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Notation and Terminology

Definition 1 A well-order > on a set of mono-
mials, B, is said to be admissible if it satisfies
the following conditions for all p, q, r, s ∈ B:

1. if p < q then pr < qr

2. if p < q then sp < sq and

3. if p = qr then p ≥ q and p ≥ r.

Let f ∈ K〈x1, x2, ..., xn〉, B = {monomials},
supp (f) = support of f . Define tip(f) ={
bi ∈ B : bi ∈ supp (f) and bi ≥ bj∀ bj ∈ supp (f)

}
.

Denote the coefficient of tip(f) by Ctip(f).

If X ⊆ R, write

Tip(X) = {b ∈ B : b = tip(f) for some f ∈ X}
and NonTip(X) = B − Tip(X).
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Gröbner Bases and Normal Forms

Definition 2 If > is an admissible order on

R = K〈x1, x2, . . . , xn〉, and I is a two-sided ideal

of R, we say that G ⊂ I is a Gröbner basis for

I with respect to > if 〈Tip(G)〉= 〈Tip(I)〉.

Equivalently, G ⊂ I is a Gröbner basis of I if

for every b ∈ Tip(I), there is some g ∈ G such

that tip(g) divides b

i.e. for every f ∈ I, there exists g ∈ G, and

p, q ∈ B such that p · tip(g) · q = tip(f).

Note: For any ideal I, R = I⊕Span(NonTip(I)),

as vector spaces.

In particular, every nonzero r ∈ R can be writ-

ten uniquely as r = ir + NI(r),

where ir ∈ I and NI(r) ∈ Span(NonTip(I)).

NI(r) is called the normal form of r with re-

spect to I.
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Reduced Gröbner Basis

Definition 3 Let I be an ideal in R, let T be
the unique minimal monomial generating set
of 〈Tip(I)〉. Then the reduced Gröbner basis
for I, is G = {t − N(t) : t ∈ T}.

The following properites of min GB are clear:

1. G is a Gröbner basis for I.

2. If g ∈ G then the coefficient of tip(g) is 1.

3. If gi, gj ∈ G with gi 	= gj, and bi ∈ supp (gi),
then tip

(
gj

)
	 | bi.

4. If g ∈ G then g−tip(g) ∈ Span(NonTip(I)).

Note: Unlike the commutative case, the re-
duced Gröbner basis of an ideal may not be
finite.
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Some Ideals that do not have finite GB

1. (T. Mora, E. Green, V. Ufnarovski) Let

g = xyx − xy ∈ K〈x, y〉. Then 〈g〉 does

not have a finite Gröbner basis under any

admissible order.

2. Let A ∈ K − {0} and let g = xyx + Axz ∈
K〈x, y, z〉. Then 〈g〉 has an infinite reduced

Gröbner basis under any admissible order

in which y ≥ z.

3. Let g1 = xzy + yz ∈ K〈x, y, z〉, g2 = yzx +

zy ∈ K〈x, y, z〉. Then, I = 〈g1, g2〉 does

not have a finite Gröbner basis under any

admissible order.
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Noncommutative polly cracker:

Private Key: A GB, G = {g1, g2, . . . , gt} for a
2-sided ideal, I, of K〈x1, x2, ..., xn〉.

Public Key:
Q =

{
qr : qr =

∑t
i=1

∑dir
j=1 frijgihrij

}s

r=1
⊂ I,

such that 〈Q〉 is computationally infeasible.
In practice, 〈Q〉 does not have a finite GB, and
the GB of 〈Q〉 is not predictable.

Message Space: M ⊆ NonTip(I) .

Encryption: c = p + m,

where m ∈ M and

p =
∑s

i=1
∑kir

j=1 FrijqiHrij ∈ J = 〈Q〉⊂ I.

Frij, Hrij ∈ K〈x1, x2, ..., xn〉 are random.

Decryption: Reducing c modulo G yields m.
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Some simple examples:

Example 4 K a finite field, R = K〈x1, x2, . . . , x6〉.

Let Z =
∏6

i=1 xi and c0, c1, . . . , c6 ∈ K − {0}.

Private Key: g = Z +
∑6

i=1 cixi + c0 ∈ R.

Public Key: B = {q1, q2},

where q1 = fgh + hg, q2 = hgf + gh,

f = X +
∑6

i=1 aixi+a0, h = Y +
∑6

i=1 bixi + b0,

X = x1 ·∏5
i=2 ρ(xi) ·x6, Y = x1 ·∏5

i=2 σ(xi) ·x6,

ρ, σ distinct permutations of {x2, . . . x5},
a0, . . . , a6, b0, . . . , b6 ∈ K − {0}.

Message space: M = linear polynomials in R.

Alternatively, fix D ∈ N. Then M = polynomi-
als of degree ≤ D in some xi.
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Another Example

Example 5 Let K be a finite field, R = K〈x, y〉.
Let α, β, γ, δ ∈ K − {0}.

Private Key: Set g = αxy+βx+γy+ δ as the

private key.

Public Key: For i = 1 . . . t, set

fi = aix
2 + bixy + ciyx + dix + eiy + ui,

hi = miy
2 + nix + kiy + li, where

a1, bi, ci, di, ei, ui, mi, ni, ki, li ∈ K − {0}
and qi = figihi.

Then, Q = {q1 . . . qt} is the public key.

Message space: M = linear polynomials in R.

Alternatively, fix D ∈ N. Then M = polynomi-

als of degree ≤ D in some xi.
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The Attack

Definition 6 Let f ∈ K〈x1, x2, . . . , xn〉. We de-

fine the tail of f by tail(f) = f −Ctip(f) ·tip(f).

Attack 7

Assumptions:

1. Alice’s private key consists of a single poly-

nomial, g, and tip(g) is publicly known.

2. Catherine, has temporary black box access

to Alice’s decryption algorithm.
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Method:

1. Catherine “encrypts” tip(g). by construct-

ing: C =
∑s

i=1
∑kir

j=1 FrijqiHrij + tip(g).

2. She uses her temporary access to Alice’s

decryption black box to “decrypt” C.

Note that
∑s

i=1
∑kir

j=1 FrijqiHrij ∈ 〈g〉 van-

ishes, yielding

f = tip(g)− [Ctip(g)]−1 · g = − [Ctip(g)]−1 ·
tail(g).

3. Catherine constructs

g′ = tip(g) + [Ctip(g)]−1 · tail(g). Since

Ctip(g) · g′ = Ctip(g) · tip(g) + tail(g) = g,

it follows that 〈g〉= 〈g′〉, and that g′ is a

Gröbner basis for 〈g〉.



The Attack: Version 2

Attack 8

Assumptions:

1. Alice’s private key consists of a finite re-

duced Gröbner basis, G = {g1, g2, . . . gm}.

2. tip(gα) is publicly known for all α = 1,2, . . . m,

or can be easily determined from Alice’s

public key.

3. Catherine has temporary black box access

to Alice’s decryption algorithm

10



Method:

1. Catherine encrypts tip (g1). i.e. she cre-
ates ciphertext:
C1 =

∑s
i=1

∑kir
j=1 FrijqiHrij + tip(g1).

2. She uses her temporary access to Alice’s
decryption black box to “decrypt” C1.
Note that

∑s
i=1

∑kir
j=1 FrijqiHrij ∈ 〈G〉 van-

ishes, yielding f1 = − [Ctip(g1)]
−1 · tail(g1).

3. Catherine constructs
g′1 = tip(g1) + [Ctip(g1)]

−1 · tail(g1).

4. By repeating this for α = 1, . . . m, she gets
G′ =

{
g′1, . . . g′m

}
, where g′α = tip(gα) + fα.

Since Ctip(gα) · g′α = Ctip(gα) · tip(gα) +
tail(gα) = gα ∀α = 1,2, . . . m, it follows that
〈G〉= 〈G′〉, and that G′ is a Gröbner basis
for 〈G〉.



Generalizing the attack:

Attack 9

Assumptions:

1. Alice’s private key consists of a finite Gröbner

basis, G = {g1, g2, . . . gm}.

2. tip(gα) is publicly known for all α = 1,2, . . . m,

or can be easily determined from Alice’s

public key.

3. The cryptanalyst, Catherine, has tempo-

rary black box access to Alice’s decryption

algorithm.
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Method:

1. Catherine encrypts tip (g1) by constructing:

C1 =
∑s

i=1
∑kir

j=1 FrijqiHrij + tip(g1).

2. She uses her temporary access to Alice’s

decryption black box to “decrypt” C1.

3.
∑s

i=1
∑kir

j=1 FrijqiHrij ∈ 〈G〉 vanishes, and so

does tip (g1). In fact, the output of the

decryption algorithm is NG (tip (g1)).



4. Catherine constructs g′1 = tip(g1)−NG (tip (g1)).

Now, g′1 = tip(g1) − NG (tip (g1)) ∈ 〈G〉.

5. She repeats this process for each α = 1,2, . . . m,

and obtains a set, G′ =
{
g′1, g′2, . . . g′m

}
, where

g′α = tip(gα)−NG (tip (gα)) ∀α = 1,2, . . . m.

Note that g′α ∈ 〈G〉 ∀α = 1,2, . . . m. i.e.

〈G′〉 ⊂ 〈G〉. Furthermore, Tip
(
G′) = Tip (G).

6. It follows that 〈G〉= 〈G′〉, and that G′ is a

Gröbner basis for 〈G〉.



Generalized Attack: Version 2

Attack 10

Assumptions:

1. Alice’s private key consists of a finite Gröbner

basis, G = {g1, g2, . . . gm}.

2. The monomial order used in Alice’s decryp-

tion algorithm is publicly known.

3. The cryptanalyst, Catherine, has tempo-

rary black box access to Alice’s decryption

algorithm.
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Method:

1. Catherine uses her knowledge of Alice’s mono-

mial order to determine the largest tip, T ,

that occurs in Alice’s public key. Note that

T ∈ 〈Tip (G) 〉, and that tip (gi) ≤ T ∀i =

1 . . . m.

2. Catherine encrypts T by constructing

CT =
∑s

i=1
∑kir

j=1 FrijqiHrij + T .

3. She uses her temporary access to Alice’s

decryption black box to “decrypt” CT .

4.
∑s

i=1
∑kir

j=1 FrijqiHrij ∈ 〈G〉 vanishes, and so

does T . In fact, the output of the decryp-

tion algorithm yields NG (T).



5. Catherine constructs g′T = T − NG (T). As
noted earlier, g′T = T − NG (T) ∈ 〈G〉.

6. She repeats this process for each monomial
b, such that b ≤ T .

7. For each b ≤ T , there are two possibilities:
if b ∈ 〈Tip (G) 〉, then NG (b) 	= b, and if
b 	∈ 〈Tip (G) 〉, then NG (b) = b.

8. If b ∈ 〈Tip (G) 〉, and NG (b), Catherine con-
structs g′b = b−NG (b), and if b 	∈ 〈Tip (G) 〉,
she discards b.

9. Since {b : b ≤ T} is finite, she obtains
G′ =

{
g′b = b − NG (b) : b ≤ T and b ∈ 〈Tip (G) 〉

}

in a finite number of steps.

10. Note that g′b ∈ 〈G〉 ∀b. i.e. 〈G′〉 ⊂ 〈G〉.
Furthermore, Tip (G) ⊂ Tip

(
G′). So 〈G〉=

〈G′〉, and G′ is a Gröbner basis for 〈G〉.



Countering the attack

Countermeasure 11

1. Restrict the message space, M , so that

NonTip(G) − M 	= ∅.

2. For each each gi ∈ G, ensure that ∃bi ∈
supp (gi), such that bi ∈ NonTip(G) − M ,

and u · bi · v /∈ M , for all u, v ∈ B.

3. Program the decryption algorithm to check

for elements of NonTip(G)−M in the nor-

mal form of ciphertext polynomial after re-

duction modulo the private key.

4. If an element of NonTip(G)−M in the nor-

mal form of ciphertext, program it to re-

turn an error message.
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Some Examples

Example 12 If g = αxy+βx+γy+δ, as in ex-

ample 5, the message space could be restricted
to linear polynomials in y. The decryption al-
gorithm could be programmed to recognize the
fact that any ciphertext which reduces to a
polynomial containing x is not a legitimate ci-
phertext.

Example 13 If g =
∏6

i=1 xi +
∑6

i=1 cixi + c0,
as in example 4 the message space could be
restricted to linear polynomials in only some

of the variables. For example, it could be re-
stricted to linear polynomials in x1, x2, x3, x4, x5

and exclude any polynomials that contain x6.
In this case, the decryption algorithm could be
programmed to recognize the fact that any ci-
phertext which reduces to a polynomial that

contains x6 is not a legitimate ciphertext, and
be programmed to return an error message,
whenever it encounters such a ciphetext.
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Why the countermeasure works:

1. Let G = {g1, g2, . . . gt} be the private key.

Let m /∈ M be a fake message let C = p+m.

2. Let X1 = u1tip (g1) v1 for some X1 ∈ supp (C).

3. In the first step, C reduces to

C1 = C − AX · Ctip (g1)
−1 · u1g1v1

= AX·Ctip (g1)
−1 (u1tip (g1) v1 − u1tail (g1) v1),

where AX is the coefficient of X in C.

4. ∃b1 ∈ supp (g1) s.t. b1 ∈ NonTip(G) − M ,

and u · b1 · v /∈ M . So, u1 · b1 · v1 ∈ supp (C1),

and u1 · b1 · v1 /∈ M .

5. If �gi ∈ G such that tip (gi) divides some

X ∈ supp (C1), then u1 ·b1 ·v1 /∈ M occurs in
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C1 = NG (C), and the decryption algorithm
returns an error message.

6. If ∃gi ∈ G such that tip (gi) divides some
X ∈ supp (C1), then the division proceeds
with a monomial of the form uα · bα · vα

being introduced into the polynomial, Cα,
which is obtained as the reduced form of
the ciphertext polynomial at the end of the
αth step of the algorithm.

7. Since G is a finite Gröbner basis, the divi-
sion algorithm ends in a finite number of
steps, yielding NG (C).

8. If gν ∈ G is the polynomial used in the final
step of the division C by G, then uνbνvν oc-
curs in NG (C), and uνbνvν /∈ M . So the de-
cryption algorithm detects this monomial
in NG (C), and returns an error message.



Adaptive chosen-ciphertext attacks

Attack 14 (Koblitz)

1. Suppose Bob encrypts a message m and
sends it to Alice as ciphertext, c, and sup-
pose Catherine is able to read c.

2. Catherine constructs c′ = p+c+m0, where
m0 ∈ M is arbitrary. She sends c′ to Alice.

3. She then informs Alice that an incomplete
message was transmitted and requests her
to send back the decrypted message m′ =
N

(
c′

)
.

4. Since c′ decrypts to m′ = m + m0, Cather-
ine can find m = m′ − m0. Alice sees no
connection between c′ and c or m′ and m.
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Countermeasure

Countermeasure 15

1. Alice chooses a private key, G, and devel-

ops a public key such that the message

space, M , contains several monomials, and

can be partitioned into disjoint sets.

2. She picks MBob ⊂ M and MCatherine ⊂ M ,

such that MBob ∩ MCatherine = ∅.

3. She assigns MBob as Bob’s message space

and MCatherine as Catherine’s message space.
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An Example

Example 16 Suppose Alice chooses a private

key based on example 4. i.e. suppose her pri-

vate key consists of a single polynomial of the

form g = x1x2x3x4x5x6 +
∑6

i=1 cixi + c0.

She then implements countermeasure 11 by

leaving all monomials that contain x6 out of

her message space, thus securing her private

key from attacks of that use illegitimate ci-

phertexts.

Next she assigns the variable x1 to Bob and x2

to Catherine.

i.e. Bob’s message space, MBob consists of

polynomials in x1 of degree ≤ D,

and Catherine’s message space, MCatherine con-

sists of polynomials in x2 of degree ≤ D where

D ∈ N is fixed.
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Why the countermeasure works

If Catherine sends Alice a ciphertext c′, which

decrypts to m′ ∈ MBob, it would immediately

make Alice suspicious of Catherine’s intentions.

On the other hand, if Catherine sends Alice a

ciphertext of the form c′ = p + c + m0, where

c is a ciphertext used to encrypt a message

m ∈ MBob and m0 ∈ MCatherine, c′ would reduce

to an element of NonTip(G), which is neither

in MCatherine nor in MBob, and would immedi-

ately draw Alice’s attention to the suspicious

nature of Catherine’s ciphertext.
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Conclusion:

The noncommutative version of the Polly Cracker

cryptosystem (and possibly also the commuta-

tive version) can be modified to resist chosen

ciphertext attacks.
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