Countering chosen-ciphertext attacks against noncomm. polly cracker cryptosystems.

Tapan S. Rai University of Missouri - St. Louis St. Louis, MO 63121, USA

and

Stanislav V. Bulygin Technical University of Kaiserslautern Kaiserslautern, Germany

Notation and Terminology

Definition 1 A well-order > on a set of monomials, B, is said to be *admissible* if it satisfies the following conditions for all $p, q, r, s \in B$:

1. if p < q then pr < qr

2. if p < q then sp < sq and

3. if p = qr then $p \ge q$ and $p \ge r$.

Let $f \in K\langle x_1, x_2, ..., x_n \rangle$, $B = \{\text{monomials}\}$, supp(f) = support of f. Define $tip(f) = \{b_i \in B : b_i \in supp(f) \text{ and } b_i \geq b_j \forall b_j \in supp(f)\}$.

Denote the coefficient of tip(f) by Ctip(f).

If $X \subseteq R$, write

 $Tip(X) = \{b \in B : b = tip(f) \text{ for some } f \in X\}$ and NonTip(X) = B - Tip(X).

Gröbner Bases and Normal Forms

Definition 2 If > is an admissible order on $R = K\langle x_1, x_2, ..., x_n \rangle$, and *I* is a two-sided ideal of *R*, we say that $G \subset I$ is a *Gröbner basis* for *I* with respect to > if $\langle \text{Tip}(G) \rangle = \langle \text{Tip}(I) \rangle$.

Equivalently, $G \subset I$ is a Gröbner basis of I if for every $b \in \text{Tip}(I)$, there is some $g \in G$ such that tip(g) divides b

i.e. for every $f \in I$, there exists $g \in G$, and $p, q \in B$ such that $p \cdot tip(g) \cdot q = tip(f)$.

Note: For any ideal $I, R = I \oplus \text{Span}(\text{NonTip}(I))$, as vector spaces. In particular, every nonzero $r \in R$ can be written uniquely as $r = i_r + N_I(r)$, where $i_r \in I$ and $N_I(r) \in \text{Span}(\text{NonTip}(I))$. $N_I(r)$ is called the *normal form of* r *with respect to* I.

Reduced Gröbner Basis

Definition 3 Let *I* be an ideal in *R*, let *T* be the unique minimal monomial generating set of $\langle \text{Tip}(I) \rangle$. Then the *reduced Gröbner basis* for *I*, is $G = \{t - N(t) : t \in T\}$.

The following properites of min GB are clear:

- 1. G is a Gröbner basis for I.
- 2. If $g \in G$ then the coefficient of tip(g) is 1.
- 3. If $g_i, g_j \in G$ with $g_i \neq g_j$, and $b_i \in supp(g_i)$, then tip $(g_j) \not \mid b_i$.
- 4. If $g \in G$ then $g tip(g) \in Span(NonTip(I))$.

Note: Unlike the commutative case, the reduced Gröbner basis of an ideal may not be finite.

Some Ideals that do not have finite GB

- 1. (T. Mora, E. Green, V. Ufnarovski) Let $g = xyx - xy \in K\langle x, y \rangle$. Then $\langle g \rangle$ does not have a finite Gröbner basis under any admissible order.
- 2. Let $A \in K \{0\}$ and let $g = xyx + Axz \in K\langle x, y, z \rangle$. Then $\langle g \rangle$ has an infinite reduced Gröbner basis under any admissible order in which $y \ge z$.
- 3. Let $g_1 = xzy + yz \in K\langle x, y, z \rangle$, $g_2 = yzx + zy \in K\langle x, y, z \rangle$. Then, $I = \langle g_1, g_2 \rangle$ does not have a finite Gröbner basis under any admissible order.

Noncommutative polly cracker:

Private Key: A GB, $G = \{g_1, g_2, \dots, g_t\}$ for a 2-sided ideal, I, of $K\langle x_1, x_2, \dots, x_n \rangle$.

$$\frac{\text{Public Key:}}{Q = \left\{q_r : q_r = \sum_{i=1}^t \sum_{j=1}^{d_{ir}} f_{rij}g_ih_{rij}\right\}_{r=1}^s \subset I,$$

such that $\langle Q \rangle$ is computationally infeasible. In practice, $\langle Q \rangle$ does not have a finite GB, and the GB of $\langle Q \rangle$ is not predictable.

<u>Message Space:</u> $M \subseteq NonTip(I)$.

<u>Encryption:</u> c = p + m,

where $m \in M$ and

$$p = \sum_{i=1}^{s} \sum_{j=1}^{k_{ir}} F_{rij} q_i H_{rij} \in J = \langle Q \rangle \subset I.$$

 $F_{rij}, H_{rij} \in K\langle x_1, x_2, ..., x_n \rangle$ are random.

<u>Decryption:</u> Reducing c modulo G yields m.

Some simple examples:

Example 4 K a finite field, $R = K\langle x_1, x_2, \ldots, x_6 \rangle$. Let $Z = \prod_{i=1}^{6} x_i$ and $c_0, c_1, \ldots, c_6 \in K - \{0\}$. **Private Key:** $g = Z + \sum_{i=1}^{6} c_i x_i + c_0 \in R$. **Public Key:** $B = \{q_1, q_2\},\$ where $q_1 = fqh + hq$, $q_2 = hqf + qh$, $f = X + \sum_{i=1}^{6} a_i x_i + a_0, \ h = Y + \sum_{i=1}^{6} b_i x_i + b_0,$ $X = x_1 \cdot \prod_{i=2}^{5} \rho(x_i) \cdot x_6, \ Y = x_1 \cdot \prod_{i=2}^{5} \sigma(x_i) \cdot x_6,$ ρ, σ distinct permutations of $\{x_2, \ldots x_5\}$, $a_0,\ldots,a_6,b_0,\ldots,b_6 \in K-\{0\}.$ **Message space:** M = linear polynomials in R.

Alternatively, fix $D \in \mathbb{N}$. Then M = polynomials of degree $\leq D$ in some x_i .

Another Example

Example 5 Let *K* be a finite field, $R = K\langle x, y \rangle$. Let $\alpha, \beta, \gamma, \delta \in K - \{0\}$.

Private Key: Set $g = \alpha xy + \beta x + \gamma y + \delta$ as the private key.

Public Key: For i = 1...t, set $f_i = a_i x^2 + b_i xy + c_i yx + d_i x + e_i y + u_i$, $h_i = m_i y^2 + n_i x + k_i y + l_i$, where $a_1, b_i, c_i, d_i, e_i, u_i, m_i, n_i, k_i, l_i \in K - \{0\}$ and $q_i = f_i g_i h_i$. Then, $Q = \{q_1 ... q_t\}$ is the public key.

Message space: M = linear polynomials in R.

Alternatively, fix $D \in \mathbb{N}$. Then M = polynomials of degree $\leq D$ in some x_i .

The Attack

Definition 6 Let $f \in K\langle x_1, x_2, ..., x_n \rangle$. We define the *tail* of f by $tail(f) = f - Ctip(f) \cdot tip(f)$.

Attack 7

Assumptions:

- 1. Alice's private key consists of a single polynomial, g, and tip(g) is publicly known.
- 2. Catherine, has temporary black box access to Alice's decryption algorithm.

Method:

- 1. Catherine "encrypts" tip(g). by constructing: $C = \sum_{i=1}^{s} \sum_{j=1}^{k_{ir}} F_{rij}q_iH_{rij} + \text{tip}(g).$
- 2. She uses her temporary access to Alice's decryption black box to "decrypt" *C*. Note that $\sum_{i=1}^{s} \sum_{j=1}^{k_{ir}} F_{rij}q_iH_{rij} \in \langle g \rangle$ vanishes, yielding $f = \operatorname{tip}(g) - [\operatorname{Ctip}(g)]^{-1} \cdot g = - [\operatorname{Ctip}(g)]^{-1} \cdot \operatorname{tail}(g).$
- 3. Catherine constructs $g' = \operatorname{tip}(g) + [\operatorname{Ctip}(g)]^{-1} \cdot \operatorname{tail}(g)$. Since $\operatorname{Ctip}(g) \cdot g' = \operatorname{Ctip}(g) \cdot \operatorname{tip}(g) + \operatorname{tail}(g) = g$, it follows that $\langle g \rangle = \langle g' \rangle$, and that g' is a Gröbner basis for $\langle g \rangle$.

The Attack: Version 2

Attack 8

Assumptions:

- 1. Alice's private key consists of a finite reduced Gröbner basis, $G = \{g_1, g_2, \dots, g_m\}$.
- 2. tip (g_{α}) is publicly known for all $\alpha = 1, 2, ..., m$, or can be easily determined from Alice's public key.
- 3. Catherine has temporary black box access to Alice's decryption algorithm

Method:

- 1. Catherine encrypts tip (g_1) . i.e. she creates ciphertext: $C_1 = \sum_{i=1}^{s} \sum_{j=1}^{k_{ir}} F_{rij}q_iH_{rij} + \operatorname{tip}(g_1).$
- 2. She uses her temporary access to Alice's decryption black box to "decrypt" C_1 . Note that $\sum_{i=1}^{s} \sum_{j=1}^{k_{ir}} F_{rij}q_iH_{rij} \in \langle G \rangle$ vanishes, yielding $f_1 = - [\operatorname{Ctip}(g_1)]^{-1} \cdot \operatorname{tail}(g_1)$.
- 3. Catherine constructs $g'_1 = \operatorname{tip}(g_1) + [\operatorname{Ctip}(g_1)]^{-1} \cdot \operatorname{tail}(g_1).$
- 4. By repeating this for $\alpha = 1, \ldots m$, she gets $G' = \{g'_1, \ldots g'_m\}$, where $g'_{\alpha} = \operatorname{tip}(g_{\alpha}) + f_{\alpha}$. Since $\operatorname{Ctip}(g_{\alpha}) \cdot g'_{\alpha} = \operatorname{Ctip}(g_{\alpha}) \cdot \operatorname{tip}(g_{\alpha}) + \operatorname{tail}(g_{\alpha}) = g_{\alpha} \forall \alpha = 1, 2, \ldots m$, it follows that $\langle G \rangle = \langle G' \rangle$, and that G' is a Gröbner basis for $\langle G \rangle$.

Generalizing the attack:

Attack 9

Assumptions:

- 1. Alice's private key consists of a finite Gröbner basis, $G = \{g_1, g_2, \dots, g_m\}$.
- 2. tip (g_{α}) is publicly known for all $\alpha = 1, 2, ..., m$, or can be easily determined from Alice's public key.
- The cryptanalyst, Catherine, has temporary black box access to Alice's decryption algorithm.

Method:

- 1. Catherine encrypts tip (g_1) by constructing: $C_1 = \sum_{i=1}^{s} \sum_{j=1}^{k_{ir}} F_{rij}q_iH_{rij} + \operatorname{tip}(g_1).$
- 2. She uses her temporary access to Alice's decryption black box to "decrypt" C_1 .
- 3. $\sum_{i=1}^{s} \sum_{j=1}^{k_{ir}} F_{rij}q_iH_{rij} \in \langle G \rangle$ vanishes, and so does tip (g_1) . In fact, the output of the decryption algorithm is N_G (tip (g_1)).

- 4. Catherine constructs $g'_1 = \operatorname{tip}(g_1) N_G(\operatorname{tip}(g_1))$. Now, $g'_1 = \operatorname{tip}(g_1) - N_G(\operatorname{tip}(g_1)) \in \langle G \rangle$.
- 5. She repeats this process for each $\alpha = 1, 2, ..., m$, and obtains a set, $G' = \{g'_1, g'_2, ..., g'_m\}$, where $g'_{\alpha} = \operatorname{tip}(g_{\alpha}) - N_G(\operatorname{tip}(g_{\alpha})) \quad \forall \alpha = 1, 2, ..., m$. Note that $g'_{\alpha} \in \langle G \rangle \quad \forall \alpha = 1, 2, ..., m$. i.e. $\langle G' \rangle \subset \langle G \rangle$. Furthermore, $\operatorname{Tip}(G') = \operatorname{Tip}(G)$.
- 6. It follows that $\langle G \rangle = \langle G' \rangle$, and that G' is a Gröbner basis for $\langle G \rangle$.

Generalized Attack: Version 2

Attack 10

Assumptions:

- 1. Alice's private key consists of a finite Gröbner basis, $G = \{g_1, g_2, \dots, g_m\}$.
- 2. The monomial order used in Alice's decryption algorithm is publicly known.
- 3. The cryptanalyst, Catherine, has temporary black box access to Alice's decryption algorithm.

Method:

- 1. Catherine uses her knowledge of Alice's monomial order to determine the largest tip, T, that occurs in Alice's public key. Note that $T \in \langle \text{Tip}(G) \rangle$, and that $\text{tip}(g_i) \leq T \quad \forall i =$ $1 \dots m$.
- 2. Catherine encrypts T by constructing $C_T = \sum_{i=1}^{s} \sum_{j=1}^{k_{ir}} F_{rij}q_iH_{rij} + T.$
- 3. She uses her temporary access to Alice's decryption black box to "decrypt" C_T .
- 4. $\sum_{i=1}^{s} \sum_{j=1}^{k_{ir}} F_{rij}q_iH_{rij} \in \langle G \rangle$ vanishes, and so does T. In fact, the output of the decryption algorithm yields $N_G(T)$.

- 5. Catherine constructs $g'_T = T N_G(T)$. As noted earlier, $g'_T = T N_G(T) \in \langle G \rangle$.
- 6. She repeats this process for each monomial b, such that $b \leq T$.
- 7. For each $b \leq T$, there are two possibilities: if $b \in \langle \text{Tip}(G) \rangle$, then $N_G(b) \neq b$, and if $b \notin \langle \text{Tip}(G) \rangle$, then $N_G(b) = b$.
- 8. If $b \in \langle \text{Tip}(G) \rangle$, and $N_G(b)$, Catherine constructs $g'_b = b N_G(b)$, and if $b \notin \langle \text{Tip}(G) \rangle$, she discards b.
- 9. Since $\{b : b \leq T\}$ is finite, she obtains $G' = \{g'_b = b N_G(b) : b \leq T \text{ and } b \in \langle \text{Tip}(G) \rangle \}$ in a finite number of steps.
- 10. Note that $g'_b \in \langle G \rangle \forall b$. i.e. $\langle G' \rangle \subset \langle G \rangle$. Furthermore, $\operatorname{Tip}(G) \subset \operatorname{Tip}(G')$. So $\langle G \rangle = \langle G' \rangle$, and G' is a Gröbner basis for $\langle G \rangle$.

Countering the attack

Countermeasure 11

- 1. Restrict the message space, M, so that NonTip $(G) - M \neq \emptyset$.
- 2. For each each $g_i \in G$, ensure that $\exists b_i \in supp(g_i)$, such that $b_i \in NonTip(G) M$, and $u \cdot b_i \cdot v \notin M$, for all $u, v \in B$.
- 3. Program the decryption algorithm to check for elements of NonTip(G) - M in the normal form of ciphertext polynomial after reduction modulo the private key.
- 4. If an element of NonTip(G) M in the normal form of ciphertext, program it to return an error message.

Some Examples

Example 12 If $g = \alpha xy + \beta x + \gamma y + \delta$, as in example 5, the message space could be restricted to linear polynomials in y. The decryption algorithm could be programmed to recognize the fact that any ciphertext which reduces to a polynomial containing x is not a legitimate ciphertext.

Example 13 If $g = \prod_{i=1}^{6} x_i + \sum_{i=1}^{6} c_i x_i + c_0$, as in example 4 the message space could be restricted to linear polynomials in only some of the variables. For example, it could be restricted to linear polynomials in x_1, x_2, x_3, x_4, x_5 and exclude any polynomials that contain x_6 . In this case, the decryption algorithm could be programmed to recognize the fact that any ciphertext which reduces to a polynomial that contains x_6 is not a legitimate ciphertext, and be programmed to return an error message, whenever it encounters such a ciphetext.

Why the countermeasure works:

- 1. Let $G = \{g_1, g_2, \dots, g_t\}$ be the private key. Let $m \notin M$ be a fake message let C = p + m.
- 2. Let $X_1 = u_1 \operatorname{tip}(g_1) v_1$ for some $X_1 \in \operatorname{supp}(C)$.
- 3. In the first step, C reduces to $C_1 = C - A_X \cdot Ctip(g_1)^{-1} \cdot u_1 g_1 v_1$ $= A_X \cdot Ctip(g_1)^{-1}(u_1 tip(g_1)v_1 - u_1 tail(g_1)v_1),$ where A_X is the coefficient of X in C.
- 4. $\exists b_1 \in supp(g_1)$ s.t. $b_1 \in NonTip(G) M$, and $u \cdot b_1 \cdot v \notin M$. So, $u_1 \cdot b_1 \cdot v_1 \in supp(C_1)$, and $u_1 \cdot b_1 \cdot v_1 \notin M$.
- 5. If $\nexists g_i \in G$ such that tip (g_i) divides some $X \in supp(C_1)$, then $u_1 \cdot b_1 \cdot v_1 \notin M$ occurs in 15

 $C_1 = N_G(C)$, and the decryption algorithm returns an error message.

- 6. If $\exists g_i \in G$ such that tip (g_i) divides some $X \in supp(C_1)$, then the division proceeds with a monomial of the form $u_{\alpha} \cdot b_{\alpha} \cdot v_{\alpha}$ being introduced into the polynomial, C_{α} , which is obtained as the reduced form of the ciphertext polynomial at the end of the α^{th} step of the algorithm.
- 7. Since G is a finite Gröbner basis, the division algorithm ends in a finite number of steps, yielding $N_G(C)$.
- 8. If $g_{\nu} \in G$ is the polynomial used in the final step of the division C by G, then $u_{\nu}b_{\nu}v_{\nu}$ occurs in $N_G(C)$, and $u_{\nu}b_{\nu}v_{\nu} \notin M$. So the decryption algorithm detects this monomial in $N_G(C)$, and returns an error message.

Adaptive chosen-ciphertext attacks

Attack 14 (Koblitz)

- 1. Suppose Bob encrypts a message m and sends it to Alice as ciphertext, c, and suppose Catherine is able to read c.
- 2. Catherine constructs $c' = p + c + m_0$, where $m_0 \in M$ is arbitrary. She sends c' to Alice.
- 3. She then informs Alice that an incomplete message was transmitted and requests her to send back the decrypted message m' = N(c').
- 4. Since c' decrypts to $m' = m + m_0$, Catherine can find $m = m' - m_0$. Alice sees no connection between c' and c or m' and m.

Countermeasure

Countermeasure 15

- 1. Alice chooses a private key, G, and develops a public key such that the message space, M, contains several monomials, and can be partitioned into disjoint sets.
- 2. She picks $M_{Bob} \subset M$ and $M_{Catherine} \subset M$, such that $M_{Bob} \cap M_{Catherine} = \emptyset$.
- 3. She assigns M_{Bob} as Bob's message space and $M_{Catherine}$ as Catherine's message space.

An Example

Example 16 Suppose Alice chooses a private key based on example 4. i.e. suppose her private key consists of a single polynomial of the form $g = x_1x_2x_3x_4x_5x_6 + \sum_{i=1}^{6} c_ix_i + c_0$.

She then implements countermeasure 11 by leaving all monomials that contain x_6 out of her message space, thus securing her private key from attacks of that use illegitimate ciphertexts.

Next she assigns the variable x_1 to Bob and x_2 to Catherine.

i.e. Bob's message space, M_{Bob} consists of polynomials in x_1 of degree $\leq D$,

and Catherine's message space, $M_{Catherine}$ consists of polynomials in x_2 of degree $\leq D$ where $D \in \mathbb{N}$ is fixed.

Why the countermeasure works

If Catherine sends Alice a ciphertext c', which decrypts to $m' \in M_{Bob}$, it would immediately make Alice suspicious of Catherine's intentions. On the other hand, if Catherine sends Alice a ciphertext of the form $c' = p + c + m_0$, where c is a ciphertext used to encrypt a message $m \in M_{Bob}$ and $m_0 \in M_{Catherine}$, c' would reduce to an element of NonTip(G), which is neither in $M_{Catherine}$ nor in M_{Bob} , and would immediately draw Alice's attention to the suspicious nature of Catherine's ciphertext.

Conclusion:

The noncommutative version of the Polly Cracker cryptosystem (and possibly also the commutative version) can be modified to resist chosen ciphertext attacks.