The LEX Game

Bálint Felszeghy Supervisor: Lajos Rónyai

Budapest University of Technology and Economics, Department of Algebra

Standard monomials

K field, $K[x_1, \ldots, x_n] = K[\mathbf{x}]$ polynomial ring in *n* variables $\mathbf{w} = (w_1, \ldots, w_n) \in \mathbb{N}^n$, a monomial $\mathbf{x}^{\mathbf{w}} = x_1^{w_1} \ldots x_n^{w_n}$

 \prec lexicographic ordering

Let $I \trianglelefteq K[\mathbf{x}]$ be an ideal. Lm $(I) = \langle \ell m(f) : f \in I \rangle$; standard monomials of I: the other monomials:

 $\operatorname{Sm}(I) = \operatorname{Mon}_n \setminus \operatorname{Lm}(I)$

Theorem Sm (I) is a linear basis of the vector space $K[\mathbf{x}]/I$.

Primary decomposition of zero dimensional ideals

Let $I \leq K[\mathbf{x}]$ be zero dimensional.

Theorem There are uniquely determined ideals Q_j such that

$$I = \prod_{j=1}^{k} Q_j$$

and $M_j := \sqrt{Q_j}$ are pairwise different maximal ideals. *I* is a splitting ideal if all $M = \langle x_1 - a_1, \dots, x_n - a_n \rangle$ for some $\mathbf{a} \in K^n$.

From now on, *I* is a zero dimensional splitting ideal, thus

$$I = \prod_{\mathbf{a} \in V} Q_{\mathbf{a}}$$

for a finite $V \subseteq K^n$.

Vanishing ideal of a finite set of points

Let $V \subseteq K^n$ be finite. $I(V) := \{f(\mathbf{x}) \in K[\mathbf{x}] : f \text{ vanishes on } V\}$ Then

$$I = \prod_{\mathbf{a} \in V} M_{\mathbf{a}}$$

 $M_{\mathbf{a}} = \langle x_1 - a_1, \dots, x_n - a_n \rangle.$

The LEX Game

$$I = \prod_{\mathbf{a} \in V} Q_{\mathbf{a}}$$

Lex(I; w):

1 Lea chooses w_n (not necessarily different) elements of K. Stan picks an $a_n \in K$.

They set r_n to be the multiplicity of a_n among Lea's guesses.

2 Lea chooses w_{n-1} elements of *K*.

Stan picks an $a_{n-1} \in K$.

They set the result r_{n-1} .

- ... (The game goes on in the same fashion.)
- n Lea chooses w_1 elements of K.

Stan picks an $a_1 \in K$.

They set the result r_1 .

Put $\mathbf{r} = (r_1, \dots, r_n) \in \mathbb{N}^n$. Stan wins iff $\mathbf{a} \in V$ and $\mathbf{x}^r \in \text{Sm}(Q_a)$.

Example game

If I = I(V) then all $Sm(Q_a) = Sm(M_a) = \{1\}$ so Stan wins iff r = 0.

Let n = 5, $V \subseteq \{\alpha, \beta\}^5$ s.t. in $a \in V$ there is exactly 1, 2 or 3 α . I := I(V)With w = (11100) Lea has winning strategy. With w = (01110) Stan has winning strategy.

The theorem

Stan $(I) := \{x^w : Stan wins Lex(I; w)\}$ the Stan monomials. Theorem Stan (I(V)) = Sm(I(V)).

Example

With $\mathbf{w} = (11100)$ Lea wins, thus $x_1x_2x_3 \in \text{Lm}(I(V))$; but with $\mathbf{w} = (01110)$ Stan can win, so $x_2x_3x_4 \in \text{Sm}(I(V))$.

A part of the proof

Stan $(I(V)) \supseteq$ Sm (I(V)), ie Lea wins with $\mathbf{w} \Rightarrow \mathbf{x}^{\mathbf{w}} \in$ Lm (I(V))

Proof:

$$f(\mathbf{x}) = \prod_{j=1}^{n} \left(\prod_{i=1}^{w_j} \left(x_j - f_{j,i}(x_{j+1}, \dots, x_n) \right) \right)$$

where $f_{j,1}$, $f_{j,2}$... f_{j,w_j} are Lea's guesses for a_j .

 $f_{j,i}$ can be considered as a polynomial $\Rightarrow f(\mathbf{x}) \in K[\mathbf{x}]$ $f(\mathbf{x})$ vanishes on $V \Rightarrow f(\mathbf{x}) \in I(V)$

 $\ell \mathsf{m}(f(\mathbf{x})) = \mathbf{x}^{\mathbf{w}} \qquad \Rightarrow \mathbf{x}^{\mathbf{w}} \in \mathsf{Lm}(I(V))$

Standard monomials of permutations

```
Let n = 4 and \alpha_1, \alpha_2, \alpha_3, \alpha_4 \in K distinct elements.

V = \{(\pi(\alpha_1), \pi(\alpha_2), \pi(\alpha_3), \pi(\alpha_4)) :

\pi is a permutation of \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} }.

(Thus 4! = |V|.)
```

```
Who wins the game Lex(I(V); w = (0, 1, 2, 3))?
```

```
And the games

Lex(I(V); (0, 0, 0, 4)),

Lex(I(V); (0, 0, 3, 0)),

Lex(I(V); (0, 2, 0, 0)),

Lex(I(V); (1, 0, 0, 0))?
```

Answering these, we have determined the set Sm(I(V)).

Field independence of the

Gröbner basis

Corollary

Let *V* be such that $V \subseteq \{0, 1\}^n$. Then for all fields *K* (1) the set $Sm(I_K(V))$ is the same, (2) the reduced Gröbner basis *G* of $I_K(V)$ is the same. Proof: (2) Sufficient: the reduced Gb *G* of $I_Q(V)$ has integer coefficients. Suppose that $g \in G$ and $z \in \mathbb{Z}$ minimal such that $z \cdot g(\mathbf{x}) \in \mathbb{Z}[\mathbf{x}]$. If $p \mid z$ a prime then consider zg(x) in \mathbb{F}_p :

$$\ell \mathsf{m}_{\mathbb{F}_p}(zg(x)) \prec \ell \mathsf{m}_{\mathbb{Q}}(zg(x))$$

Thus $\ell m_{\mathbb{F}_p}(zg(x)) \in Sm(I(V))$ a contradiction.

Recursive structure of Sm(I(V))

 $V_{\alpha} = \{(a_1, \dots, a_{n-1}) : (a_1, \dots, a_{n-1}, \alpha) \in V\} \text{ (prefixes of } V)$ If $r_n = 0$ in $\text{Lex}(I(V); \mathbf{w}) \Rightarrow \text{Lex}(I(V_{\alpha}); (w_1, \dots, w_{n-1})).$

Corollary

Let n > 1. Then $\mathbf{x}^{\mathbf{w}} \in \text{Sm}(I(V)) \iff \text{there exist}$ at least $w_n + 1$ such α that $x_1^{w_1} \dots x_{n-1}^{w_{n-1}} \in \text{Sm}(I(V_{\alpha}))$.

Proof:

Stan wins $\text{Lex}(I(V); (w_1, \dots, w_n)) \iff$ there exist at least $w_n + 1$ such α that Stan wins $\text{Lex}(I(V_{\alpha}); (w_1, \dots, w_{n-1})).$

 \Rightarrow fast algorithm for computing Sm (I(V)).

Other splitting ideals

$$I = \prod_{\mathbf{a} \in V} Q_{\mathbf{a}}$$

Theorem Suppose that all Q_a is generated by polynomials of the form $(x - a)^w$ (with $w \in \mathbb{N}^n$) (*I* is locally monomial). Then Stan (*I*) = Sm (*I*).

Theorem Suppose that *V* is such that $\mathbf{a}, \mathbf{b} \in V$ and $a_{n-1} = b_{n-1}, a_n = b_n$ implies $\mathbf{a} = \mathbf{b}$. Then Stan (*I*) = Sm (*I*).

Example

Let
$$Q_{(0,0,0)} = \langle x^3, y^2, z^3, xy + z^2 \rangle$$
 and
 $Q_{(1,0,0)} = \langle (x-1)^3, y^2, z^3, (x-1)y + z^2 \rangle$,
 $I = Q_{(0,0,0)} \cdot Q_{(1,0,0)}$.
Then $x^2y \in \text{Sm}(I) \setminus \text{Stan}(I)$ and $x^4z^2 \in \text{Stan}(I) \setminus \text{Sm}(I)$

Properties of Stan(I)

$$I = \prod_{\mathbf{a} \in V} Q_{\mathbf{a}}$$

Let

$$Q'_{\mathbf{a}} := \langle (\mathbf{x} - \mathbf{a})^{\mathbf{w}} : \mathbf{x}^{\mathbf{w}} \in \mathsf{Lm}(Q_{\mathbf{a}}) \rangle$$

and

$$I' := \prod_{\mathbf{a} \in V} Q'_{\mathbf{a}}$$

Then I' is locally monomial, so Sm(I') = Stan(I') = Stan(I).

Conjecture

Stan (I) is a monomial linear basis of $K[\mathbf{x}]/I$.