Countering chosen-ciphertext attacks against noncomm. polly cracker cryptosystems.

Tapan S. Rai
University of Missouri - St. Louis
St. Louis, MO 63121, USA
and

Stanislav V. Bulygin
Technical University of Kaiserslautern Kaiserslautern, Germany

Notation and Terminology

Definition 1 A well-order $>$ on a set of monomials, B, is said to be admissible if it satisfies the following conditions for all $p, q, r, s \in B$:

1. if $p<q$ then $p r<q r$
2. if $p<q$ then $s p<s q$ and
3. if $p=q r$ then $p \geq q$ and $p \geq r$.

Let $f \in K\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle, B=\{$ monomials $\}$, $\operatorname{supp}(f)=$ support of f. Define $\operatorname{tip}(f)=$ $\left\{b_{i} \in B: b_{i} \in \operatorname{supp}(f)\right.$ and $\left.b_{i} \geq b_{j} \forall b_{j} \in \operatorname{supp}(f)\right\}$.

Denote the coefficient of $\operatorname{tip}(f)$ by $\operatorname{Ctip}(f)$.
If $X \subseteq R$, write
$\operatorname{Tip}(X)=\{b \in B: b=\operatorname{tip}(f)$ for some $f \in X\}$ and $\operatorname{NonTip}(X)=B-\operatorname{Tip}(X)$.

Gröbner Bases and Normal Forms

Definition 2 If $>$ is an admissible order on $R=K\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, and I is a two-sided ideal of R, we say that $G \subset I$ is a Gröbner basis for I with respect to $>$ if $\langle\operatorname{Tip}(G)\rangle=\langle\operatorname{Tip}(I)\rangle$.

Equivalently, $G \subset I$ is a Gröbner basis of I if for every $b \in \operatorname{Tip}(I)$, there is some $g \in G$ such that $\operatorname{tip}(g)$ divides b
i.e. for every $f \in I$, there exists $g \in G$, and $p, q \in B$ such that $p \cdot \operatorname{tip}(g) \cdot q=\operatorname{tip}(f)$.

Note: For any ideal $I, R=I \oplus \operatorname{Span}(\operatorname{NonTip}(I))$, as vector spaces.
In particular, every nonzero $r \in R$ can be written uniquely as $r=i_{r}+N_{I}(r)$,
where $i_{r} \in I$ and $N_{I}(r) \in \operatorname{Span}(N o n T i p(I))$.
$N_{I}(r)$ is called the normal form of r with respect to I.

Reduced Gröbner Basis
Definition 3 Let I be an ideal in R, let T be the unique minimal monomial generating set of $\langle\operatorname{Tip}(\mathrm{I})\rangle$. Then the reduced Gröbner basis for I, is $G=\{t-N(t): t \in T\}$.

The following properites of min GB are clear:

1. G is a Gröbner basis for I.
2. If $g \in G$ then the coefficient of $\operatorname{tip}(g)$ is 1 .
3. If $g_{i}, g_{j} \in G$ with $g_{i} \neq g_{j}$, and $b_{i} \in \operatorname{supp}\left(g_{i}\right)$, then $\operatorname{tip}\left(g_{j}\right) \nless b_{i}$.
4. If $g \in G$ then $g-\operatorname{tip}(g) \in \operatorname{Span}(\operatorname{NonTip}(I))$.

Note: Unlike the commutative case, the reduced Gröbner basis of an ideal may not be finite.

Some Ideals that do not have finite GB

1. (T. Mora, E. Green, V. Ufnarovski) Let $\mathrm{g}=x y x-x y \in K\langle x, y\rangle$. Then $\langle g\rangle$ does not have a finite Gröbner basis under any admissible order.
2. Let $A \in K-\{0\}$ and let $g=x y x+A x z \in$ $K\langle x, y, z\rangle$. Then $\langle g\rangle$ has an infinite reduced Gröbner basis under any admissible order in which $y \geq z$.
3. Let $g_{1}=x z y+y z \in K\langle x, y, z\rangle, g_{2}=y z x+$ $z y \in K\langle x, y, z\rangle$. Then, $I=\left\langle g_{1}, g_{2}\right\rangle$ does not have a finite Gröbner basis under any admissible order.

Noncommutative polly cracker:

Private Key: A GB, $G=\left\{g_{1}, g_{2}, \ldots, g_{t}\right\}$ for a 2-sided ideal, I, of $K\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$.

Public Key:
$Q=\left\{q_{r}: q_{r}=\sum_{i=1}^{t} \sum_{j=1}^{d_{i r}} f_{r i j} g_{i} h_{r i j}\right\}_{r=1}^{s} \subset I$,
such that $\langle Q\rangle$ is computationally infeasible. In practice, $\langle Q\rangle$ does not have a finite GB, and the GB of $\langle Q\rangle$ is not predictable.

Message Space: $\quad M \subseteq$ NonTip(I).

Encryption: $\quad c=p+m$,
where $m \in M$ and
$p=\sum_{i=1}^{s} \sum_{j=1}^{k_{i r}} F_{r i j} q_{i} H_{r i j} \in J=\langle Q\rangle \subset I$.
$F_{r i j}, H_{r i j} \in K\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ are random.
Decryption: Reducing c modulo G yields m.

Some simple examples:

Example $4 K$ a finite field, $R=K\left\langle x_{1}, x_{2}, \ldots, x_{6}\right\rangle$.
Let $Z=\prod_{i=1}^{6} x_{i}$ and $c_{0}, c_{1}, \ldots, c_{6} \in K-\{0\}$.
Private Key: $g=Z+\sum_{i=1}^{6} c_{i} x_{i}+c_{0} \in R$.
Public Key: $B=\left\{q_{1}, q_{2}\right\}$,
where $q_{1}=f g h+h g, q_{2}=h g f+g h$,
$f=X+\sum_{i=1}^{6} a_{i} x_{i}+a_{0}, h=Y+\sum_{i=1}^{6} b_{i} x_{i}+b_{0}$,
$X=x_{1} \cdot \prod_{i=2}^{5} \rho\left(x_{i}\right) \cdot x_{6}, Y=x_{1} \cdot \prod_{i=2}^{5} \sigma\left(x_{i}\right) \cdot x_{6}$,
ρ, σ distinct permutations of $\left\{x_{2}, \ldots x_{5}\right\}$, $a_{0}, \ldots, a_{6}, b_{0}, \ldots, b_{6} \in K-\{0\}$.

Message space: $M=$ linear polynomials in R.
Alternatively, fix $D \in \mathbb{N}$. Then $M=$ polynomials of degree $\leq D$ in some x_{i}.

Another Example

Example 5 Let K be a finite field, $R=K\langle x, y\rangle$. Let $\alpha, \beta, \gamma, \delta \in K-\{0\}$.

Private Key: Set $g=\alpha x y+\beta x+\gamma y+\delta$ as the private key.

Public Key: For $i=1 \ldots t$, set
$f_{i}=a_{i} x^{2}+b_{i} x y+c_{i} y x+d_{i} x+e_{i} y+u_{i}$,
$h_{i}=m_{i} y^{2}+n_{i} x+k_{i} y+l_{i}$, where
$a_{1}, b_{i}, c_{i}, d_{i}, e_{i}, u_{i}, m_{i}, n_{i}, k_{i}, l_{i} \in K-\{0\}$
and $q_{i}=f_{i} g_{i} h_{i}$.
Then, $Q=\left\{q_{1} \ldots q_{t}\right\}$ is the public key.

Message space: $M=$ linear polynomials in R.

Alternatively, fix $D \in \mathbb{N}$. Then $M=$ polynomials of degree $\leq D$ in some x_{i}.

The Attack

Definition 6 Let $f \in K\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$. We define the tail of f by $\operatorname{tail}(f)=f-\operatorname{Ctip}(\mathrm{f}) \cdot \operatorname{tip}(\mathrm{f})$.

Attack 7

Assumptions:

1. Alice's private key consists of a single polynomial, g, and $\operatorname{tip}(g)$ is publicly known.
2. Catherine, has temporary black box access to Alice's decryption algorithm.

Method:

1. Catherine "encrypts" tip (g). by constructing: $C=\sum_{i=1}^{s} \sum_{j=1}^{k_{i r}} F_{r i j} q_{i} H_{r i j}+\operatorname{tip}(\mathrm{g})$.
2. She uses her temporary access to Alice's decryption black box to "decrypt" C. Note that $\sum_{i=1}^{s} \sum_{j=1}^{k_{i r}} F_{r i j} q_{i} H_{r i j} \in\langle g\rangle$ vanishes, yielding
$f=\operatorname{tip}(g)-[\operatorname{Ctip}(g)]^{-1} \cdot g=-[\operatorname{Ctip}(g)]^{-1}$. tail (g).
3. Catherine constructs $g^{\prime}=\operatorname{tip}(g)+[\operatorname{Ctip}(g)]^{-1} \cdot \operatorname{tail}(g)$. Since $\operatorname{Ctip}(g) \cdot g^{\prime}=\operatorname{Ctip}(g) \cdot \operatorname{tip}(g)+\operatorname{tail}(g)=g$, it follows that $\langle g\rangle=\left\langle g^{\prime}\right\rangle$, and that g^{\prime} is a Gröbner basis for $\langle g\rangle$.

The Attack: Version 2

Attack 8

Assumptions:

1. Alice's private key consists of a finite reduced Gröbner basis, $G=\left\{g_{1}, g_{2}, \ldots g_{m}\right\}$.
2. $\operatorname{tip}\left(g_{\alpha}\right)$ is publicly known for all $\alpha=1,2, \ldots m$, or can be easily determined from Alice's public key.
3. Catherine has temporary black box access to Alice's decryption algorithm

Method:

1. Catherine encrypts $\operatorname{tip}\left(g_{1}\right)$. i.e. she creates ciphertext:

$$
C_{1}=\sum_{i=1}^{s} \sum_{j=1}^{k_{i r}} F_{r i j} q_{i} H_{r i j}+\operatorname{tip}\left(\mathrm{g}_{1}\right)
$$

2. She uses her temporary access to Alice's decryption black box to "decrypt" C_{1}. Note that $\sum_{i=1}^{s} \sum_{j=1}^{k_{i r}} F_{r i j} q_{i} H_{r i j} \in\langle G\rangle$ vanishes, yielding $f_{1}=-\left[\operatorname{Ctip}\left(g_{1}\right)\right]^{-1} \cdot \operatorname{tail}\left(g_{1}\right)$.
3. Catherine constructs $g_{1}^{\prime}=\operatorname{tip}\left(g_{1}\right)+\left[\operatorname{Ctip}\left(g_{1}\right)\right]^{-1} \cdot \operatorname{tail}\left(g_{1}\right)$.
4. By repeating this for $\alpha=1, \ldots m$, she gets $G^{\prime}=\left\{g_{1}^{\prime}, \ldots g_{m}^{\prime}\right\}$, where $g_{\alpha}^{\prime}=\operatorname{tip}\left(g_{\alpha}\right)+f_{\alpha}$. Since $\operatorname{Ctip}\left(g_{\alpha}\right) \cdot g_{\alpha}^{\prime}=\operatorname{Ctip}\left(g_{\alpha}\right) \cdot \operatorname{tip}\left(g_{\alpha}\right)+$ $\operatorname{tail}\left(g_{\alpha}\right)=g_{\alpha} \forall \alpha=1,2, \ldots m$, it follows that $\langle G\rangle=\left\langle G^{\prime}\right\rangle$, and that G^{\prime} is a Gröbner basis for $\langle G\rangle$.

Generalizing the attack:

Attack 9
Assumptions:

1. Alice's private key consists of a finite Gröbner basis, $G=\left\{g_{1}, g_{2}, \ldots g_{m}\right\}$.
2. $\operatorname{tip}\left(g_{\alpha}\right)$ is publicly known for all $\alpha=1,2, \ldots m$, or can be easily determined from Alice's public key.
3. The cryptanalyst, Catherine, has temporary black box access to Alice's decryption algorithm.

Method:

1. Catherine encrypts tip (g_{1}) by constructing: $C_{1}=\sum_{i=1}^{s} \sum_{j=1}^{k_{i r}} F_{r i j} q_{i} H_{r i j}+\operatorname{tip}\left(\mathrm{g}_{1}\right)$.

2. She uses her temporary access to Alice's decryption black box to "decrypt" C_{1}.
3. $\sum_{i=1}^{s} \sum_{j=1}^{k_{i r}} F_{r i j} q_{i} H_{r i j} \in\langle G\rangle$ vanishes, and so does tip (g_{1}). In fact, the output of the decryption algorithm is $N_{G}\left(\operatorname{tip}\left(g_{1}\right)\right)$.
4. Catherine constructs $g_{1}^{\prime}=\operatorname{tip}\left(g_{1}\right)-N_{G}\left(\operatorname{tip}\left(g_{1}\right)\right)$. Now, $g_{1}^{\prime}=\operatorname{tip}\left(g_{1}\right)-N_{G}\left(\operatorname{tip}\left(g_{1}\right)\right) \in\langle G\rangle$.
5. She repeats this process for each $\alpha=1,2, \ldots m$, and obtains a set, $G^{\prime}=\left\{g_{1}^{\prime}, g_{2}^{\prime}, \ldots g_{m}^{\prime}\right\}$, where $g_{\alpha}^{\prime}=\operatorname{tip}\left(g_{\alpha}\right)-N_{G}\left(\operatorname{tip}\left(g_{\alpha}\right)\right) \forall \alpha=1,2, \ldots m$. Note that $g_{\alpha}^{\prime} \in\langle G\rangle \forall \alpha=1,2, \ldots m$. i.e. $\left\langle G^{\prime}\right\rangle \subset\langle G\rangle$. Furthermore, Tip $\left(G^{\prime}\right)=\operatorname{Tip}(G)$.
6. It follows that $\langle G\rangle=\left\langle G^{\prime}\right\rangle$, and that G^{\prime} is a Gröbner basis for $\langle G\rangle$.

Generalized Attack: Version 2

Attack 10
Assumptions:

1. Alice's private key consists of a finite Gröbner basis, $G=\left\{g_{1}, g_{2}, \ldots g_{m}\right\}$.
2. The monomial order used in Alice's decryption algorithm is publicly known.
3. The cryptanalyst, Catherine, has temporary black box access to Alice's decryption algorithm.

Method:

1. Catherine uses her knowledge of Alice's monomial order to determine the largest tip, T, that occurs in Alice's public key. Note that $T \in\langle\operatorname{Tip}(G)\rangle$, and that $\operatorname{tip}\left(g_{i}\right) \leq T \forall i=$ $1 \ldots m$.
2. Catherine encrypts T by constructing $C_{T}=\sum_{i=1}^{s} \sum_{j=1}^{k_{i r}} F_{r i j} q_{i} H_{r i j}+T$.
3. She uses her temporary access to Alice's decryption black box to "decrypt" C_{T}.
4. $\sum_{i=1}^{s} \sum_{j=1}^{k_{i r}} F_{r i j} q_{i} H_{r i j} \in\langle G\rangle$ vanishes, and so does T. In fact, the output of the decryption algorithm yields $N_{G}(T)$.
5. Catherine constructs $g_{T}^{\prime}=T-N_{G}(T)$. As noted earlier, $g_{T}^{\prime}=T-N_{G}(T) \in\langle G\rangle$.
6. She repeats this process for each monomial b, such that $b \leq T$.
7. For each $b \leq T$, there are two possibilities: if $b \in\langle\operatorname{Tip}(G)\rangle$, then $N_{G}(b) \neq b$, and if $b \notin\langle\operatorname{Tip}(G)\rangle$, then $N_{G}(b)=b$.
8. If $b \in\langle\operatorname{Tip}(G)\rangle$, and $N_{G}(b)$, Catherine constructs $g_{b}^{\prime}=b-N_{G}(b)$, and if $b \notin\langle\operatorname{Tip}(G)\rangle$, she discards b.
9. Since $\{b: b \leq T\}$ is finite, she obtains $G^{\prime}=\left\{g_{b}^{\prime}=b-N_{G}(b): b \leq T\right.$ and $\left.b \in\langle\operatorname{Tip}(G)\rangle\right\}$ in a finite number of steps.
10. Note that $g_{b}^{\prime} \in\langle G\rangle \forall b$. i.e. $\left\langle G^{\prime}\right\rangle \subset\langle G\rangle$. Furthermore, $\operatorname{Tip}(G) \subset \operatorname{Tip}\left(G^{\prime}\right)$. So $\langle G\rangle=$ $\left\langle G^{\prime}\right\rangle$, and G^{\prime} is a Gröbner basis for $\langle G\rangle$.

Countering the attack

Countermeasure 11

1. Restrict the message space, M, so that NonTip $(G)-M \neq \emptyset$.
2. For each each $g_{i} \in G$, ensure that $\exists b_{i} \in$ $\operatorname{supp}\left(g_{i}\right)$, such that $b_{i} \in \operatorname{NonTip}(G)-M$, and $u \cdot b_{i} \cdot v \notin M$, for all $u, v \in B$.
3. Program the decryption algorithm to check for elements of NonTip(G) - M in the normal form of ciphertext polynomial after reduction modulo the private key.
4. If an element of NonTip(G) $-M$ in the normal form of ciphertext, program it to return an error message.

Some Examples

Example 12 If $g=\alpha x y+\beta x+\gamma y+\delta$, as in example 5, the message space could be restricted to linear polynomials in y. The decryption algorithm could be programmed to recognize the fact that any ciphertext which reduces to a polynomial containing x is not a legitimate ciphertext.

Example 13 If $g=\prod_{i=1}^{6} x_{i}+\sum_{i=1}^{6} c_{i} x_{i}+c_{0}$, as in example 4 the message space could be restricted to linear polynomials in only some of the variables. For example, it could be restricted to linear polynomials in $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and exclude any polynomials that contain x_{6}. In this case, the decryption algorithm could be programmed to recognize the fact that any ciphertext which reduces to a polynomial that contains x_{6} is not a legitimate ciphertext, and be programmed to return an error message, whenever it encounters such a ciphetext.

Why the countermeasure works:

1. Let $G=\left\{g_{1}, g_{2}, \ldots g_{t}\right\}$ be the private key. Let $m \notin M$ be a fake message let $C=p+m$.
2. Let $X_{1}=u_{1} \operatorname{tip}\left(g_{1}\right) v_{1}$ for some $X_{1} \in \operatorname{supp}(C)$.
3. In the first step, C reduces to
$C_{1}=C-A_{X} \cdot \operatorname{Ctip}\left(g_{1}\right)^{-1} \cdot u_{1} g_{1} v_{1}$
$=A_{X} \cdot \operatorname{Ctip}\left(g_{1}\right)^{-1}\left(u_{1} \operatorname{tip}\left(g_{1}\right) v_{1}-u_{1} \operatorname{tail}\left(g_{1}\right) v_{1}\right)$, where A_{X} is the coefficient of X in C.
4. $\exists b_{1} \in \operatorname{supp}\left(g_{1}\right)$ s.t. $\quad b_{1} \in \operatorname{NonTip}(G)-M$, and $u \cdot b_{1} \cdot v \notin M$. So, $u_{1} \cdot b_{1} \cdot v_{1} \in \operatorname{supp}\left(C_{1}\right)$, and $u_{1} \cdot b_{1} \cdot v_{1} \notin M$.
5. If $\nexists g_{i} \in G$ such that $\operatorname{tip}\left(g_{i}\right)$ divides some $X \in \operatorname{supp}\left(C_{1}\right)$, then $u_{1} \cdot b_{1} \cdot v_{1} \notin M$ occurs in
$C_{1}=N_{G}(C)$, and the decryption algorithm returns an error message.
6. If $\exists g_{i} \in G$ such that tip (g_{i}) divides some $X \in \operatorname{supp}\left(C_{1}\right)$, then the division proceeds with a monomial of the form $u_{\alpha} \cdot b_{\alpha} \cdot v_{\alpha}$ being introduced into the polynomial, C_{α}, which is obtained as the reduced form of the ciphertext polynomial at the end of the $\alpha^{\text {th }}$ step of the algorithm.
7. Since G is a finite Gröbner basis, the division algorithm ends in a finite number of steps, yielding $N_{G}(C)$.
8. If $g_{\nu} \in G$ is the polynomial used in the final step of the division C by G, then $u_{\nu} b_{\nu} v_{\nu}$ occurs in $N_{G}(C)$, and $u_{\nu} b_{\nu} v_{\nu} \notin M$. So the decryption algorithm detects this monomial in $N_{G}(C)$, and returns an error message.

Adaptive chosen-ciphertext attacks

Attack 14 (Koblitz)

1. Suppose Bob encrypts a message m and sends it to Alice as ciphertext, c, and suppose Catherine is able to read c.
2. Catherine constructs $c^{\prime}=p+c+m_{0}$, where $m_{0} \in M$ is arbitrary. She sends c^{\prime} to Alice.
3. She then informs Alice that an incomplete message was transmitted and requests her to send back the decrypted message $m^{\prime}=$ $N\left(c^{\prime}\right)$.
4. Since c^{\prime} decrypts to $m^{\prime}=m+m_{0}$, Catherine can find $m=m^{\prime}-m_{0}$. Alice sees no connection between c^{\prime} and c or m^{\prime} and m.

Countermeasure

Countermeasure 15

1. Alice chooses a private key, G, and develops a public key such that the message space, M, contains several monomials, and can be partitioned into disjoint sets.
2. She picks $M_{B o b} \subset M$ and $M_{\text {Catherine }} \subset M$, such that $M_{B o b} \cap M_{C a t h e r i n e}=\emptyset$.
3. She assigns $M_{B o b}$ as Bob's message space and $M_{\text {Catherine }}$ as Catherine's message space.

An Example

Example 16 Suppose Alice chooses a private key based on example 4. i.e. suppose her private key consists of a single polynomial of the form $g=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}+\sum_{i=1}^{6} c_{i} x_{i}+c_{0}$.
She then implements countermeasure 11 by leaving all monomials that contain x_{6} out of her message space, thus securing her private key from attacks of that use illegitimate ciphertexts.
Next she assigns the variable x_{1} to Bob and x_{2} to Catherine.
i.e. Bob's message space, $M_{\text {Bob }}$ consists of polynomials in x_{1} of degree $\leq D$, and Catherine's message space, $M_{\text {Catherine }}$ consists of polynomials in x_{2} of degree $\leq D$ where $D \in \mathbb{N}$ is fixed.

Why the countermeasure works

If Catherine sends Alice a ciphertext c^{\prime}, which decrypts to $m^{\prime} \in M_{B o b}$, it would immediately make Alice suspicious of Catherine's intentions. On the other hand, if Catherine sends Alice a ciphertext of the form $c^{\prime}=p+c+m_{0}$, where c is a ciphertext used to encrypt a message $m \in M_{\text {Bob }}$ and $m_{0} \in M_{\text {Catherine }}, c^{\prime}$ would reduce to an element of NonTip (G), which is neither in $M_{\text {Catherine }}$ nor in $M_{\text {Bob }}$, and would immediately draw Alice's attention to the suspicious nature of Catherine's ciphertext.

Conclusion:

> The noncommutative version of the Polly Cracker cryptosystem (and possibly also the commutative version) can be modified to resist chosen ciphertext attacks.

