Outline
Commutative
vs. Noncom mutative

What is an Involutive Basis?

Noncomm. Involutive Bases

Divisors
Algorithm
Properties
Divisions
Open Questions

Walks

Special Semester Presentation

Noncommutative Involutive Bases / Noncommutative Gröbner Walks

Gareth Evans

Workshop B2

February / March, 2006

Gareth Evans

Outline

Commutative

vs. Noncommutative

What is an Involutive Basis?

Noncomm Involutive Bases

Divisors

Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks
(1) Commutative vs. Noncommutative
(2) What is an Involutive Basis?
(3) Noncomm. Involutive Bases

Divisors
Algorithm
Properties
Divisions
Open Questions
(4) Walks

Commutative Walks
Noncommutative Walks

Special Semester Presentation

Gareth Evans

Outline
Commutative
vs. Noncom-
mutative
What is an Involutive Basis?

Noncomm. Involutive Bases

Divisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Commutative vs. Noncommutative

- In the commutative case, there is one S-polynomial for every pair of polynomials.

Commutative vs. Noncommutative

- In the commutative case, there is one S-polynomial for every pair of polynomials.
- In the noncommutative case, the number of S-polynomials per pair of polynomials is determined by the overlaps between the lead monomials of the polynomials.

Commutative vs. Noncommutative

- In the commutative case, there is one S-polynomial for every pair of polynomials.
- In the noncommutative case, the number of S-polynomials per pair of polynomials is determined by the overlaps between the lead monomials of the polynomials.
- The commutative algorithm (Buchberger's algorithm) always terminates; the noncommutative algorithm (Mora's algorithm) does not.

What is an Involutive Basis?

Outline
Commutative vs. Noncommutative

What is an Involutive Basis?

Noncomm

 Involutive BasesDivisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Outline

Commutative
vs. Noncommutative

What is an
Involutive
Basis?

Noncomm Involutive Bases

Divisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

What is an Involutive Basis?

- An Involutive Basis is a Gröbner Basis such that unique remainders are also obtained uniquely.

What is an Involutive Basis?

- An Involutive Basis is a Gröbner Basis such that unique remainders are also obtained uniquely.
- Not all conventional divisors are involutive divisors.

What is an Involutive Basis?

Outline
Commutative
vs. Noncommutative

What is an
Involutive
Basis?
Noncomm.
Involutive
Bases
Divisors

Algorithm

Properties
Divisions
Open Questions
Walks

- An Involutive Basis is a Gröbner Basis such that unique remainders are also obtained uniquely.
- Not all conventional divisors are involutive divisors.
- An Involutive Basis is computed by working with prolongations and the process of autoreduction.

What is an Involutive Basis?

Outline
Commutative
vs. Noncommutative

What is an
Involutive
Basis?
Noncomm. Involutive
Bases
Divisors

Algorithm

Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

- An Involutive Basis is a Gröbner Basis such that unique remainders are also obtained uniquely.
- Not all conventional divisors are involutive divisors.
- An Involutive Basis is computed by working with prolongations and the process of autoreduction.
- Prolongation: a multiple of a basis polynomial by a nonmultiplicative variable.

What is an Involutive Basis?

Outline
Commutative
vs. Noncom-
mutative
What is an
Involutive
Basis?
Noncomm.

- An Involutive Basis is a Gröbner Basis such that unique remainders are also obtained uniquely.
- Not all conventional divisors are involutive divisors.
- An Involutive Basis is computed by working with prolongations and the process of autoreduction.
- Prolongation: a multiple of a basis polynomial by a nonmultiplicative variable.
- Autoreduction: keeps the basis 'minimised' at all times.

What is an Involutive Basis?

Outline
Commutative
vs. Noncommutative

What is an
Involutive
Basis?
Noncomm. Involutive Bases

- An Involutive Basis is a Gröbner Basis such that unique remainders are also obtained uniquely.
- Not all conventional divisors are involutive divisors.
- An Involutive Basis is computed by working with prolongations and the process of autoreduction.
- Prolongation: a multiple of a basis polynomial by a nonmultiplicative variable.
- Autoreduction: keeps the basis 'minimised' at all times.
- An Involutive division is chosen to decide which variables are multiplicative for a particular polynomial p in a set of polynomials P.

What is an Involutive Basis?

Outline

Commutative vs. Noncommutative

What is an

Walks

- An Involutive Basis is a Gröbner Basis such that unique remainders are also obtained uniquely.
- Not all conventional divisors are involutive divisors.
- An Involutive Basis is computed by working with prolongations and the process of autoreduction.
- Prolongation: a multiple of a basis polynomial by a nonmultiplicative variable.
- Autoreduction: keeps the basis 'minimised' at all times.
- An Involutive division is chosen to decide which variables are multiplicative for a particular polynomial p in a set of polynomials P.
- Popular choices of involutive division include the Thomas, Pommaret and Janet divisions.

What is an Involutive Basis?

Outline

Commutative vs. Noncommutative

What is an

Walks

- An Involutive Basis is a Gröbner Basis such that unique remainders are also obtained uniquely.
- Not all conventional divisors are involutive divisors.
- An Involutive Basis is computed by working with prolongations and the process of autoreduction.
- Prolongation: a multiple of a basis polynomial by a nonmultiplicative variable.
- Autoreduction: keeps the basis 'minimised' at all times.
- An Involutive division is chosen to decide which variables are multiplicative for a particular polynomial p in a set of polynomials P.
- Popular choices of involutive division include the Thomas, Pommaret and Janet divisions.
- The Involutive Basis algorithm is guaranteed to terminate if the involutive division used satisfies certain properties.

What is an Involutive Basis?

Definition (Thomas)
Let $U=\left\{u_{1}, \ldots, u_{m}\right\}$ be a set of monomials over a polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$, where the monomial $u_{j} \in U($ for $1 \leqslant j \leqslant m)$ has corresponding multidegree $\left(e_{j}^{1}, e_{j}^{2}, \ldots, e_{j}^{n}\right)$.

What is an Involutive Basis?

Definition (Thomas)

Let $U=\left\{u_{1}, \ldots, u_{m}\right\}$ be a set of monomials over a polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$, where the monomial $u_{j} \in U($ for $1 \leqslant j \leqslant m)$ has corresponding multidegree $\left(e_{j}^{1}, e_{j}^{2}, \ldots, e_{j}^{n}\right)$.
The Thomas involutive division \mathcal{T} assigns multiplicative variables to elements of U as follows: the variable x_{i} is multiplicative for monomial u_{j} (written $x_{i} \in \mathcal{M}_{\mathcal{T}}\left(u_{j}, U\right)$) if $e_{j}^{i}=\max _{k} e_{k}^{i}$ for all $1 \leqslant k \leqslant m$.

What is an Involutive Basis?

Outline

Commutative

 mutative

What is an
Involutive
Basis?
Noncomm. Involutive
Bases

Definition (Thomas)

Let $U=\left\{u_{1}, \ldots, u_{m}\right\}$ be a set of monomials over a polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$, where the monomial $u_{j} \in U($ for $1 \leqslant j \leqslant m)$ has corresponding multidegree $\left(e_{j}^{1}, e_{j}^{2}, \ldots, e_{j}^{n}\right)$.
The Thomas involutive division \mathcal{T} assigns multiplicative variables to elements of U as follows: the variable x_{i} is multiplicative for monomial u_{j} (written $x_{i} \in \mathcal{M}_{\mathcal{T}}\left(u_{j}, U\right)$) if $e_{j}^{i}=\max _{k} e_{k}^{i}$ for all $1 \leqslant k \leqslant m$.

Example

Monomial	$x^{5} y^{2} z$	$y^{2} z$	$x^{2} y^{2} z$	$x y z^{3}$	$x z^{3}$	$x^{4} y z^{2}$	z
Thomas	$\{x, y\}$	$\{y\}$	$\{y\}$	$\{z\}$	$\{z\}$	\emptyset	\emptyset

Outline
Commutative vs. Noncommutative

What is an
Involutive
Basis?
Noncomm Involutive Bases

What is an Involutive Basis?

Consider the Janet Involutive Basis $H:=\left\{x y-z, y z+2 x+z, 2 x^{2}+x z+z^{2}, 2 x^{2} z+x z^{2}+z^{3}\right\}$ and the corresponding Gröbner Basis
$G:=\left\{x y-z, y z+2 x+z, 2 x^{2}+x z+z^{2}\right\}$.

What is an Involutive Basis?

Outline
Commutative vs. Noncom mutative

What is an Involutive
Basis?
Noncomm. Involutive
Bases

Walks

Commutative

 WalksNoncommutative Walks

Consider the Janet Involutive Basis $H:=\left\{x y-z, y z+2 x+z, 2 x^{2}+x z+z^{2}, 2 x^{2} z+x z^{2}+z^{3}\right\}$ and the corresponding Gröbner Basis

$$
G:=\left\{x y-z, y z+2 x+z, 2 x^{2}+x z+z^{2}\right\} .
$$

Outline
Commutative
vs. Noncom mutative

What is an
Involutive
Basis?

Noncomm Involutive Bases

Divisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

What is an Involutive Basis?

- The Involutive Basis Algorithm can be thought of as an alternative to Buchberger's Algorithm.

What is an Involutive Basis?

- The Involutive Basis Algorithm can be thought of as an alternative to Buchberger's Algorithm.
- Which is more efficient?

What is an Involutive Basis?

- The Involutive Basis Algorithm can be thought of as an alternative to Buchberger's Algorithm.
- Which is more efficient?
- An Involutive Basis has extra combinatorial properties, e.g. simple deduction of the Hilbert function.

What is an Involutive Basis?

- The Involutive Basis Algorithm can be thought of as an alternative to Buchberger's Algorithm.
- Which is more efficient?
- An Involutive Basis has extra combinatorial properties, e.g. simple deduction of the Hilbert function.
- More information:

Calmet, Hausdorf and Seiler:
A Constructive Introduction to Involution; Gerdt and Blinkov:

Involutive Bases of Polynomial Ideals.

Special Semester Presentation Gareth Evans

Outline
Commutative vs. Noncommutative

What is an Involutive Basis?

Noncomm.

 Involutive BasesDivisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Noncommutative Involutive Bases

Special Semester Presentation

Noncommutative Involutive Bases

- Need left/right multiplicative variables.

Special Semester Presentation

Noncommutative Involutive Bases

- Need left/right multiplicative variables.
- When is a conventional divisor an involutive divisor?

Involutive Basis?

Noncomm Involutive Bases

Divisors

Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Special

Outline
Commutative
vs. Noncommutative

What is an
Involutive
Basis?
Noncomm.
Involutive Bases

Divisors

Algorithm

Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Noncommutative Involutive Bases

- Need left/right multiplicative variables.
- When is a conventional divisor an involutive divisor?
- Thin divisor:
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\checkmark \quad-\quad \checkmark
$$

Noncommutative Involutive Bases

Outline

Commutative

vs. Noncom mutative

What is an
Involutive
Basis?
Noncomm. Involutive Bases
Divisors

Algorithm

Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

- Need left/right multiplicative variables.
- When is a conventional divisor an involutive divisor?
- Thin divisor:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\checkmark \quad-\quad \checkmark
$$

- Thick divisor:

Noncommutative Involutive Bases

Outline
Commutative
vs. Noncommutative

What is an
Involutive
Basis?
Noncomm.
Involutive
Bases
Divisors

Walks

Input: A Basis $F=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ for an ideal J over a noncommutative polynomial ring $R\left\langle x_{1}, \ldots x_{n}\right\rangle$; an admissible monomial ordering O; an involutive division I.
Output: A Locally Involutive Basis $G=\left\{g_{1}, g_{2}, \ldots, g_{p}\right\}$ for J (in the case of termination).

$$
\begin{aligned}
& G=\emptyset ; \\
& F=\text { Autoreduce }(F) ; \\
& \text { while }(G==\emptyset) \text { do }
\end{aligned}
$$

$$
S=\left\{x_{i} f \mid f \in F, x_{i} \notin \mathcal{M}_{l}^{L}(f, F)\right\} \cup\left\{f_{x_{i}} \mid f \in F, x_{i} \notin \mathcal{M}_{l}^{R}(f, F)\right\}
$$

$$
s^{\prime}=0
$$

while $(S \neq \emptyset)$ and $\left(s^{\prime}==0\right)$ do
Let s be a polynomial in S whose lead monomial is minimal with respect to O;

$$
S=S \backslash\{s\} ;
$$

$$
s^{\prime}=\operatorname{Rem}_{l}(s, F) ;
$$

end while
if $\left(s^{\prime} \neq 0\right)$ then
$F=$ Autoreduce $\left(F \cup\left\{s^{\prime}\right\}\right) ;$
else
$G=F ;$
end if
end while
return G;

Noncommutative Involutive Bases

Example

Let $F:=\left\{f_{1}, f_{2}\right\}=\left\{x^{2} y^{2}-2 x y^{2}+x^{2}, x^{2} y-2 x y\right\}$ be a basis for an ideal J over the polynomial ring $\mathbb{Q}\langle x, y\rangle$, and let the monomial ordering be DegLex.

Noncommutative Involutive Bases

Outline
Commutative vs. Noncommutative

What is an
Involutive
Basis?
Noncomm.
Involutive
Bases
Divisors

Algorithm

Properties
Divisions
Open Questions
Walks

Example

Let $F:=\left\{f_{1}, f_{2}\right\}=\left\{x^{2} y^{2}-2 x y^{2}+x^{2}, x^{2} y-2 x y\right\}$ be a basis for an ideal J over the polynomial ring $\mathbb{Q}\langle x, y\rangle$, and let the monomial ordering be DegLex.
Assume multiplicative variables for F as follows.

Polynomial	$\mathcal{M}_{l}^{L}\left(f_{i}, F\right)$	$\mathcal{M}_{l}^{R}\left(f_{i}, F\right)$
$f_{1}=x^{2} y^{2}-2 x y^{2}+x^{2}$	$\{x, y\}$	$\{y\}$
$f_{2}=x^{2} y-2 x y$	$\{x, y\}$	$\{x\}$

Noncommutative Involutive Bases

Outline

Commutative

vs. Noncommutative

What is an
Involutive
Basis?
Noncomm.
Involutive
Bases

Divisors

Algorithm

Properties
Divisions
Open Questions
Walks

Example

Let $F:=\left\{f_{1}, f_{2}\right\}=\left\{x^{2} y^{2}-2 x y^{2}+x^{2}, x^{2} y-2 x y\right\}$ be a basis for an ideal J over the polynomial ring $\mathbb{Q}\langle x, y\rangle$, and let the monomial ordering be DegLex.
Assume multiplicative variables for F as follows.

Polynomial	$\mathcal{M}_{l}^{L}\left(f_{i}, F\right)$	$\mathcal{M}_{l}^{R}\left(f_{i}, F\right)$
$f_{1}=x^{2} y^{2}-2 x y^{2}+x^{2}$	$\{x, y\}$	$\{y\}$
$f_{2}=x^{2} y-2 x y$	$\{x, y\}$	$\{x\}$

Autoreduction does not alter the set, so we construct the set of prolongations
$S=\left\{f_{1} x, f_{2} y\right\}=\left\{x^{2} y^{2} x-2 x y^{2} x+x^{3}, x^{2} y^{2}-2 x y^{2}\right\}$.

Outline
Commutative
vs. Noncom mutative

What is an Involutive Basis?

Noncomm. Involutive Bases

Divisors

Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Noncommutative Involutive Bases

As $x^{2} y^{2}<x^{2} y^{2} x$ in the DegLex monomial ordering, we involutively reduce the element $f_{2} y \in S$ first.

$$
\begin{aligned}
f_{2} y=x^{2} y^{2}-2 x y^{2} & { }_{l} f_{1} \\
& x^{2} y^{2}-2 x y^{2}-\left(x^{2} y^{2}-2 x y^{2}+x^{2}\right) \\
& =\quad-x^{2}
\end{aligned}
$$

Noncommutative Involutive Bases

Outline
Commutative vs. Noncommutative

What is an
Involutive
Basis?
Noncomm. Involutive Bases

Divisors

Algorithm

Properties
Divisions
Open Questions
Walks

As $x^{2} y^{2}<x^{2} y^{2} x$ in the DegLex monomial ordering, we involutively reduce the element $f_{2} y \in S$ first.

$$
\begin{array}{rll}
f_{2} y=x^{2} y^{2}-2 x y^{2} & \longrightarrow_{f_{1}} & x^{2} y^{2}-2 x y^{2}-\left(x^{2} y^{2}-2 x y^{2}+x^{2}\right) \\
& = & -x^{2} .
\end{array}
$$

As the prolongation did not involutively reduce to zero, we now exit from the second while loop of the algorithm and proceed by autoreducing the set
$F \cup\left\{f_{3}:=-x^{2}\right\}=\left\{x^{2} y^{2}-2 x y^{2}+x^{2}, x^{2} y-2 x y,-x^{2}\right\}$.

Noncommutative Involutive Bases

Outline

Commutative

vs. Noncom-
mutative
What is an
Involutive
Basis?
Noncomm. Involutive Bases

Divisors

Algorithm
Properties
Divisions
Open Questions

Walks

As $x^{2} y^{2}<x^{2} y^{2} x$ in the DegLex monomial ordering, we involutively reduce the element $f_{2} y \in S$ first.

$$
\begin{aligned}
f_{2} y=x^{2} y^{2}-2 x y^{2} & { }_{l} f_{1} \\
& x^{2} y^{2}-2 x y^{2}-\left(x^{2} y^{2}-2 x y^{2}+x^{2}\right) \\
& =\quad-x^{2}
\end{aligned}
$$

As the prolongation did not involutively reduce to zero, we now exit from the second while loop of the algorithm and proceed by autoreducing the set
$F \cup\left\{f_{3}:=-x^{2}\right\}=\left\{x^{2} y^{2}-2 x y^{2}+x^{2}, x^{2} y-2 x y,-x^{2}\right\}$.
(This of course requires a new assignment of multiplicative variables; the algorithm eventually terminates with the set $G=\left\{-x^{2},-2 x y,-2 x y^{2},-2 x y x,-2 x y^{2} x\right\}$ as output.)

Special Semester Presentation

Noncommutative Involutive Bases

Outline

Commutative
vs. Noncommutative

What is an Involutive Basis?

Input set F
Noncomm. Involutive Bases

Divisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Outline
Commutative
vs. Noncommutative

What is an Involutive Basis?

Noncomm. Involutive Bases

Divisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Noncommutative Involutive Bases

Input set F
apply algorithm
Locally Involutive Basis

Noncommutative Involutive Bases

Outline
Commutative
vs. Noncommutative

What is an Involutive Basis?

Noncomm. Involutive Bases

Divisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Input set F
apply algorithm
Locally Involutive Basis
continuity
Involutive Basis

Noncommutative Involutive Bases

Outline
Commutative
vs. Noncommutative

What is an Involutive Basis?

Noncomm. Involutive
Bases
Divisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Input set F
apply algorithm
Locally Involutive Basis
continuity
Involutive Basis
strong
Gröbner Basis

Noncommutative Involutive Bases

Outline
Commutative
vs. Noncommutative

What is an Involutive Basis?

Noncomm. Involutive
Bases
Divisors

Algorithm

Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Input set F
apply algorithm
Locally Involutive Basis
continuity
Involutive Basis
Gröbner $\downarrow \downarrow$ strong
Gröbner Basis

Noncommutative Involutive Bases

Definition (The Left Division)

Given any monomial u, the left division \triangleleft assigns no left nonmultiplicative variables to u, and assigns no right multiplicative variables to u (in other words, all variables are left multiplicative and right nonmultiplicative for u).

Noncommutative Involutive Bases

Definition (The Left Division)

Given any monomial u, the left division \triangleleft assigns no left nonmultiplicative variables to u, and assigns no right multiplicative variables to u (in other words, all variables are left multiplicative and right nonmultiplicative for u).

Remark
The Left Division is strong and continuous.

Noncommutative Involutive Bases

To illustrate the difference between the overlapping cones of a noncommutative Gröbner Basis and the disjoint cones of a noncommutative Involutive Basis with respect to the left division, consider the following example.

Noncommutative Involutive Bases

Outline
Commutative
vs. Noncommutative

What is an
Involutive
Basis?
Noncomm.
Involutive
Bases
Divisors
Algorithm

Properties

Divisions
Open Questions
Walks

To illustrate the difference between the overlapping cones of a noncommutative Gröbner Basis and the disjoint cones of a noncommutative Involutive Basis with respect to the left division, consider the following example.

Example

Let $F:=\left\{2 x y+y^{2}+5, x^{2}+y^{2}+8\right\}$ be a basis over the polynomial ring $\mathbb{Q}\langle x, y\rangle$, and let the monomial ordering be DegLex.

Noncommutative Involutive Bases

Outline

Commutative

vs. Noncommutative

What is an
Involutive
Basis?
Noncomm.
Involutive
Bases
Divisors
Algorithm

Properties

Divisions
Open Questions
Walks

To illustrate the difference between the overlapping cones of a noncommutative Gröbner Basis and the disjoint cones of a noncommutative Involutive Basis with respect to the left division, consider the following example.

Example

Let $F:=\left\{2 x y+y^{2}+5, x^{2}+y^{2}+8\right\}$ be a basis over the polynomial ring $\mathbb{Q}\langle x, y\rangle$, and let the monomial ordering be DegLex.
Applying Mora's algorithm to F, we obtain the Gröbner Basis $G:=\left\{2 x y+y^{2}+5, x^{2}+y^{2}+8,5 y^{3}-10 x+37 y, 2 y x+y^{2}+5\right\}$.

Noncommutative Involutive Bases

Outline

Commutative

 vs. NoncommutativeWhat is an Involutive Basis?

Noncomm. Involutive
Bases
Divisors
Algorithm

Properties

Divisions

Walks

To illustrate the difference between the overlapping cones of a noncommutative Gröbner Basis and the disjoint cones of a noncommutative Involutive Basis with respect to the left division, consider the following example.

Example

Let $F:=\left\{2 x y+y^{2}+5, x^{2}+y^{2}+8\right\}$ be a basis over the polynomial ring $\mathbb{Q}\langle x, y\rangle$, and let the monomial ordering be DegLex.
Applying Mora's algorithm to F, we obtain the Gröbner Basis $G:=\left\{2 x y+y^{2}+5, x^{2}+y^{2}+8,5 y^{3}-10 x+37 y, 2 y x+y^{2}+5\right\}$.
Applying the noncommutative Involutive Basis algorithm to F (with respect to the left involutive division), we obtain the Involutive Basis $H:=\left\{2 x y+y^{2}+5, x^{2}+y^{2}+8,5 y^{3}-10 x+\right.$ $\left.37 y, 5 x y^{2}+5 x-6 y, 2 y x+y^{2}+5\right\}$.

Commutative

 vs. NoncommutativeWhat is an Involutive Basis?

Noncomm. Involutive Bases

Walks

Noncommutative Involutive Bases

$$
\begin{aligned}
& \text { Gröbner Basis } G=\left\{2 x y+y^{2}+5, x^{2}+y^{2}+8,\right. \\
& \left.5 y^{3}-10 x+37 y, 2 y x+y^{2}+5\right\}
\end{aligned}
$$

Commutative

vs. Noncommutative

What is an Involutive Basis?

Noncomm Involutive Bases

Divisors

Algorithm

Walks

Commutative

 WalksNoncommutative Walks

Noncommutative Involutive Bases

$$
\begin{aligned}
& \text { Involutive Basis } H=\left\{2 x y+y^{2}+5, x^{2}+y^{2}+8,\right. \\
& \left.5 y^{3}-10 x+37 y, 5 x y^{2}+5 x-6 y, 2 y x+y^{2}+5\right\}
\end{aligned}
$$

Noncommutative Involutive Bases
 Application: Complete Rewrite Systems for Groups.

Outline

Commutative
vs. Noncom mutative

What is an Involutive Basis?

Noncomm. Involutive Bases

Divisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Noncommutative Involutive Bases

Application: Complete Rewrite Systems for Groups.

Example

Let $C:=\langle Y, X, y, x| x^{3} \rightarrow \varepsilon, y^{2} \rightarrow \varepsilon,(x y)^{2} \rightarrow \varepsilon, X x \rightarrow$ $\varepsilon, x X \rightarrow \varepsilon, Y y \rightarrow \varepsilon, y Y \rightarrow \varepsilon\rangle$ be a monoid rws for S_{3}.

Noncommutative Involutive Bases

Application: Complete Rewrite Systems for Groups.

Example

Let $C:=\langle Y, X, y, x| x^{3} \rightarrow \varepsilon, y^{2} \rightarrow \varepsilon,(x y)^{2} \rightarrow \varepsilon, X x \rightarrow$ $\varepsilon, x X \rightarrow \varepsilon, Y y \rightarrow \varepsilon, y Y \rightarrow \varepsilon\rangle$ be a monoid rws for S_{3}. If we apply the Knuth-Bendix algorithm to C with respect to the DegLex (word) ordering, we obtain the complete rewrite system

$$
\begin{aligned}
C^{\prime} & :=\langle Y, X, y, x| x y x \rightarrow y, y x y \rightarrow X, x^{2} \rightarrow X, X x \rightarrow \\
\varepsilon, y^{2} & \left.\rightarrow \varepsilon, X y \rightarrow y x, x X \rightarrow \varepsilon, y X \rightarrow x y, X^{2} \rightarrow x, Y \rightarrow y\right\rangle .
\end{aligned}
$$

Noncommutative Involutive Bases

Outline

Commutative

vs. Noncommutative

What is an
Involutive
Basis?
Noncomm. Involutive
Bases
Divisors
Algorithm
Properties
Divisions
Open Questions

Walks

Application: Complete Rewrite Systems for Groups.

Example

Let $C:=\langle Y, X, y, x| x^{3} \rightarrow \varepsilon, y^{2} \rightarrow \varepsilon,(x y)^{2} \rightarrow \varepsilon, X x \rightarrow$ $\varepsilon, x X \rightarrow \varepsilon, Y y \rightarrow \varepsilon, y Y \rightarrow \varepsilon\rangle$ be a monoid rws for S_{3}. If we apply the Knuth-Bendix algorithm to C with respect to the DegLex (word) ordering, we obtain the complete rewrite system

$$
\begin{aligned}
C^{\prime} & :=\langle Y, X, y, x| x y x \rightarrow y, y x y \rightarrow X, x^{2} \rightarrow X, X x \rightarrow \\
\varepsilon, y^{2} & \left.\rightarrow \varepsilon, X y \rightarrow y x, x X \rightarrow \varepsilon, y X \rightarrow x y, X^{2} \rightarrow x, Y \rightarrow y\right\rangle .
\end{aligned}
$$

The corresponding involutive complete rewrite system is

$$
\begin{gathered}
C^{\prime \prime}:=\langle Y, X, y, x| y^{2} \rightarrow \varepsilon, X x \rightarrow \varepsilon, x X \rightarrow \varepsilon, Y y \rightarrow \varepsilon, y^{2} x \rightarrow \\
x, Y \rightarrow y, Y x \rightarrow y x, X x y \rightarrow y, Y y x \rightarrow x, x^{2} \rightarrow X, X^{2} \rightarrow \\
x, x y x \rightarrow y, X y \rightarrow y x, X y x \rightarrow x y, x^{2} y \rightarrow y x, y X \rightarrow \\
x y, y x y \rightarrow X, Y x y \rightarrow X, Y X \rightarrow x y\rangle .
\end{gathered}
$$

Noncommutative Involutive Bases

Consider the word $y X Y x$. Using the 10 element complete rewrite system C^{\prime}, there are several reduction paths for this word, as illustrated by the following diagram.

Noncommutative Involutive Bases

However, by involutively reducing the word $y X Y x$ with respect to the 19 element involutive complete rewrite system $C^{\prime \prime}$, there is only one reduction path, namely

Noncommutative Involutive Bases

Problem:
With respect to the left division, the noncommutative Involutive Basis algorithm does not always terminate, given the existence of a noncommutative Gröbner Basis.

Noncommutative Involutive Bases

Problem:

With respect to the left division, the noncommutative Involutive Basis algorithm does not always terminate, given the existence of a noncommutative Gröbner Basis.

Solution:
Try defining a different division!

What is an
Involutive
Basis?

Noncomm.

Involutive
Bases
Divisors
Algorithm
Properties
Divisions
Open Questions
Walks

Noncommutative Involutive Bases

 Definition (The Left Overlap Division \mathcal{O})Let $U=\left\{u_{1}, \ldots, u_{m}\right\}$ be a set of monomials, and assume that all variables are left and right multiplicative for all elements of U to begin with.

Noncommutative Involutive Bases

Definition (The Left Overlap Division \mathcal{O})

Let $U=\left\{u_{1}, \ldots, u_{m}\right\}$ be a set of monomials, and assume that all variables are left and right multiplicative for all elements of U to begin with.
(a) For all possible ways that a monomial $u_{j} \in U$ is a subword of a (different) monomial $u_{i} \in U$, so that

$$
\operatorname{Subword}\left(u_{i}, k, k+\operatorname{deg}\left(u_{j}\right)-1\right)=u_{j}
$$

for some integer k, if u_{j} is not a suffix of u_{i}, assign the variable Subword $\left(u_{i}, k+\operatorname{deg}\left(u_{j}\right), k+\operatorname{deg}\left(u_{j}\right)\right)$ to be right nonmultiplicative for u_{j}.

Walks

Noncommutative Involutive Bases

Outline
Commutative vs. Noncommutative

What is an
Involutive Basis?

Noncomm. Involutive
Bases
Divisors
Algorithm

Walks

 Walks
Definition (The Left Overlap Division \mathcal{O})

Let $U=\left\{u_{1}, \ldots, u_{m}\right\}$ be a set of monomials, and assume that all variables are left and right multiplicative for all elements of U to begin with.
(a) For all possible ways that a monomial $u_{j} \in U$ is a subword of a (different) monomial $u_{i} \in U$, so that

$$
\operatorname{Subword}\left(u_{i}, k, k+\operatorname{deg}\left(u_{j}\right)-1\right)=u_{j}
$$

for some integer k, if u_{j} is not a suffix of u_{i}, assign the variable Subword $\left(u_{i}, k+\operatorname{deg}\left(u_{j}\right), k+\operatorname{deg}\left(u_{j}\right)\right)$ to be right nonmultiplicative for u_{j}.
(b) For all possible ways that a proper prefix of a monomial $u_{i} \in U$ is equal to a proper suffix of a (not necessarily different) monomial $u_{j} \in U$, so that

$$
\operatorname{Prefix}\left(u_{i}, k\right)=\operatorname{Suffix}\left(u_{j}, k\right)
$$

for some integer k and u_{i} is not a subword of u_{j} or vice-versa, assign the variable Subword $\left(u_{i}, k+1, k+1\right)$ to be right nonmultiplicative for u_{j}.

Noncommutative Involutive Bases

Outline

Commutative

vs. Noncom-
mutative
What is an
Involutive
Basis?
Noncomm.
Involutive
Bases
Divisors
Algorithm
Properties
Divisions
Open Questions

Walks

 Walks
Example

Consider the set of polynomials $F:=\left\{x y-z, x+z, y z-z, x z, z y+z, z^{2}\right\}$. Here are the left and right multiplicative variables for $\operatorname{LM}(F)$ with respect to the left overlap division \mathcal{O}.

u	$\mathcal{M}_{\mathcal{O}}^{L}(u, \mathrm{LM}(F))$	$\mathcal{M}_{\mathcal{O}}^{R}(u, \mathrm{LM}(F))$
$x y$	$\{x, y, z\}$	$\{x, y\}$
x	$\{x, y, z\}$	$\{x\}$
$y z$	$\{x, y, z\}$	$\{x\}$
$x z$	$\{x, y, z\}$	$\{x\}$
$z y$	$\{x, y, z\}$	$\{x, y\}$
z^{2}	$\{x, y, z\}$	$\{x\}$

Noncommutative Involutive Bases

Open Questions

Noncommutative Involutive Bases

Open Questions

- Are there any conclusive noncommutative involutive divisions?

Outline
Commutative
vs. Noncommutative

What is an
Involutive Basis?

Noncomm. Involutive Bases

Divisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Noncommutative Involutive Bases

Open Questions

- Are there any conclusive noncommutative involutive divisions?
- Better algorithms?

Noncommutative Involutive Bases

Open Questions

- Are there any conclusive noncommutative involutive divisions?
- Better algorithms?
- Applications?

Noncommutative Involutive Bases

Open Questions

- Are there any conclusive noncommutative involutive divisions?
- Better algorithms?
- Applications?

More information:
Evans: Noncommutative Involutive Bases (PhD Thesis, University of Wales, Bangor, 2005). Available on the arXiv.

Outline

Commutative vs. Noncommutative
What is an Involutive Basis?

Noncomm.

 Involutive BasesDivisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Commutative Gröbner and Involutive Walks

Commutative Gröbner and Involutive Walks

Commutative
vs. Noncommutative

What is an
Involutive
Basis?
Noncomm.
Involutive
Bases
Divisors
Algorithm
Properties
Divisions
Open Questions
Walks

- The 'walk' converts a Gröbner or Involutive Basis with respect to one monomial ordering to a Gröbner or Involutive Basis with respect to another monomial ordering.

Commutative Gröbner and Involutive Walks

Outline
Commutative
vs. Noncommutative

What is an
Involutive
Basis?
Noncomm.
Involutive
Bases
Divisors
Algorithm
Properties
Divisions
Open Questions
Walks

- The 'walk' converts a Gröbner or Involutive Basis with respect to one monomial ordering to a Gröbner or Involutive Basis with respect to another monomial ordering.
- It works with the matrices associated to the source and target monomial orderings.

Commutative Gröbner and Involutive Walks

Outline
Commutative
vs. Noncommutative

What is an
Involutive
Basis?
Noncomm.
Involutive
Bases
Divisors
Algorithm
Properties
Divisions
Open Questions
Walks

- The 'walk' converts a Gröbner or Involutive Basis with respect to one monomial ordering to a Gröbner or Involutive Basis with respect to another monomial ordering.
- It works with the matrices associated to the source and target monomial orderings. Example:
DegLex $=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$, Lex $=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

Commutative Gröbner and Involutive Walks

Outline
Commutative
vs. Noncommutative

What is an
Involutive
Basis?
Noncomm.
Involutive
Bases
Divisors
Algorithm

Properties

Divisions
Open Questions
Walks

- The 'walk' converts a Gröbner or Involutive Basis with respect to one monomial ordering to a Gröbner or Involutive Basis with respect to another monomial ordering.
- It works with the matrices associated to the source and target monomial orderings. Example:
DegLex $=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$, Lex $=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
- The walk takes place on the line segment between the first two rows of the source and target matrices.

Commutative Gröbner and Involutive Walks

Outline
Commutative
vs. Noncommutative

What is an
Involutive
Basis?
Noncomm.
Involutive
Bases
Divisors
Algorithm

Properties

Divisions
Open Questions
Walks Walks

- The 'walk' converts a Gröbner or Involutive Basis with respect to one monomial ordering to a Gröbner or Involutive Basis with respect to another monomial ordering.
- It works with the matrices associated to the source and target monomial orderings. Example:
DegLex $=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$, Lex $=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
- The walk takes place on the line segment between the first two rows of the source and target matrices.
- Each step of the walk computes a Gröbner or Involutive Basis for a set of 'initials', determined by the first row of the current matrix.

Outline

Commutative

vs. Noncommutative

What is an Involutive Basis?

Noncomm

 InvolutiveBases
Divisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Example

Input: $\left\{x y-z, y z+2 x+z, 2 x^{2}+x z+z^{2}\right\}$, DegLex.

Gareth Evans

Outline

Commutative

vs. Noncom mutative

What is an Involutive Basis?

Noncomm

 InvolutiveBases
Divisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Example

Input: $\left\{x y-z, y z+2 x+z, 2 x^{2}+x z+z^{2}\right\}$, DegLex. Output: $\left\{x+\frac{1}{2} y z+\frac{1}{2} z, y^{2} z+y z+2 z\right\}$, Lex.

Outline
Commutative
vs. Noncommutative

What is an Involutive Basis?

Noncomm Involutive
Bases

Divisors

Algorithm
Properties
Divisions
Open Questions

Walks

Example

Input: $\left\{x y-z, y z+2 x+z, 2 x^{2}+x z+z^{2}\right\}$, DegLex.
Output: $\left\{x+\frac{1}{2} y z+\frac{1}{2} z, y^{2} z+y z+2 z\right\}$, Lex.

Noncommutative Walks

Outline

Commutative vs. Noncommutative

What is an Involutive
Basis?

Noncomm.

 Involutive BasesDivisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Special Semester
Presentation

Noncommutative Walks

Outline
Commutative
vs. Noncom mutative

What is an Involutive Basis?

Noncomm Involutive Bases

Divisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative
Walks

- Only a partial generalisation: Not allowed to walk between any two monomial orderings, only 'harmonious' ones.

Noncommutative Walks

Outline
Commutative
vs. Noncommutative

What is an
Involutive
Basis?
Noncomm.
Involutive
Bases
Divisors
Algorithm
Properties
Divisions
Open Questions
Walks Walks

- Only a partial generalisation: Not allowed to walk between any two monomial orderings, only 'harmonious' ones.

Commutative	Noncommutative
Matrices	Functional Decompositions
Rows	Ordering Functions

Noncommutative Walks

Outline
Commutative vs. Noncommutative

What is an Involutive Basis?

Noncomm.
Involutive
Bases
Divisors
Algorithm
Properties
Divisions
Open Questions
Walks Walks

- Only a partial generalisation: Not allowed to walk between any two monomial orderings, only 'harmonious' ones.

Commutative	Noncommutative
Matrices	Functional Decompositions
Rows	Ordering Functions

Definition

The functional decomposition $\Theta=\left\{\theta_{1}, \theta_{2}, \ldots\right\}$ corresponding to the DegLex monomial ordering is defined (for an arbitrary monomial m) as follows.

$$
\theta_{i}(m)= \begin{cases}\operatorname{deg}(m) & \text { if } i=1 \\ n+1-\operatorname{val}_{i-1}(m) & \text { if } i>1\end{cases}
$$

Noncommutative Walks

Results

- The basis of initials is a Gröbner (or Involutive) Basis.

Outline

Commutative

vs. Noncom mutative

What is an Involutive Basis?

Noncomm. Involutive Bases

Divisors
Algorithm
Properties
Divisions
Open Questions
Walks
Commutative Walks
Noncommutative Walks

Noncommutative Walks

Results

- The basis of initials is a Gröbner (or Involutive) Basis.
- The 'lifted’ basis is a Gröbner (or Involutive) Basis.

Noncommutative Walks

Results

- The basis of initials is a Gröbner (or Involutive) Basis.
- The 'lifted' basis is a Gröbner (or Involutive) Basis.
- Walks between harmonious monomial orderings, where the first ordering functions must be extendible and identical.

Noncommutative Walks

Results

- The basis of initials is a Gröbner (or Involutive) Basis.
- The 'lifted' basis is a Gröbner (or Involutive) Basis.
- Walks between harmonious monomial orderings, where the first ordering functions must be extendible and identical.

Problems

- How to find the next step on the walk?

Noncommutative Walks

Results

- The basis of initials is a Gröbner (or Involutive) Basis.
- The 'lifted' basis is a Gröbner (or Involutive) Basis.
- Walks between harmonious monomial orderings, where the first ordering functions must be extendible and identical.

Problems

- How to find the next step on the walk?
- In particular, how to define an intermediate monomial ordering that is admissible.

Noncommutative Walks

Outline
Commutative
vs. Noncommutative

What is an Involutive Basis?

Noncomm.
Involutive
Bases
Divisors

Algorithm

Properties
Divisions
Open Questions
Walks

More information (Commutative):
Amrhein, Gloor and Küchlin:
On the Walk;
Collart, Kalkbrener and Mall:
Converting Bases with the Gröbner Walk;
Golubitsky:
Involutive Gröbner Walk.
More information (Noncommutative):

Evans:

Noncommutative Involutive Bases (PhD Thesis, University of Wales, Bangor, 2005).
Available on the arXiv.

