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~ 1981

1982

1982

1985

1988-1989

1990

1998

B. Buchberger visits me and gives lecture at University
of Pittsburgh.

J. P. Guiver receives his Ph.D at University of
Pittsburgh

N. K. Bose’s text, “Applied Multidimensional Systems
Theory,” appears.

B. Buchberger writes his famous and well-referenced
chapter, “Grobner Bases: An Algorithm Method in
Polynomial Ideal Theory,” clarifying and expanding on
his doctoral thesis (1965) and his subsequent
publications from 1970 (in German)

Ulrich Oberst sends me his voluminous research
reports on “Multidimensional Constant Linear Systems”,
| (June 1988), Il (January 1989), Il (March 1989)

U. Obersts’ seminal work appears in Acta Applicandae
Mathematicae.

Grobner basis talk on its role in multivariate polynomial
matrix coprimeness issues and factorization at Padova,
Italy, where | again met U. Oberst, before leaving for
Poland to participate in the First International Workshop
on n-D systems. Start collaboration with Zhiping Lin.



2000

2000

2001

2001

2001

2003

2006

Eva Zerz's monograph on “Topics in Multidimensional
Linear Systems Theory,” appears in the Springer series.

Again in Poland to participate in the Second
International Workshop on n-D systems. Meet B.
Buchberger again as a prelude to visiting Linz in 2003.
Met J. F. Pommaret.

J. F. Pommaret’s 2 volumes on “Partial Differential
Control Theory: Mathematical Tolls (vol. 1) and Control
Systems (vol. Il), appear.

Special Joint Issue, “Applications of Grobner Bases to
Multidimensional Systems and Signal Processing”
appears (vol. 12, 3/4, July/October, Mult. Systems and
Signal Proc.) Guest edited by Zhiping Lin and Li Xu.

C. Charoenlarpnopparut completes his Ph.D at Penn
State University on “Grobner Bases in Multidimensional
Systems and Signal Processing.”

Late 2003, the book by N. K. Bose, B. Buchberger and
J. P. Guiver entitled “Multidimensional Systems Theory
and Applications” appears.

J. of Symbolic Computation, Volume 41, issues 3 — 4,
March-April 2006 “Interactions in honor of Bruno
Buchbereger.”



A basic semialgebraic set is a subset of R” defined by a finite

number of polynomial equations and inequalities.
Example:

(a) {(xl,xz) eR’
(b) f(x)eR[x];f(x)>0,VX,X = (x,X,,...,X,)

Approaches for (b) include

2 2
X X
3—12+2—331,X12—X2 SO}

o Sum of squares representation, when possible to do
(SOSTOOLS, SEDUMI).

o Semidefinite programming to test feasibility of algebraic
sets (C.N. Delzell (1980), P. A. Parrilo, B. Sturmfels)

o Elementary decision algebra methods (A. Tarski,
Seidenberg, Collins, N. K. Bose, B. D. O. Anderson, E. I.
Jury)

o Global lower bound approach (N. Z. Shor)

o Gram matrix method (N. K. Bose, C. C. Li, M. D. Chaoi, T.
Y. Lam, B. Reznik)



Past and Present of Algorithmic Symbolic Computer Algebra
in MSSP

Various software used in the past are:

REDUCE (Stanford), SAC (Wisconsin), Scratchpad (IBM),
MACSYMA (MIT), Mathematica, Maple (Waterloo), etc.

Theoretical Tools: Multipolynomial Resultant-subresultants
(Sylvester, inners, bigradients), Bezoutiants

More recently:

SINGULAR (Kaiserslautern), COCOA (ltaly), Macualay 2,
Mathematica, Maple

Theoretical Tools: Ideal theory, Grobner-Buchberger bases (also
standard bases of Hironaka etc.)

Algorithmic Algebra pioneered at RISC, Austria by Bruno
Buchberger and his group.

QEPCAD (Collins etc.)

Why Grobner bases?

Examples: TakeK]z,,z,]; A(z,,z,), B(z,,z,) € K[z,,z,] are assumed
to be relatively prime. Then, the common zeros of 4(z,,z,),B(z,, z,)
are always finite in the bivariate case and can be found by
resultant theory. But, reduced Grobner bases by SINGULAR vyield
the common zeros, usually, with less computational effort.



To wit, let (from a filter bank design problem)
A(z,,2,)=-0.075(z] 2z, + 2,25 + z, + 2,) — 0.0375(z; + 25 +1+2z}z})
+0.85z,z,
B(z,,2z,)=0.125(z,z, + z, + z, +1)
Resultant based calculations could be messy! The Grobner basis
for A(z,,z,) and B(z,,z,) is, using SINGULAR (computed with
respect to degree reverse lexicographical ordering)
G,(z,,z,) = 222 +2,,G(z,z,) =z, +z,+1
The common zeros of G,(z,,z,) and G,(z,,z,) are easy to find at
(-1,0) and (0,-1) and these are also the zeros of 4(z;,z,)and B(z,,z,)
(The ideal generated by G,(z,,z,) and G,(z,,z,) is the same as the
ideal generated by A(z,,z,) and B(z,,z,)).

Common zeros of m>2 relatively prime multivariate polynomials

Classical approach: Multipolynomial resultants (Cox,
Little, O’Shea, Using Algebraic
Geometry)

Grobner basis A lex Grobner basis G successively

approach: eliminates more and more variables

(elimination and extension).



Variant of Hilbert’s Nullstellensatz in n-D FIR perfeect
reconstruction filter bank design problem
For N-channel analysis ({Hl.(z)}ffl) and synthesis ({E(Z)}Zl)filters in
a PR filter bank,

Y H,(z)F(z)=2",meZ"
z= [zl,zz,...,zn]Tandl_lzm is the notation for a n-variate delay
z"zy ...z Note that m is not known a priori and given{H,(z)}the
set {F(z)} plus mhas to be found satisfying the PR constraint.
WLOG, consider the N=2, n=2 (2-channel bivariate case). In this
case, H,(z,,z,) and H,(z,,z,) could have common zeros at (0,0)
(0,8),8, #0 or(«,,0),a, #0 . The “Rabinowitsch trick” could be
used as done to solve the more general problem (L. Xu, O. Saito,
and K. Abe, MSSP, 1, January 1994, pp. 41 — 60):

H\(z,,2,)F(2),2,) + H,(2,,2,)F,(2,,2,) = §" (2, 2,)

No previous knowledge of the positive integer ris needed. Let z;
be a new indeterminate. Then (1-2,5(z,,2,)) and H,(z,,z,),i=1,2
are zero coprime. According to Hilberts’ Nullstellensatz, the ideal
generated by these polynomials must be the unit ideal, i.e there
existzpolynomials G.(z,,2,,2,),i =1,2,3 such that

ZHi(ZDZZ)Gi(Zl’Zz’Z3) + (1—Z3S(ZI,ZZ))é3(Zl,ZZ,Z3) =1
Theﬁilsubstitute S(z,,z,) for z; and clear out denominator to obtain
an equation of the form desired.



Stabilization of Scalar (and Matrix) Feedback
Systems (2-D) (J. P. Guiver and N. K. Bose, 1985)

U,

Uz
C Y1 ( l ) €, P Y

+ €,

Fact 1: Let » and d be relatively prime polynomials with no
common zeros in bidisc UZ. Let there exist x, y e R[z,,z,] such that

yd +xneR[z,,z,] the ring of bivariate polynomials which have no

zeroin U . Then, the stabilizing compensators are characterized
by C=-394%% where s, eR[z,z,],5, € R[z,2,] are arbitrary.

sin+S,y

Example 1: Let n(z,.2,) =22, —z,-22, 2 G/(z,,2,)
d(z,,2,)=zz; —2z,z; —2z,z, + 4z, +4 = G,(z,,2,)
S,u(G,G,y) =G, —z2,2,G, = zlz,=2zz,+4z, +4

-G
A
>zl +4z,+4=G,(z,z2,)

G;(z,,2,) is in normal form, i.e. no term of G;is a multiple of the
head terms of G,,i <3 . Backtracking
d(z,,z,)—z,(z, +Dn(z,,z,) =z, +4z,+4eR (z,,2,)

zZ, +Zz
Example 2:  n(z,,z,)=z +2,,d(z,z,) =——3*—

Common zeros at (%—%)e U
= Not stabilizable by causal compensators (but stabilizable by

weakly causal systems (1985)). Also in N. K. Bose, B. Buchberger,
and J. P. Guiver (BBG), “Multidimensional Systems Theory And
Application,” Kluwer 2003 (now Springer, Dordrecht, Netherland).

-z +2z,



Fact 2: In the MIMO case of D;'N, is a minor coprime left MFD
(maximal order minors of [D,;N,;] have no nontrivial common
factor) of an unstable plant P, and X,Y;'is a minor comprime right
MFD (maximal order minors of [X;Y;] have no common factor) of
a compensator C , then C stabilizes P if and only if

det(D,Y, + N, X,) is zero free in U .

For stabilization of MIMO Weakly Causal systems, and updates on
other results, including computational methods for determining
strong stabilizability of n-D systems, see [BBG] and work of Ying
(refs. [135], [136] in [BBG]). Research counterparts in the n-D case
(n > 2) for constructing a stabilizing compensator for a MIMO plant
using Grobner bases (following work of Xu, Saito and Abe in 1994
(ref [133] in [BBG]) is worth pursuing.

n-D System Stabilizability: (J. Q. Ying et al, J. Symb.
Computation, 27, 1999, 479 — 499) In the generic feedback system
configuration, plant p(z) = f(z)/g(z), compensator c(z) = h(z)/k(z)
Q. Do there exist polynomials /(z) and k(z) such that (strong
stabilizability), k(z) =0 and f(2)h(z)+ g(2)k(z) #0,vzeU ?
Procedure based on cylindrical algebraic decomposition of
semialgebraic sets.



Example: Let

VifHnrg) = {(—

1++/2 l—ﬁ) [—l+«/§ IJM/EJ}
y )

2 2 72
= f and g do not have common zeros in U’ Let, as in Guiver-Bose

+l+«/§J(Z _1+«/§j'|'

2 2

S(ZDZZ):[ZI

Then, by Rabinowitsch’s trick, since f(z,,z,),8(z,2,), and
1-2z,5(z,,z,) do not have any common zeros in R[z,, z,,z,],using

Grobner bases (by Hilbert’s Nullstellensatz)

1+«/_

——Z3f(zl,22) ——238(2),2,) +(1—z35(2},2,)) =1

Setting z; =

s(z,,2,)

F+2(1++2)g =—4s
As V(s)nU =®, therefore

po_ L
2(1++/2)

is a stable stabilizer.

+Does not work in 3-D



SOS Decomposition, SDP etc.

Gram Matrix Method [Bose-Li (1968), Choi-Lam-Reznick (1995),
Parrilo (2000)]

Fact: A multivariate real coefficient polynomial p(x) in n real
variables x = (x,,x,,...,x,) and of total degree 2d is a SOS if and
only if it is representable as p(x) =v'Qv, where the (n :l ¢ j -vector

of monomials,
v’ :(1 Z, z, v Z, ZyZ, e e z,f)
and Q is a symmetric PSD matrix.
Comment:
(@) O can be found by SDP; it is not unique.
(b) (” ; dJ can be very large; but p(x) usually has some structure
e.g. lacunary.
Positivstellensatz [Stengle (1974)]:

Given polynomials{f,,..., f.}igp,--.g. ) and {h,....h} in

X =(x,X,,...,x,) , the following are equivalent
[(x)=20,i=12,...,r
1. xeR"g,(x)#0,i=12,...,k; isthe empty set
h(x)=0,i=12,...,1
2. There exist polynomials f € (cone generated by {f,...., f.}),
g € (cone generated by{gl,...,gk}), and
he (cone generated by {hl,...,hl }) such that f+g> +h=0.



Comments:

The multiplicative monoid M generated by {gi }le is the set of all
finite products of &/'s including 1.

e.9. M(g,,8,)= {gf‘l,g? kik, e Z, U{O}}
The cone P generated by {f, ], is

P(f ... f, )={SO+ZZ:SZ.[91.

ZEZ+aSi Eznabi EM(JFI ""’fr )}

where 2 denotes the set of SOS polynomials in n-variables. Note
that f’s, €2 as well.

Positivstellensatz gives a characterization of the infeasibility of
polynomial equations and inequalities over the reals.

Nonnegativity of a polynomial /(x) on an algebraic variety4,(x) =0

f(X)+ > 4 (X)h(x) is a SOS in n-variate polynomial ring R[x]
<—>}(x)is a SOS in quotient ring R[x]/I where polynomial ideal
I=(h(x),...,h(x))

Example (Parrilo) Is f(x)=10—-x’ —x, nonnegative on x; +x; —1=0?

I= <x12 +X5 —1> in this case of one constraint equation, #4(x) is the

Grobner basis of the corresponding ideal



4, 49, 9|1

10—x12—x2=(1 X1 % 9 9n 9n | X

0

9135 49 933 \ X
2 2
=qy X g% +2¢,X +2¢,5%, +2¢,,x,x,

=(qy, +933) + (g5, _Q33)x12 +24,,%, +2¢,3X, +2¢,,x,x,(Mod I)

0 —1/2
- g 0 o/ —LTLL—1(3 0 _1/6J
N T T hlo 0 435/
“1/2 0 1 V2 /

X, 35 ,

2
=10-x —x, E( ——) +£x2(m0d I

6

= f(x,,x,)isaSOSonR[x, ,x,]/1

Therefore, SOS on quotient ring R[x]/I is needed, where I = <hl.(x)>i:1

is the ideal generated by equality constraints. The computations
can be effectively done in R[x]/I after computing the Grobner
basis for I (details in Parrilo, Positive Polynomials in Control, eds.
D. Henrion and A. Garulli, Springer, 2005, pp. 181 — 194.)



PROBLEM:
Letring R=K[z,,2,,2]. Let M c R* be the R-module (f;. f>. f3)

where the columns f; are the Koszul relations.

z, Zy 0
f=|-z |.,f,=| 0 |f;=]| z
0 -z -z,

Consider the (1 x 3) matrix 4=(z, z, z,).Clearly
M =ker A={f e R, Af =0}
Consider ¢, € R; then
af +a.f,+af,=0 foro, =z,,a,=—z,,a, =z,
f,.f,.f; are R-linearly dependent but any{fl.,fj },1 <i<j<3is
R-linearly independent.
But {f,,f,.f,} are minimal in the sense that M = <f,.,fj>,1 Si<j<3

Fact (well-known): The maximal set of linearly independent
elements of the reduced Grobner basis for module M may only
generate a proper submodule of M |

= Problem in GCLF (GCRF) extraction, even if such factor exists
from a n-variate polynomial matrix, n>2.

Note: From linear algebra, every vector space over a field has a
basis; not every module has a basis e.g. R — module generated by

x. and x;, which are not R — linear independent.



Example (Chalie, 2000): It is known that

z2z3zy 0 —=ziz0=1\a A
C= : :G(Al I Bl)

2,2 4 _ 3,
2y2y+2y 1 —Zy 2,2y =

(note that the columns of G generate the same module as the
columns of C) has zero coprime reduced minors and has a GCLF
of the submatrices A,, B,. The 2 x 2 minors are:

_ 22 2.2 _ 2.2

So, the reduced minors, after extracting the gcd d = z;, have no
common zeros. To wit, a factorization is,

— 72722 -1 zz’z z37272
142 12253 | 4 _ 12223

1 4 2 2 1

-z, Z, Z,2yZy+ 2, Zy +

2 4_2
[ — 22,2, —ZzZyZy+1 J

G

B

2 2 30,22
—z7z, =1 —z{(z;z; +1)

Using degree reverse lexicographical ordering with z, > z, > z;,

the matrix G whose columns are the reduced Grobner basis
vectors of the module generated by the columns of C are (using

SINGULAR)
G:(O Zy 212222+1J
z; 0 z

However, G cannot be computed from G by applying the
algorithmic theory of Grobner bases because it can be shown that
no proper linearly independent subset of the columns of G can
generate the column space of C.



Q. But, can a factorization be found by another algorithm?

A. Yes; M. Wang and C. P. Kwong, “On multivariate polynomial
matrix factorization problem,” Math. Control Signals Systems
(2005), 17, 297 — 311. Let s, be the ith row of ( ¢ j , since d = z,,

— 2,1,

They use CoCoA, under the default module term ordering (Deg
Revlex and ToPos) to get three generators of a syzygy module of
s;,i=1,...,5.

_ 2,2 3
fl—(O Z, Z;Zy+z, —Zy —2123—23)
f- _(Z —ziziz, —z)zZ Z) zZiz, ZzZ5z —1)
2 = \%3 12223 12223 51523 5155
_ 22 4_2 2 2 2 5.2, 3
f3—(z1 —ziz, =1 —z'zyjz,—z/z, -1 z/z) +1 Z1Zz+Z1)

Let M be the module generated by f,, /. f; . Using a CoCoA
command “Minimalized (M),” they find that M has the following two
generators (C e R""[z,,z,,z,],/ < m)
o= (23 _2122223 _213222232 2122%23 21422%23 _1)
/s :(Z1 —zlzzf -1 —2142523 —21223 -1 lezg +1 lezg +Z13)
Factorization:
C:(212222+1 2122223]( ~z'222; 2,252, 2142523—1J

4_2 2 2_2 5.2 3
zZ, Zy z,2y2, vz, 23+l —zizy =1 —z'z) -z

Limitation: Does not work if the system of generators of the
syzygy module does not have /(2 in this case) elements.

Otherwise, more research needed in constructive (algorithmic
algebra) n-variate factorization problems, n > 2.



OPEN PROBLEM IN GENERAL

Minimax Controller Design Using Rate Feedback

Grobner bases were used to solve special cases of a general
minimax control problem using optimal rate feedback.

Mathematical Problem: Given plant consisting of a fixed set of
coupled oscillators:

m(s):f[(s2 +4)0<B < B,

The problem is to find from an uncountably infinite set of odd
degree polynomials 7,(s) , whose generic element has the form

n—1
n;(s) :kiSH(SZ +71(f))>ki >0,0 < Yy < P
I=1

the one denoted for brevity by

n—1

”(S):ksl_[(s2 +}/l),k>0,ﬂ, <V <V
1=1

so that the characteristic polynomial, n(s) + m(s) of the resulting
optimal rate feedback system has the fastest slowest mode among
the set of strict Hurwitz polynomials,{m(S)+n,- (S)} . In other words,
the rightmost roots (root) of n(s)+ m(s) are (is) required to the
farthest to the left of the imaginary axis in comparison to similar
roots for any polynomial in the set{m(s)+n,(s)}.



Solutions available:

n=3 case N. K. Bose and C. Charoenlarpnopparut, “Minimax
controller design using rate feedback,” Circuits,
Systems and Signal Processing, 18, 1, 1999, pp. 17-
25

n=4 case Presented at Hagenberg Castle, RISC, Austria, August
18, 2003.

Tool used Grobner bases

n>4 case Solution still unknown.

Main problem: Size of polynomial in Grobner basis very large and
“intractable?”



Bihermitian Forms and
Associated Linear Maps

SeCm™m L L(S)eC™

is n.n.d. is n.n.d.
Hermitian (hndH) Hermitian (nndH)

For such a linear operator L : S nndH — L(S)nndH

when do there exist matrices J, € C"" so that

VS nndH there exists a finite sum of congruences

representation for L(S)
P %
L(S)=2 V.SV, (1)
k=1

(J. de Pillis, Pac. J. Maths., 23, 1967, 129-137).

That (1) does not hold over the field of complex

numbers follows from the counterexample.



Counterexample: Consider L(S) =(tr S)/ —S. Then
L:SnndH— L(S) is nndH. Hypothesize,
V4
L(S)=)_ VSV, .Choose S =xx , where X is a

k=1 _
column vector representation of a complex m-tuple

such that x x =1, but could be arbitrary otherwise.

L(xx)=1-xX and xx L(xx')= Zxx*kax*Vk =0 .
k

tr Y xxV,xxV, =Y xV,xxV,x=0
k k
= X*ka =0,Vk CONTRADICTION
Definition 1: A scalar valued function H(x,y) e C" xC"
is called a bihermitian form if H(x,y) is a hermitian
formin x (i.e expressible as x Bx,B=B" ), for each

y € C” and a hermitian form in y for each x € C".

A bihermitian form clearly assumes only real values. A

bihermitian form H(x,y) is nnd, provided H(x,y)=0

foreach xeC"and each yeC" .



Definition 2: A scalar valued function H(x,y) e C" xC"

is a hermitian bilinear form provided H(x,y) is linear

in x foreach yeC"and H(x,y) islineariny for

each xe(C”,

Question: Given a nnd bihermitian form H(x,y) can it

be expressed as
H(x,y) = > ¢;(x.¥)¢;(x.y) (2)

where, ¢,(X,y) is a hermitian bilinear form in x and in

y for each je{l,z,...,k}.
When C” isreplaced by R” and C" by R", Eq. (2)

becomes the sum of squares (SOS) representation

H(x,y) =D ¢ (x.y)



Lemma [ Koga(1968), Calderon(1973), LAA, 7, 1973,
175-173]: Let f be a polynomial with real coefficients
in p real variables u, u,,..., 4, If given values
w,(j#1i), f isquadraticin g foreachi=12,...,p
and if f assumes only nonnegative values, then it can
be decomposed into the SOS, f :ZLi , Where L is

linear in each u; separately.

Representation of bihermitian forms:

Theorem 1: A bihermitian form H (x,y) is representable

as

Hxy)=3 S (X 4"x)yy, 3)

u=l v=1

where y’ :(Z,y_z,...,glx* :(xl,xz,...,xn) and
A" =((a;")) e C™" are complex matrices such that

(AuV)* — Avu .



Furthermore, if 4; represents a matrix of order mxm
with a;’ as its element in the (u,v)" position, H(x,y)
can be equivalently expressed as

HX,y) =Y > (Y 4,y)xx, (4)
i=1 j=1
Proof: We note from the definition of a bihermitian form

Hxy) =y A0y =YY a"®ny, (5)

u=l v=1

where, for each x, A(x) = (a" (x)) is a hermitian matrix

in C™". Let e, be column vectors defined for
m-tuples instead of n-tuples. For u <v, e  has the

u™and v" coordinates are equal to 1, other

coordinates are equal to zero.

For u>v, the v" coordinate of e, is1,the u"
coordinate is the imaginary number i =+/—1 and the

rest are zero.



Put y =e_ on both sides of (5) to get
a“(x)=H(x,e,)=x A"X (6)
since H(x,e,, ), an hermitian formin x can always be
SO expressed.
Also, for u <v
H(x,e )=a"(x)+a” (x)+ i(a”v (x)—a™ (X)) (7)
H(x,e )=a"(xX)+a”" (x)+a" (x)+a"™(x) (8)
Hence

Clw(X) = -%(H(X9euv) _H(X9euu) _H(X’evv))

_g(H(X’ e )—H(x,e, )—H(X, ew)) (9)
o (x) = %(mx,ew) ~H(x.e,)-H(x.e,))

+g([{(x,ew)—H(x,euu)—H(Xaew)) (10)



|
Since E(H(x,ew)—H(x,ew)—H(x,ew)) and
1
E(H(X’e”‘) ~H(x,e, )—H(x,e,))are hermitian forms
in x , these can be expressed as (x B“'x) and (x B"x)

respectively, where B* and B™ are hermitian

matrices.

We have, therefore, a” (x) =x 4”x,a™ (x) =x A™X,
where 4" =B" —y/—1B™ and A™ = B" +~-1B™
Hence (4") = A™. It follows in an analogous manner

that H(x,y) can be equivalently represented as

H(x,y)= ZZ (y*Aijy)xixj
i=1 j=1
where, 4, € C™" with (4;) =4, . The proof is now

complete.



Dual maps underlying a bihermitian form

Next, consider the matrices 4; and 4" associated

with a bihermitian form H. For B =((5,)) € C™
L, (B)=>> A45b, (11)

i=1 j=1
defines a linear mapping from C"" to C™".

When B is nonnegative definite of rank 1, say B = xx_

L,(B)=2.> A4;xx,

i=1 j=1
is hermitian. Since a herimitian matrix is a linear

combination of non-negative definite matrices of rank 1
each with coefficients +1, it is seen that whenever B is

hermitian sois L, (B). For C=((c,,)) € C™"
L"(Cy=2 2 A", (12)

u=1 v=1
likewise defines a linear map from C™ to C"™" such
that hermitian matrices in C™ are so mapped into

hermitian matrices in C"".



The linear maps L™ and L, introduced in (11) and
(12) are said to be the dual of one another, the duality
being interpreted in terms of the common bihermitian
form to which both correspond. Indeed, every linear
map from C™" to C™" that preserves hermitian

symmetry corresponds uniquely to a bihermitian form

H(x,y) and to a dual linear map from C™" into C"™"

with a like property. In fact
H(x,y)=y L,,(xx)y =x L™ (yy )x
for B=xx,C=yy. L™(C)is hermitian because

C =yy is hermitian. The same argument applies to
L (B).



Complete Positivity (Stinespring)

Digression and Background
For compactness of notation, we denote C”" by M,
the algebra of nxn complex matrices. £, e M,

is the nxn matrix with 1 at j,k component and zeros

elsewhere. M (M, )=M,6 ®M  is the collection of all

nxn block matrices with mxm matrices as entries.

Clearly, M (M, ) is C"™""
Definition:
¢:M _ — M is positive if  maps the set of positive

definite matrices into itself (similarly ¢: M, —> M )
¢ is p-positive definite if @/, is positive on M, ® M,
(¢®1, M, (M,)—> M, (M,) is given by

P& ]p ((Ajk ))1gj,k3p — ¢((Ajk ))1gj,ksp



¢ is completely positive if ¢ is p-postive for every p i.e.
9 ® 1, is positive for all integers p.

Example: For each nxm matrix V the map ¢: M, > M,
with Ae M, —V AV e M, is completely positive.
Fact: Let ¢: M, — M . Then ¢ is completely positive iff
¢ is of the form ZV,-*AV,. for all Ae M, where V, are
nxm matrices. |

An equivalent result is:

Let 9: M, — M, Then ¢ is completely positive if

(P(E ) <ji<n 18 pOSsitive.

Comment: Each linear map ¢: M, —> M is determined
by its values on £, e M, ,1< j,k<n.Hence ¢ is

completely determined by the single element
(¢(Ejk ))lgj,kén < Mn (Mm)



Comment: A completely positive map is a positive map
which keeps is positivity when the system it acts on is
embedded as a subsystem in an arbitrary larger

system.

Comment: In the real case ¢: M (R) - M, (R)iff the
block matrix (#(E))., <, is positive definite. However,
the results on positive maps are slightly different
because a positive map imposes no condition on the

space of skew-symmetric matrices.



When H is nonnegative definite, the associated linear
maps L™ and L, also preserve positivity in the sense
that whenever C e C™" and B € C"™" are nonnegative
definite, so are L™ (C) and L, (B). Such maps are
called positive. L is called completely positive if for
every integer p and the partitioned form ((B,,)) of a

nonnegative definite matrix B € C”"” with B,, € C"™

the partitioned matrix ((Z,,(B,,))) is also nonnegative
definite. The bihermitian form associated with the map
L(S)=(tr ) —S§ in the counterexample (consider the
m=n case) is

H(X,y)=Xyy X—y XXy

H(x,y)=0

The associated linear maps are identical in the m=n

case.



If (1) holds, let us write ¢.(x,y)=y Z.x for some
Z. eC™ _Then,using B=xx,C=yy

k
L"(C)=) Z,CZ, (13)
r=1

k
L,(B)=Y7Bz, (4)
r=1

both of which are seen to be completely positive linear
maps. Note that though H(x,y) cannot be expressed
as in (1) in the complex case, the condition can always
be met in the real case by requiring that Z_. be skew
symmetric and indeed when X and y are the real
n-tuples, the corresponding biquadratic form

x'xy'y —x'yy'x can always be expressed as

1 n n
EZZ(xiyj _xjyi)z'

i=1 j=1



Linear Maps Preserving Hermitian Symmetry

For a nonnegative definite bihermitian form # , the
most that be claimed in general is that // has a

representation:
k

H(x,y) =) 14, (xy)4 (X,y) (15)

r=I1

where ¢,,¢, ¢, are hermitian bilinear forms in (x,y).

This follows from the following result due to de Pillis.

nxn

Fact 1 (de Pillis): Let L  be a linear map from C

into C™" such that if B is hermitian, sois L_(B). Then
there exist complex matrices Z. e C"",r=1,2,...,k
such that .
L, (B)=Y +ZBZ, (16)
r=1

The representation given by de Pillis involves B’ in
place of B in (16).



Both forms of representation are, however, clearly
equivalent since if L preserves hermitian symmetry,

so does the linear map defined by the correspondence

B— L, (B"). An elementary proof of this fact can be

constructed but is omitted here.

Linear Maps Preserving Positivity —

Real Symmetric Case

nxn

Theorem 2: Let [ be a linear map from R™™ into

R™™ such that if B is nonnegative definite symmetric,

sois L _(B) ,then there exist Z. € R™" such that
L, (B)=) Z/BZ, (17)
if and only if the corresponding nonnegative definite

biquadratic form Q(X,Y) in n by m real variables can be

expressed as a finite sum of squares of bilinear forms

O(x.y) = 4;(x.y) (18)



Proof: (Only if part) As B is nonnegative definite,
B=DD'where DeR"™ Let D=[x,,x,,...,x,], where
x, eR",i=12,...,k

YL, (B)y=y' ZZiBery
:yt ZZZerXzZr]

DWACRY

(If part): As ¢,(X,y) in (18) is a bilinear form,
$.(X,y)=x'Zy. S0 X ¢ (xy)= Y’(ZZEXXZZJY-
J J

The rest follows.



An Example

X7+ XX, + X5 x5
”(x19x2): 2 2 2
X, xX; —x%, +x5(1+¢)

where, € >0.
It is stated that 7 (x,,x,)>0,V real x,,x,. 7(x,,x,)

can be viewed as a linear mapping of the class of real

symmetric matrices

2
X X X X
1 1% 1
A:[ 2]=( ym xQ
XXy Xy Xy

A sum of congruences representation for z(x,,x,)

is expected in this case, because of the Koga-Calderon
results. Note that m=n=2, p = mn = 4. For the

example considered here
4

L(A)=7(x,x,) = zViAVit

=1

1



where,

() [0 5
G| IS ]

0 ) 0 )
V= 1-2¢ Vy= 1+2¢

0
2 2

Also, P(x,)=r(x,x, )‘xzzl = MM'
where
st h )
M = 1 1 1—\/% 1+\/E
A N +A 2

2

Algorithm for construction of the representation as a

sum of congruences remains to be developed.



Well-Known Specialization:

Fact: There exists a positive linear map such that

¢ : RSX?) N R3X3

does not admit the representation of ¢(4), 4 R*

as a finite sum of congruences.
p(A)=2 ViAV,.V, R Vi
k

Fact: The positive definite biquadratic form

Q(Xﬂy):ZZZqukrl'xjxkyrylﬂ(jSkﬂrSl)
ik o 1

x=(x, x .. x)y=0 »n ... )
may not be representable as a sum of squares of

bilinear forms for all combinations of n and m.

Comment: Such an infeasibility in the m =n =3 case is
a stumbling block to passive synthesis of a multiport

multivariate positive real matrix.



Completely positive maps provide the answer to SOS

representation

Fact: Let ¢:C™ — C™". Then ¢ is positive IFF there
exist completely positive linear maps ¢, and @, such
that forall 4eC"™",¢(A)=¢ (A)+¢,(A") i.e.p(A)

is of the form
H(A) =DV AV, + Y W AW,
i J
where V; and W are n x m matrices.

Problem: Characterization of positive maps which are

not completely positive.
Answer: Difference of 2 completely positive maps?

(Sixia Yu, The Institute of Theoretical Physics,
Academica Sinica, Beijing, June 5, 2005)



