left(T\left(x^{a} y^{b+1}\right)\right)$
- $1=\operatorname{lm}(T(x))$
- $y=\operatorname{lm}\left(T\left(x^{3}-3 x y\right)\right)$
- $y^{2}=\operatorname{lm}\left(T\left(x^{5}-5 x^{3} y+\frac{15}{2} x y^{2}\right)\right)$

Example, illustrated

\mathbb{N}^{2} with powers of x up, powers of y left, kernel of $c_{1}(a, b)=b$ dark, kernel of $c_{2}(a, b)=a$ light gray

Example, reminder

Example from the introduction: $T=x \partial_{y}+\partial_{x}$, $T g=x^{31}+x^{15} \quad$ and $\quad T g=y^{26}-y^{19}$

Binomial operators

What if we do not longer want to solve particular but homogenous equations?

Prototype of polynomial g in the kernel of $T=T_{1}+T_{2}$ is $g=\sum g_{\gamma} x^{\gamma}$, where

- the support of g is contained in the straight line

$$
\begin{aligned}
\mathcal{L} & =\left\{\operatorname{ord}(g)+l \cdot\left(\tau_{1}-\tau_{2}\right), l \in \mathbb{Z}\right\} \\
(& \left.=\left\{\operatorname{deg}(g)+l \cdot\left(\tau_{1}-\tau_{2}\right), l \in \mathbb{Z}\right\}\right)
\end{aligned}
$$

- for $\gamma \in \operatorname{supp}(g)$ the following conditions hold:
- $c_{1}(\operatorname{ord}(g)) \neq 0, c_{2}(\operatorname{ord}(g))=0$
- $c_{1}(\operatorname{deg}(g))=0, c_{2}(\operatorname{deg}(g)) \neq 0$
- $c_{1}(\gamma) \neq 0, c_{2}(\gamma) \neq 0$ otherwise

Binomial operators

What if we do not longer want to solve particular but homogenous equations?

Prototype of polynomial g in the kernel of $T=T_{1}+T_{2}$ is $g=\sum g_{\gamma} x^{\gamma}$, where

- the support of g is contained in the straight line

$$
\begin{aligned}
\mathcal{L} & =\left\{\operatorname{ord}(g)+l \cdot\left(\tau_{1}-\tau_{2}\right), l \in \mathbb{Z}\right\} \\
(& \left.=\left\{\operatorname{deg}(g)+l \cdot\left(\tau_{1}-\tau_{2}\right), l \in \mathbb{Z}\right\}\right)
\end{aligned}
$$

- for $\gamma \in \operatorname{supp}(g)$ the following conditions hold:
- $c_{1}(\operatorname{ord}(g)) \neq 0, c_{2}(\operatorname{ord}(g))=0$
- $c_{1}(\operatorname{deg}(g))=0, c_{2}(\operatorname{deg}(g)) \neq 0$
- $c_{1}(\gamma) \neq 0, c_{2}(\gamma) \neq 0$ otherwise

Binomial operators

What if we do not longer want to solve particular but homogenous equations?

Prototype of polynomial g in the kernel of $T=T_{1}+T_{2}$ is $g=\sum g_{\gamma} x^{\gamma}$, where

- the support of g is contained in the straight line

$$
\begin{aligned}
\mathcal{L} & =\left\{\operatorname{ord}(g)+l \cdot\left(\tau_{1}-\tau_{2}\right), l \in \mathbb{Z}\right\} \\
(& \left.=\left\{\operatorname{deg}(g)+l \cdot\left(\tau_{1}-\tau_{2}\right), l \in \mathbb{Z}\right\}\right)
\end{aligned}
$$

- for $\gamma \in \operatorname{supp}(g)$ the following conditions hold:
- $c_{1}(\operatorname{ord}(g)) \neq 0, c_{2}(\operatorname{ord}(g))=0$
- $c_{1}(\operatorname{deg}(g))=0, c_{2}(\operatorname{deg}(g)) \neq 0$
- $c_{1}(\gamma) \neq 0, c_{2}(\gamma) \neq 0$ otherwise

Task

Solution strategy

Division
Leading image

Monomial spaces and operators, and an algorithm

For $T=x \partial_{y}+\partial_{x}$ and $m \in \mathbb{N}$ there exists a polynomial in the kernel of T with leading monomial $x^{2 m}$, but no such polynomial with leading monomial $x^{2 m+1}$.

Binomial systems: Appell

$F_{1}\left(a, b, b^{\prime}, c\right)$

For complex parameters a, b, b^{\prime}, c and (binomial operators)

$$
\begin{aligned}
& R=-a b x-b x y \partial_{y}-(a+b+1) x^{2} \partial_{x}-x^{2} y \partial_{x} \partial_{y}-x^{3} \partial_{x}^{2}+c x \partial_{x}+x y \partial_{x} \partial_{y}+x^{2} \partial_{x}^{2}, \\
& S=-a b^{\prime} y-b^{\prime} x y \partial_{x}-(a+b+1) y^{2} \partial_{y}-x y^{2} \partial_{x} \partial_{y}-y^{3} \partial_{y}^{2}+c y \partial_{y}+x y \partial_{x} \partial_{y}+y^{2} \partial_{y}^{2}, \\
& T=b \partial_{y}+x \partial_{x} \partial_{y}-b^{\prime} \partial_{x}-y \partial_{x} \partial_{y}
\end{aligned}
$$

the system

$$
R g=S g=T g=0
$$

is called Appell differential equation $F_{1}\left(a, b, b^{\prime}, c\right)$.

Binomial systems: Appell

$$
F_{1}\left(a, b, b^{\prime}, c\right)
$$

For $\left(a, b, b^{\prime}, c\right)=(2,-3,-2,5)$

$$
\begin{aligned}
g= & x^{3} y^{2}-3 x^{3} y-\frac{9}{2} x^{2} y^{2}+\frac{12}{5} x^{3}+\frac{72}{5} x^{2} y+\frac{36}{5} x y^{2} \\
& -\frac{63}{5} x^{2}-\frac{126}{5} x y-\frac{21}{5} y^{2}+\frac{126}{5} x+\frac{84}{5} y-21
\end{aligned}
$$

is the only polynomial solution. It can easily be computed applying the techniques already used for binomial operators.

Extended binomial systems:

GKZ-systems

For A a matrix of dimension $d \times n$ with integer entries $a_{i j}$ of rank d and a vector $b \in \mathbb{K}^{d}$ we define

$$
\begin{array}{ll}
S_{\mu, \nu}=\partial^{\mu}-\partial^{\nu} & \text { für alle } \mu, \nu \in \mathbb{N}^{n} \text { mit } A \mu=A \nu, \\
T_{i}=\sum_{j=1}^{n} a_{i j} x_{j} \partial_{j}-b_{j} & \text { für } i=1, \ldots, d .
\end{array}
$$

The associated GKZ-System $H_{A}(b)$ is given by

$$
\begin{array}{ll}
S_{\mu, \nu} g=0 & \text { for all } \mu, \nu \in \mathbb{N}^{n} \text { s.t. } A \mu=A \nu, \\
T_{i} g=0 & \text { für } i=1, \ldots, d,
\end{array}
$$

for g.

Extended binomial systems:

GKZ-systems

For $n=2, d=1, A=\left(\begin{array}{ll}1 & a\end{array}\right)$ with $a \in \mathbb{N}$ and $b \in \mathbb{K}$ we find

$$
\begin{array}{ll}
S=\partial_{y}-\partial_{x}^{a}, & \text { binomial operator } \\
T=x \partial_{x}+a y \partial_{y}-b, & \text { monomial operator } .
\end{array}
$$

$S g=T g=0$ has a unique polynomial solution (up to multiplication with constants) given by

$$
g=\sum_{i=0}^{r} e_{i} \cdot x^{b-i a} y^{i},
$$

with coefficients

$$
e_{i}=\left\{\begin{array}{cc}
1 & \text { für } i=0 \\
-e_{i-1} \frac{c_{S_{1}}((b-(i-1) a), i-1)}{c_{S_{2}}(b-i a, i)} & \text { für } i>0,
\end{array}\right.
$$

where $r=\left\lfloor\frac{b}{a}\right\rfloor$.

