The LEX Game

Bálint Felszeghy
Supervisor: Lajos Rónyai
Budapest University of Technology and Economics, Department of Algebra

Standard monomials

K field, $K\left[x_{1}, \ldots, x_{n}\right]=K[\mathbf{x}]$ polynomial ring in n variables $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}^{n}$, a monomial $\mathbf{x}^{\mathbf{w}}=x_{1}^{w_{1}} \ldots x_{n}^{w_{n}}$
\prec lexicographic ordering
Let $I \unlhd K[\mathrm{x}]$ be an ideal.
$\operatorname{Lm}(I)=\langle\ell m(f): f \in I\rangle$;
standard monomials of I : the other monomials:

$$
\operatorname{Sm}(I)=\operatorname{Mon}_{n} \backslash \operatorname{Lm}(I)
$$

Theorem $\mathrm{Sm}(I)$ is a linear basis of the vector space $K[\mathrm{x}] / I$.

Primary decomposition of zero dimensional ideals

Let $I \unlhd K[\mathrm{x}]$ be zero dimensional.
Theorem There are uniquely determined ideals Q_{j} such that

$$
I=\prod_{j=1}^{k} Q_{j}
$$

and $M_{j}:=\sqrt{Q_{j}}$ are pairwise different maximal ideals.
I is a splitting ideal if all $M=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle$
for some $\mathbf{a} \in K^{n}$.
From now on, I is a zero dimensional splitting ideal, thus

$$
I=\prod_{\mathrm{a} \in V} Q_{\mathrm{a}}
$$

for a finite $V \subseteq K^{n}$.

Vanishing ideal of a finite set of points

Let $V \subseteq K^{n}$ be finite.
$I(V):=\{f(\mathrm{x}) \in K[\mathrm{x}]: f$ vanishes on $V\}$
Then

$$
I=\prod_{\mathrm{a} \in V} M_{\mathrm{a}}
$$

$$
M_{\mathrm{a}}=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle .
$$

The LEX Game

$$
I=\prod_{\mathrm{a} \in V} Q_{\mathrm{a}}
$$

Lex(I; w):
1 Lea chooses w_{n} (not necessarily different) elements of K.
Stan picks an $a_{n} \in K$.
They set r_{n} to be the multiplicity of a_{n} among Lea's guesses.
2 Lea chooses w_{n-1} elements of K.
Stan picks an $a_{n-1} \in K$.
They set the result r_{n-1}.
... (The game goes on in the same fashion.)
n Lea chooses w_{1} elements of K.
Stan picks an $a_{1} \in K$.
They set the result r_{1}.
Put $\mathbf{r}=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{N}^{n}$.
Stan wins iff $\mathrm{a} \in V$ and $\mathrm{x}^{\mathrm{r}} \in \operatorname{Sm}\left(Q_{\mathrm{a}}\right)$.

Example game

If $I=I(V)$ then all $\operatorname{Sm}\left(Q_{\mathrm{a}}\right)=\operatorname{Sm}\left(M_{\mathrm{a}}\right)=\{1\}$ so Stan wins iff $\mathrm{r}=0$.

Let $n=5$,
$V \subseteq\{\alpha, \beta\}^{5}$ s.t. in a $\in V$ there is exactly 1,2 or 3α.
$I:=I(V)$
With $\mathrm{w}=(11100)$ Lea has winning strategy.
With $\mathrm{w}=(01110)$ Stan has winning strategy.

The theorem

$\operatorname{Stan}(I):=\left\{\mathbf{x}^{\mathbf{w}}\right.$: Stan wins Lex(I; w) $\}$ the Stan monomials.
Theorem Stan $(I(V))=\operatorname{Sm}(I(V))$.
Example
With $\mathbf{w}=(11100)$ Lea wins, thus $x_{1} x_{2} x_{3} \in \operatorname{Lm}(I(V))$; but with $\mathbf{w}=(01110)$ Stan can win, so $x_{2} x_{3} x_{4} \in \operatorname{Sm}(I(V))$.

A part of the proof

Stan $(I(V)) \supseteq \operatorname{Sm}(I(V))$, ie
Lea wins with $\mathbf{w} \Rightarrow \mathrm{x}^{\mathbf{w}} \in \operatorname{Lm}(I(V))$
Proof:

$$
f(\mathrm{x})=\prod_{j=1}^{n}\left(\prod_{i=1}^{w_{j}}\left(x_{j}-f_{j, i}\left(x_{j+1}, \ldots, x_{n}\right)\right)\right)
$$

where $f_{j, 1}, f_{j, 2} \ldots f_{j, w_{j}}$ are Lea's guesses for a_{j}.
$f_{j, i}$ can be considered as a polynomial $\Rightarrow f(\mathrm{x}) \in K[\mathrm{x}]$
$f(\mathrm{x})$ vanishes on V
$\ell \mathrm{m}(f(\mathrm{x}))=\mathrm{x}^{\mathrm{w}}$
$\Rightarrow \quad f(\mathrm{x}) \in I(V)$
$\Rightarrow \quad \mathrm{x}^{\mathrm{w}} \in \operatorname{Lm}(I(V))$

Standard monomials of permutations

Let $n=4$ and $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in K$ distinct elements.
$V=\left\{\left(\pi\left(\alpha_{1}\right), \pi\left(\alpha_{2}\right), \pi\left(\alpha_{3}\right), \pi\left(\alpha_{4}\right)\right):\right.$
π is a permutation of $\left.\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}\right\}$.
(Thus $4!=|V|$.)
Who wins the game $\operatorname{Lex}(I(V) ; \mathbf{w}=(0,1,2,3))$?

And the games
Lex(I(V); (0, 0, 0, 4)),
Lex($I(V) ;(0,0,3,0))$,
$\operatorname{Lex}(I(V) ;(0,2,0,0))$,
Lex($I(V) ;(1,0,0,0))$?
Answering these, we have determined the set $\operatorname{Sm}(I(V))$.

Field independence of the

Gröbner basis

Corollary

Let V be such that $V \subseteq\{0,1\}^{n}$. Then for all fields K
(1) the set $\mathrm{Sm}\left(I_{K}(V)\right)$ is the same,
(2) the reduced Gröbner basis G of $I_{K}(V)$ is the same.

Proof: (2)
Sufficient: the reduced $\mathrm{Gb} G$ of $I_{\mathbb{Q}}(V)$ has integer coefficients.
Suppose that $g \in G$ and $z \in \mathbb{Z}$ minimal such that $z \cdot g(\mathrm{x}) \in \mathbb{Z}[\mathrm{x}]$.
If $p \mid z$ a prime then consider $z g(x)$ in \mathbb{F}_{p} :

$$
\ell \mathrm{m}_{\mathbb{F}_{p}}(z g(x)) \prec \ell \mathrm{m}_{\mathbb{Q}}(z g(x))
$$

Thus $\ell \mathrm{m}_{\mathbb{F}_{p}}(z g(x)) \in \operatorname{Sm}(I(V))$ a contradiction.

Recursive structure of Sm $(I(V))$

$V_{\alpha}=\left\{\left(a_{1}, \ldots, a_{n-1}\right):\left(a_{1}, \ldots, a_{n-1}, \alpha\right) \in V\right\}$ (prefixes of $\left.V\right)$
If $r_{n}=0$ in $\operatorname{Lex}(I(V) ; \mathbf{w}) \Rightarrow \operatorname{Lex}\left(I\left(V_{\alpha}\right) ;\left(w_{1}, \ldots, w_{n-1}\right)\right)$.
Corollary
Let $n>1$. Then $\mathrm{x}^{\mathbf{w}} \in \operatorname{Sm}(I(V)) \Longleftrightarrow$ there exist
at least $w_{n}+1$ such α that $x_{1}^{w_{1}} \ldots x_{n-1}^{w_{n-1}} \in \operatorname{Sm}\left(I\left(V_{\alpha}\right)\right)$.
Proof:
Stan wins $\operatorname{Lex}\left(I(V) ;\left(w_{1}, \ldots, w_{n}\right)\right) \Longleftrightarrow$ there exist at least $w_{n}+1$ such α that
Stan wins Lex $\left(I\left(V_{\alpha}\right) ;\left(w_{1}, \ldots, w_{n-1}\right)\right)$.
\Rightarrow fast algrorithm for computing $\mathrm{Sm}(I(V))$.

Other splitting ideals

$$
I=\prod_{\mathrm{a} \in V} Q_{\mathrm{a}}
$$

Theorem Suppose that all Q_{a} is generated by polinomials of the form $(\mathrm{x}-\mathrm{a})^{\mathrm{w}}$ (with $\mathrm{w} \in \mathbb{N}^{n}$) (I is locally monomial).
Then Stan $(I)=\operatorname{Sm}(I)$.
Theorem Suppose that V is such that $\mathbf{a}, \mathbf{b} \in V$ and
$a_{n-1}=b_{n-1}, a_{n}=b_{n}$ implies $\mathbf{a}=\mathbf{b}$.
Then Stan (I) $=$ Sm (I).
Example
Let $Q_{(0,0,0)}=\left\langle x^{3}, y^{2}, z^{3}, x y+z^{2}\right\rangle$ and
$Q_{(1,0,0)}=\left\langle(x-1)^{3}, y^{2}, z^{3},(x-1) y+z^{2}\right\rangle$,
$I=Q_{(0,0,0)} \cdot Q_{(1,0,0)}$.
Then $x^{2} y \in \operatorname{Sm}(I) \backslash \operatorname{Stan}(I)$ and $x^{4} z^{2} \in \operatorname{Stan}(I) \backslash \operatorname{Sm}(I)$.

Properties of Stan (I)

$$
I=\prod_{\mathrm{a} \in V} Q_{\mathrm{a}}
$$

Let

$$
Q_{\mathrm{a}}^{\prime}:=\left\langle(\mathrm{x}-\mathrm{a})^{\mathrm{w}}: \mathrm{x}^{\mathrm{w}} \in \operatorname{Lm}\left(Q_{\mathrm{a}}\right)\right\rangle
$$

and

$$
I^{\prime}:=\prod_{\mathbf{a} \in V} Q_{\mathrm{a}}^{\prime}
$$

Then I^{\prime} is locally monomial, so $\mathrm{Sm}\left(I^{\prime}\right)=\operatorname{Stan}\left(I^{\prime}\right)=\operatorname{Stan}(I)$.

Conjecture

Stan (I) is a monomial linear basis of $K[\mathrm{x}] / I$.

