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Gröbner basis talk on its role in multivariate polynomial 
matrix coprimeness issues and factorization at Padova, 
Italy, where I again met U. Oberst, before leaving for 
Poland to participate in the First International Workshop 
on n-D systems. Start collaboration with Zhiping Lin.

1998

U. Obersts’ seminal work appears in Acta Applicandae
Mathematicae.

1990

Ulrich Oberst sends me his voluminous research 
reports on “Multidimensional Constant Linear Systems”, 
I (June 1988), II (January 1989), III (March 1989)

1988-1989

B. Buchberger writes his famous and well-referenced 
chapter, “Gröbner Bases: An Algorithm Method in 
Polynomial Ideal Theory,” clarifying and expanding on 
his doctoral thesis (1965) and his subsequent 
publications from 1970 (in German)

1985

N. K. Bose’s text, “Applied Multidimensional Systems 
Theory,” appears.

1982

J. P. Guiver receives his Ph.D at University of 
Pittsburgh

1982

B. Buchberger visits me and gives lecture at University 
of Pittsburgh.

~ 1981



J. of Symbolic Computation, Volume 41, issues 3 – 4, 
March-April 2006 “Interactions in honor of Bruno 
Buchbereger.”

2006

J. F. Pommaret’s 2 volumes on “Partial Differential 
Control Theory: Mathematical Tolls (vol. I) and Control 
Systems (vol. II), appear.

2001

Special Joint Issue, “Applications of Gröbner Bases to 
Multidimensional Systems and Signal Processing”
appears (vol. 12, 3/4, July/October, Mult. Systems and 
Signal Proc.) Guest edited by Zhiping Lin and Li Xu.

2001

Eva Zerz’s monograph on “Topics in Multidimensional 
Linear Systems Theory,” appears in the Springer series.

2000

Again in Poland to participate in the Second 
International Workshop on n-D systems. Meet B. 
Buchberger again as a prelude to visiting Linz in 2003. 
Met J. F. Pommaret.

2000

Late 2003, the book by N. K. Bose, B. Buchberger and 
J. P. Guiver entitled “Multidimensional Systems Theory 
and Applications” appears.

2003

C. Charoenlarpnopparut completes his Ph.D at Penn 
State University on “Gröbner Bases in Multidimensional 
Systems and Signal Processing.”

2001



A basic semialgebraic set is a subset of       defined by a finite 

number of polynomial equations and inequalities.

Example: 

(a)

(b)

Approaches for (b) include

Sum of squares representation, when possible to do 

(SOSTOOLS, SEDUMI).

Semidefinite programming to test feasibility of algebraic 

sets (C.N. Delzell (1980), P. A. Parrilo, B. Sturmfels)

Elementary decision algebra methods (A. Tarski, 

Seidenberg, Collins, N. K. Bose, B. D. O. Anderson, E. I. 

Jury)

Global lower bound approach (N. Z. Shor)

Gram matrix method (N. K. Bose, C. C. Li, M. D. Choi, T. 

Y. Lam, B. Reznik)
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Past and Present of Algorithmic Symbolic Computer Algebra 
in MSSP
Various software used in the past are:

REDUCE (Stanford), SAC (Wisconsin), Scratchpad (IBM), 
MACSYMA (MIT), Mathematica, Maple (Waterloo), etc.

Theoretical Tools: Multipolynomial Resultant-subresultants
(Sylvester, inners, bigradients), Bezoutiants

More recently:
SINGULAR (Kaiserslautern), COCOA (Italy), Macualay 2, 
Mathematica, Maple

Theoretical Tools: Ideal theory, Gröbner-Buchberger bases (also 
standard bases of Hironaka etc.)

Algorithmic Algebra pioneered at RISC, Austria by Bruno 
Buchberger and his group.

QEPCAD (Collins etc.)

Why Gröbner bases?

Examples: Take are assumed 
to be relatively prime. Then, the common zeros of

are always finite in the bivariate case and can be found by 
resultant theory. But, reduced Gröbner bases by SINGULAR yield 
the common zeros, usually, with less computational effort. 
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To wit, let (from a filter bank design problem)

Resultant based calculations could be messy! The Gröbner basis 
for and is, using SINGULAR (computed with 
respect to degree reverse lexicographical ordering)

The common zeros of                 and                are easy to find at   
(-1,0) and (0,-1) and these are also the zeros of             and             

(The ideal generated by and is the same as the 
ideal generated by              and             ). 

Common zeros of             relatively prime multivariate polynomials
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A lex Gröbner basis G successively 
eliminates more and more variables 
(elimination and extension).

Gröbner basis 
approach:

Multipolynomial resultants (Cox, 
Little, O’Shea, Using Algebraic 
Geometry)

Classical approach:



Variant of Hilbert’s Nullstellensatz in n-D FIR perfeect
reconstruction filter bank design problem
For N-channel analysis and synthesis filters in 
a PR filter bank,

and      is the notation for a n-variate delay

. Note that     is not known a priori and given          the 
set            plus    has to be found satisfying the PR constraint.

WLOG, consider the N=2, n=2 (2-channel bivariate case). In this 
case, and                 could have common zeros at (0,0)

. The “Rabinowitsch trick” could be 
used as done to solve the more general problem (L. Xu, O. Saito, 
and K. Abe, MSSP, 1, January 1994, pp. 41 – 60):

No previous knowledge of the positive integer r is needed. Let

be a new indeterminate. Then and

are zero coprime. According to Hilberts’ Nullstellensatz, the ideal 
generated by these polynomials must be the unit ideal, i.e there 
exist polynomials such that

Then, substitute              for     and clear out denominator to obtain 
an equation of the form desired.
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Stabilization of Scalar (and Matrix) Feedback 
Systems (2-D) (J. P. Guiver and N. K. Bose, 1985)

Fact 1: Let    and     be relatively prime polynomials with no 
common zeros in bidisc . Let there exist such that

, the ring of bivariate polynomials which have no 
zero in     . Then, the stabilizing compensators are characterized 
by , where are arbitrary.

Example 1: Let

is in normal form, i.e. no term of     is a multiple of the 
head terms of              . Backtracking

Example 2:
Common zeros at 

⇒ Not stabilizable by causal compensators (but stabilizable by 
weakly causal systems (1985)). Also in N. K. Bose, B. Buchberger, 
and J. P. Guiver (BBG), “Multidimensional Systems Theory And 
Application,” Kluwer 2003 (now Springer, Dordrecht, Netherland).
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Fact 2: In the MIMO case of           is a minor coprime left MFD 
(maximal order minors of              have no nontrivial common 
factor) of an unstable plant    , and           is a minor comprime right 
MFD (maximal order minors of             have no common factor) of 
a compensator     , then     stabilizes     if and only if 

det( ) is zero free in     .

For stabilization of MIMO Weakly Causal systems, and updates on 
other results, including computational methods for determining 
strong stabilizability of n-D systems, see [BBG] and work of Ying 
(refs. [135], [136] in [BBG]). Research counterparts in the n-D case 
(n > 2) for constructing a stabilizing compensator for a MIMO plant 
using Gröbner bases (following work of Xu, Saito and Abe in 1994 
(ref [133] in [BBG]) is worth pursuing.

n-D System Stabilizability: (J. Q. Ying et al, J. Symb. 
Computation, 27, 1999, 479 – 499) In the generic feedback system 
configuration, plant , compensator

Q. Do there exist polynomials        and        such that (strong 
stabilizability), and ?

Procedure based on cylindrical algebraic decomposition of 
semialgebraic sets.
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Example: Let

and    do not have common zeros in    . Let, as in Guiver-Bose

Then, by Rabinowitsch’s trick, since , and

do not have any common zeros in using

Gröbner bases (by Hilbert’s Nullstellensatz)

Setting

As , therefore

is a stable stabilizer.

┼Does not work in 3-D
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Gram Matrix Method [Bose-Li (1968), Choi-Lam-Reznick (1995), 
Parrilo (2000)]

Fact: A multivariate real coefficient polynomial          in n real 
variables and of total degree 2d is a SOS if and 
only if it is representable as , where the              vector

of monomials,

and     is a symmetric PSD matrix. 

Comment:
(a)       can be found by SDP; it is not unique.

(b)             can be very large; but         usually has some structure 

e.g. lacunary.

Positivstellensatz [Stengle (1974)]:

Given polynomials in

, the following are equivalent

1.

2. There exist polynomials (cone generated by ),

(cone generated by ), and

(cone generated by ) such that

SOS Decomposition, SDP etc.
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Comments:
a) The multiplicative monoid generated by           is the set of all 

finite products of    ‘s including 1. 

e.g. 

b) The cone     generated by          is 

where     denotes the set of SOS polynomials in n-variables. Note 
that as well.

c) Positivstellensatz gives a characterization of the infeasibility of 
polynomial equations and inequalities over the reals.

Nonnegativity of a polynomial        on an algebraic variety

is a SOS in n-variate polynomial ring

is a SOS in quotient ring where polynomial ideal

Example (Parrilo) Is nonnegative on 

in this case of one constraint equation,         is the

Gröbner basis of the corresponding ideal
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Therefore, SOS on quotient ring             is needed, where

is the ideal generated by equality constraints. The computations
can be effectively done in             after computing the Gröbner
basis for     (details in Parrilo, Positive Polynomials in Control, eds. 
D. Henrion and A. Garulli, Springer, 2005, pp. 181 – 194.)
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PROBLEM:
Let ring . Let be the R-module

where the columns     are the Koszul relations.

Consider the (1 x 3) matrix . Clearly

Consider             then

are R-linearly dependent but any                          is 

R-linearly independent.

But are minimal in the sense that

Fact (well-known): The maximal set of linearly independent 
elements of the reduced Gröbner basis for module      may only 
generate a proper submodule of     .

⇒ Problem in GCLF (GCRF) extraction, even if such factor exists 
from a n-variate polynomial matrix, n>2.

Note: From linear algebra, every vector space over a field has a 
basis; not every module has a basis e.g. R – module generated by 

and     , which are not R – linear independent.
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Example (Chalie, 2000): It is known that

(note that the columns of     generate the same module as the 
columns of     ) has zero coprime reduced minors and has a GCLF 
of the submatrices A1, B1. The 2 x 2 minors are:

So, the reduced minors, after extracting the gcd d = z3, have no 
common zeros. To wit, a factorization is,

Using degree reverse lexicographical ordering with

the matrix G whose columns are the reduced Gröbner basis 
vectors of the module generated by the columns of C are (using 
SINGULAR)

However,      cannot be computed from G by applying the 
algorithmic theory of Gröbner bases because it can be shown that 
no proper linearly independent subset of the columns of G can 
generate the column space of C. 
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Q. But, can a factorization be found by another algorithm?

A. Yes; M. Wang and C. P. Kwong, “On multivariate polynomial 
matrix factorization problem,” Math. Control Signals Systems 
(2005), 17, 297 – 311. Let si be the ith row of             , since d = z3.

They use CoCoA, under the default module term ordering (Deg 
Revlex and ToPos) to get three generators of a syzygy module of 
si , i = 1, … , 5. 

Let       be the module generated by              . Using a CoCoA
command “Minimalized (M),” they find that M has the following two
generators

Factorization:

Limitation: Does not work if the system of generators of the 
syzygy module does not have   (2 in this case) elements.

Otherwise, more research needed in constructive (algorithmic 
algebra) n-variate factorization problems, n > 2.
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OPEN PROBLEM IN GENERAL
Minimax Controller Design Using Rate Feedback

Gröbner bases were used to solve special cases of a general 
minimax control problem using optimal rate feedback.

Mathematical Problem: Given plant consisting of a fixed set of 
coupled oscillators:

The problem is to find from an uncountably infinite set of odd 
degree polynomials         , whose generic element has the form

the one denoted for brevity by

so that the characteristic polynomial, of the resulting 
optimal rate feedback system has the fastest slowest mode among 
the set of strict Hurwitz polynomials, . In other words, 
the rightmost roots (root) of are (is) required to the 
farthest to the left of the imaginary axis in comparison to similar 
roots for any polynomial in the set
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Solutions available:

Main problem: Size of polynomial in Gröbner basis very large and 
“intractable?”

Solution still unknown.n>4 case

Gröbner basesTool used

Presented at Hagenberg Castle, RISC, Austria, August 
18, 2003.

n=4 case

N. K. Bose and C. Charoenlarpnopparut, “Minimax
controller design using rate feedback,” Circuits, 
Systems and Signal Processing, 18, 1, 1999, pp. 17-
25

n=3 case



Bihermitian Forms and 
Associated Linear Maps

For such a linear operator

when do there exist matrices so that  

there exists a finite sum of congruences

representation for

(J. de Pillis, Pac. J. Maths., 23, 1967, 129-137).

That (1) does not hold over the field of complex 

numbers follows from the counterexample. 
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Counterexample: Consider . Then  

is nndH. Hypothesize, 

. Choose , where      is a 

column vector representation of a complex m-tuple

such that            , but could be arbitrary otherwise.

and .

Definition 1: A scalar valued function                           

is called a bihermitian form if               is a hermitian 

form in      (i.e expressible as                      ), for each      

and a hermitian form in     for each .   

A bihermitian form clearly assumes only real values. A 

bihermitian form is nnd, provided

for each and each  .
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Definition 2: A scalar valued function

is a hermitian bilinear form provided is linear 

in for each and  is linear in     for 

each .                

Question: Given a nnd bihermitian form can it 

be expressed as

where,               is a hermitian bilinear form in      and in

for each .

When        is replaced by        and        by       , Eq. (2) 

becomes the sum of squares (SOS) representation
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Lemma [ Koga(1968), Calderon(1973), LAA, 7, 1973, 

175-173]: Let      be a polynomial with real coefficients 

in       real variables . If given values               

,      is quadratic in       for each                      

and if    assumes only nonnegative values, then it can 

be decomposed into the SOS,                 , where       is 

linear in each      separately.  

Representation of bihermitian forms:

Theorem 1: A bihermitian form is representable

as

where and

are complex matrices such that

.
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Furthermore, if         represents a matrix of order

with         as its element in the position,  

can be equivalently expressed as 

Proof: We note from the definition of a bihermitian form

where, for each is a hermitian matrix 

in . Let        be column vectors defined for 

m-tuples instead of n-tuples. For ,      has the

and      coordinates are equal to 1, other 

coordinates are equal to zero.

For          , the      coordinate of        is 1, the       

coordinate is  the imaginary number              and the 

rest are zero. 
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Put on both sides of (5) to get

since , an hermitian form in      can always be 

so expressed.

Also, for
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Since and 

are hermitian forms 

in     , these can be expressed as and

respectively, where        and        are hermitian 

matrices.

We have, therefore,

where and . 

Hence . It follows in an analogous manner 

that               can be equivalently represented as

where, with . The proof is now 

complete.
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Dual maps underlying a bihermitian form

Next, consider the matrices       and        associated 

with a bihermitian form H. For  

defines a linear mapping from to . 

When B is nonnegative definite of rank 1, say

is hermitian. Since a herimitian matrix is a linear 

combination of non-negative definite matrices of rank 1 

each with coefficients ±1, it is seen that whenever      is 

hermitian so is . For 

likewise defines a linear map from          to         such 

that hermitian matrices in           are so mapped into 

hermitian matrices in . 
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The linear maps        and         introduced in (11) and 

(12) are said to be the dual of one another, the duality 

being interpreted in terms of the common bihermitian

form to which both correspond. Indeed, every linear 

map from          to         that preserves hermitian 

symmetry corresponds uniquely to a bihermitian form

and to a dual linear map from into

with a like property. In fact

for .             is hermitian because

is hermitian. The same argument applies to 
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Complete Positivity (Stinespring)

Digression and Background

For compactness of notation, we denote         by

the algebra of complex matrices. 

is the matrix with 1 at        component and zeros 

elsewhere. is the collection of all

block matrices with matrices as entries. 

Clearly, is 

Definition:

is positive if     maps the set of positive 

definite matrices into itself (similarly )

is p-positive definite if            is positive on

( is given by
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is completely positive if     is p-postive for every p i.e.

is positive for all integers p. 

Example: For each matrix the map

with is completely positive.

Fact: Let . Then    is completely positive iff

is of the form for all where     are

matrices. 

An equivalent result is: 

Let . Then     is completely positive if

is positive.

Comment: Each linear map is determined 

by its values on . Hence      is 

completely determined by the single element 

φ φ
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Comment: A completely positive map is a positive map 

which keeps is positivity when the system it acts on is 

embedded as a subsystem in an arbitrary larger 

system. 

Comment: In the real case iff the 

block matrix is positive definite. However, 

the results on positive maps are slightly different 

because a positive map imposes no condition on the 

space of skew-symmetric matrices.
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When H is nonnegative definite, the associated linear 

maps        and         also preserve positivity in the sense 

that whenever                 and                are nonnegative

definite, so are             and            . Such maps are 

called positive.        is called completely positive if for 

every integer     and the partitioned form             of a 

nonnegative definite matrix with

the partitioned matrix is also nonnegative 

definite. The bihermitian form associated with the map

in the counterexample (consider the 

m=n case) is

The associated linear maps are identical in the m=n

case. 
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If (1) holds, let us write for some

. Then, using  

both of which are seen to be completely positive linear 

maps. Note that though cannot be expressed 

as in (1) in the complex case, the condition can always 

be met in the real case by requiring that be skew 

symmetric and indeed when     and      are the real      

n-tuples, the corresponding biquadratic form

can always be expressed as
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Linear Maps Preserving Hermitian Symmetry

For a nonnegative definite bihermitian form     , the 

most that be claimed in general is that       has a 

representation: 

where are hermitian bilinear forms in

This follows from the following result due to de Pillis.

Fact 1 (de Pillis): Let         be a linear map from

into such that if     is hermitian, so is . Then 

there exist complex matrices

such that 

The representation given by de Pillis involves      in 

place of     in (16).   
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Both forms of representation are, however, clearly 

equivalent since if        preserves hermitian symmetry, 

so does the linear map defined by the correspondence

. An elementary proof of this fact can be 

constructed but is omitted here.

Linear Maps Preserving Positivity –

Real Symmetric Case

Theorem 2: Let        be a linear map from          into 

such that if      is nonnegative definite symmetric, 

so is , then there exist such that

if and only if the corresponding nonnegative definite 

biquadratic form              in n by m real variables can be 

expressed as a finite sum of squares of bilinear forms 
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Proof: (Only if part) As     is nonnegative definite,

where . Let , where

.

(If part): As in (18) is a bilinear form,

So

The rest follows. 
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An Example

where,          .

It is stated that real         .

can be viewed as a linear mapping of the class of real 

symmetric matrices

A sum of congruences representation for

is expected in this case, because of the Koga-Calderon 

results. Note that m = n = 2, p = mn = 4. For the 

example considered here
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where,

Also, 

where

Algorithm for construction of the representation as a 

sum of congruences remains to be developed.
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Well-Known Specialization:

Fact: There exists a positive linear map such that

does not admit the representation of

as a finite sum of congruences.

Fact: The positive definite biquadratic form

may not be representable as a sum of squares of 

bilinear forms for all combinations of n and m.

Comment: Such an infeasibility in the m = n = 3 case is 

a stumbling block to passive synthesis of a multiport

multivariate positive real matrix.
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Completely positive maps provide the answer to SOS 

representation

Fact: Let . Then      is positive IFF there 

exist completely positive linear maps     and       such 

that for all i.e.

is of the form 

where      and are n x m matrices.

Problem: Characterization of positive maps which are 

not completely positive.

Answer: Difference of 2 completely positive maps?

(Sixia Yu, The Institute of Theoretical Physics, 

Academica Sinica, Beijing, June 5, 2005)
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